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THE EFFECTIVE BOUNDARY CONDITIONS FOR VECTOR

FIELDS ON DOMAINS WITH ROUGH BOUNDARIES:

APPLICATIONS TO FLUID MECHANICS*

Eduard Feireisl, Šárka Nečasová, Praha

Dedicated to Professor K. R. Rajagopal on the occasion of his 60th birthday

Abstract. The Navier-Stokes system is studied on a family of domains with rough bound-
aries formed by oscillating riblets. Assuming the complete slip boundary conditions we iden-
tify the limit system, in particular, we show that the limit velocity field satisfies boundary
conditions of a mixed type depending on the characteristic direction of the riblets.
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1. Introduction

Consider a viscous incompressible fluid occupying a bounded domain Ω ⊂ R
3. In

the Eulerian reference system, the motion of the fluid is completely determined by

the velocity field u = u(t, x)—a vector valued function of the time t and the spatial

position x ∈ Ω. Under the hypothesis of impermeability of the boundary, the velocity

satisfies

(1) u · n|∂Ω = 0,
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where the symbol n stands for the outer normal vector. In addition to (1), the widely

accepted hypothesis asserts there is no relative motion between the viscous fluid and

the rigid wall represented by ∂Ω, meaning

(2) [u]τ |∂Ω = 0,

where [u]τ denotes the tangential component of u. The no-slip boundary condi-

tions (1), (2) are the most frequently accepted because of their enormous success in

reproducing the velocity profiles for macroscopic flows.

There have been several attempts to justify the no-slip boundary conditions as an

inevitable consequence of fluid trapping by surface roughness (see Amirat et al. [1],

Casado-Díaz et al. [6]). On the other hand, in order to simplify the complicated

description of the fluid behavior in a boundary layer, the Navier boundary conditions

or other so-called wall laws have been used instead of (2) to facilitate numerical

computations (see Jaeger and Mikelić [7]).

Following the programme originated in [2], [4] we consider a family of bounded

domains {Ωε}ε>0,

(3) Ωε = {(x1, x2, x3) : (x1, x2) ∈ T 2, 0 < x3 < 1 + Φε(x1, x2)},

where the symbol T 2 = ([0, 1]|{0,1})
2 denotes the two-dimensional torus. In other

words, all quantities defined on Ωε are periodic with respect to the “horizontal”

variables (x1, x2). We assume that the functions Φε depend only on a single spatial

variable, say, Φε = Φε(x1), mimicking a ribbed surface, where the amplitude as well

as a typical wavelength of oscillations are small for ε approaching zero.

We suppose that the time evolution of the fluid velocity is governed by the Navier-

Stokes system

divx u = 0 in (0, T )× Ωε,(4)

∂tu + divx(u⊗ u) + ∇xP = divx S in (0, T ) × Ωε,(5)

where P is the pressure and the viscous stress tensor S is given by the classical

Newton’s rheological law

(6) S = µ(∇xu + ∇t
xu)

with a constant viscosity coefficient µ > 0. System (4)–(6) is supplemented with the

complete slip boundary conditions

u · n|{x3=0} = 0, [Sn]τ |{x3=0} = 0,(7)

u · n|{x3=1+Φε(x1,x2)} = 0, [Sn]τ |{x3=1+Φε(x1,x2)} = 0.(8)
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Following the approach developed in [4] we identify the limit problem associated

with (4)–(8) for ε tending to zero. In particular, any accumulation point u of a

family of solutions {uε}ε>0 of problem (4)–(8) satisfies (4)–(6) on the limit domain

Ω = T 2 × (0, 1), together with the complete slip boundary condition (7) on the

bottom part of the boundary {x3 = 0}. In addition, the limit velocity u on the

upper boundary is parallel to the riblets, specifically,

(9) u|{x3=1} = (0, u2, 0), and S2,3|{x3=1} = 0.

The main result obtained in this paper can be viewed as an extension of the theory

developed in [2] to the time-dependent case. Similarly to [4], the main difficulty is

to handle possible oscillations in time of the sequence {uε}ε>0 resulting in the lack

of compactness of the convective terms {uε ⊗ uε}ε>0. In order to overcome this

stumbling block, we introduce a local pressure in the spirit of Wolf [11] (cf. also

Koch and Solonnikov [8]). Although strongly motivated by [11], our construction

of the local pressure is different, based on the Riesz transform rather than on the

biharmonic decomposition introduced in [11]. The main advantage of our approach

lies in the fact that the norm of the local pressure is independent of the parameter ε.

Finally we would like to mention that in paper [3] the complete description of the

asymptotic limit by means of Γ-convergence arguments was done, and was identified

a general class of boundary conditions.

2. Main result

To begin, let us recall the concept of a weak solution to problem (4)–(8).

Definition 2.1. A function uε is termed a weak solution to problem (4)–(8) if

uε ∈ L∞(0, T ;L2(Ωε;R
3)) ∩ L2(0, T ;W 1,2(Ωε;R

3));(10)

divx uε(t, ·) = 0, uε(t, ·) · n|∂Ωε = 0 for a.a. t ∈ (0, T );(11)

the integral identity

∫ T

0

∫

Ωε

(uε · ∂tϕ+ uε ⊗ uε : ∇xϕ+ Pε divx ϕ) dxdt(12)

=

∫ T

0

∫

Ωε

µ(∇xuε + ∇t
xuε) : ∇xϕdxdt

41



holds for a certain Pε ∈ Lq((0, T )×Ωε), q > 1, and any test function ϕ ∈ D((0, T )×

Ωε;R
3), ϕ · n|∂Ωε = 0; and the energy inequality

(13)

∫

Ωε

1

2
|uε|

2(τ) dx+

∫ τ

0

∫

Ωε

µ

2
|∇xuε + ∇t

xuε|
2 dxdt 6 E0,ε

is satisfied for a.a. τ ∈ (0, T ).

R em a r k. Note that Definition 2.1 anticipates the existence of the pressure Pε as

an integrable function. On the other hand, the existence of weak solutions belonging

to the class specified in Definition 2.1 can be established for a fairly general set of

initial data by the method developed by Bulíček et al. [5].

Similarly, we introduce the concept of a weak solution of the limit problem as

follows.

Definition 2.2. We say that a function u is a weak solution of problem (4)–(7),

and (9) if

u ∈ L∞(0, T ;L2(Ω;R3)) ∩ L2(0, T ;W 1,2(Ω;R3));(14)

divx u(t, ·) = 0, u(t, ·) · n|{x3=0} = 0 for a.a. t ∈ (0, T ),(15)

u1|{x3=1} = u3|{x3=1} = 0;(16)

and the integral identity

∫ T

0

∫

Ω

(u · ∂tϕ+ (u ⊗ u) : ∇xϕ) dxdt(17)

=

∫ T

0

∫

Ω

µ(∇xu + ∇t
xu) : ∇xϕdxdt

holds for any test function ϕ ∈ D((0, T ) × Ω;R3),

(18) divx ϕ = 0, ϕ · n|{x3=0} = 0, ϕ1|{x3=1} = ϕ3|{x3=1} = 0.

At this stage, we are ready to state our main result.

Theorem 2.1. Let a family of domains {Ωε}ε>0 be given by (3), with Φε = Φε(x1)

such that

Φε ∈ W 1,∞(T 1), T 1 = [0, 1]|{0,1}, 0 6 Φε 6 ε, |Φ′
ε| 6 L,(19)

lim inf
ε→0

∫ b

a

|Φ′
ε(z)| dz > λ|a− b| for arbitrary a 6 b, a, b ∈ T 1,(20)

for a certain λ > 0.
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Let {uε}ε>0 be a family of weak solutions of problem (4)–(8) in the sense of

Definition 2.1 such that

(21) sup
ε>0

E0,ε = E <∞.

Then, passing to a subsequence as the case may be, we have

(22) uε → u weakly-(*) in L∞(0, T ;L2(Ω;R3)) ∩ L2(0, T ;W 1,2(Ω;R3)),

where u is a weak solution of problem (4)–(7), (9) in the sense specified in Defini-

tion 2.2.

R em a r k. The non-degeneracy condition (20) is satisfied in a number of partic-

ular cases discussed in [2].

The rest of the paper is devoted to the proof of Theorem 2.1.

3. Identifying the limit velocity field

In accordance with the energy inequality (13) and hypothesis (21), we have

(23) ess sup
t∈(0,T )

‖uε‖L2(Ωε;R3) 6 c

and

(24)

∫ T

0

∫

Ωε

|∇xuε + ∇t
xuε|

2 dxdt 6 c

uniformly for ε→ 0.

Estimates (23), (24), together with Korn’s inequality, yield

(25)

∫ T

0

‖uε‖
2
W 1,2(Ωε;R3) dt 6 c.

Note that, by virtue of the result of Nitsche [9] and hypothesis (19), the bound

established in (25) is independent of ε.

Consequently, in accordance with (23), (25), we can assume

(26) uε → u weakly-(*) in L∞(0, T ;L2(Ω;R3)) ∩ L2(0, T ;W 1,2(Ω;R3))
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passing to suitable subsequences as the case may be. Moreover, it is easy to check

that

divx u = 0 a.a. in (0, T )× Ω,

and

u · n|{x3=0} = u3|{x3=0} = 0.

Finally, exactly as in [2, Section 3], we can show that hypotheses (19), (20) imply

that the limit velocity field u satisfies

u1|{x3=1} = u3|{x3=1} = 0.

4. Identifying the limit equations

4.1. Pressure

Our ultimate goal is to identify the limit system of equations satisfied by u. Here,

the major problem is to control the pressure term Pε in (12). In general, we do not

expect to obtain any uniform bound on {Pε}ε>0 as ε → 0, however, we claim the

following result.

Lemma 4.1. Under the hypotheses of Theorem 2.1, there exists a pair of functions

preg,ε, pharm,ε such that

(27)

∫ T

0

∫

Ωε

Pε divx ϕdxdt =

∫ T

0

∫

Ωε

(preg,ε divx ϕ+ pharm,ε∂t divx ϕ) dxdt

for any ϕ ∈ D((0, T ) × Ωε;R
3), where

(28) ‖preg,ε‖L2(0,T ;L3/2(Ωε)) 6 c1(E),

(29) ∆xpharm,ε = 0 in D′((0, T )× Ωε), ‖pharm,ε‖L∞(0,T ;L2(Ωε;R3)) 6 c2(E),

with the quantities c1, c2 independent of the parameter ε.

P r o o f. The “regular” component of the pressure preg,ε is uniquely determined

as

(30) preg,ε = −

3
∑

i,j=1

RiRj [1ΩεT
ε
i,j ],
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where we have set

T
ε = uε ⊗ uε − µ(∇xuε + ∇t

xuε),

and where the symbol Rj stands for the standard Riesz transform in the xj-variable.

Using the uniform bounds (23), (25) together with the continuity of the Riesz

transform in the Lebesgue spaces Lp(R3), 1 < p <∞, we deduce that preg,ε satisfies

‖preg,ε‖L2(0,T ;L3/2(Ωε)) 6 c1(E);

whence (28) follows. Note that we have used the Sobolev embedding relation

W 1,2(Ωε) →֒ Lp(Ωε), 1 6 p 6 6, the norm of which is independent of ε.

As uε satisfies (12), we have

uε ∈ Cweak([0, T ];L2(Ωε;R
3)),

in particular, it follows from (12) that

∫

Ωε

(uε(τ, ·) − uε(0, ·)) · ψ dx−

∫

Ωε

(
∫ τ

0

T
ε dt

)

: ∇xψ dx = 0

for all ψ ∈ D(Ωε;R
3), divx ψ = 0 and all τ ∈ [0, T ].

Thus, by virtue of Lemma 2.2.1 in Sohr [10], there exists a pressure pε such that
∫

Ωε
pε(τ, ·) dx = 0, and

∫

Ωε

(uε(τ, ·) − uε(0, ·)) · ψ dx−

∫

Ωε

(
∫ τ

0

T
ε dt

)

: ∇xψ dx(31)

+

∫

Ωε

pε(τ, ·) divx ψ dx = 0

for all ψ ∈ D(Ωε;R
3) and all τ ∈ [0, T ]. Exactly as in Sections 4, 5 in [2], we can

deduce from (31) that

sup
τ∈[0,T ]

‖pε(τ, ·)‖L2(Ωε) 6 c2(E)

uniformly with respect to ε.

It follows from (31) that

∫ T

0

∫

Ωε

(uε · ∂tϕ+ (uε ⊗ uε) : ∇xϕ+ pε∂t divx ϕ) dxdt

=

∫ T

0

∫

Ωε

µ(∇xuε + ∇t
xuε) : ∇xϕdxdt
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for all ϕ ∈ D((0, T ) × Ωε;R
3); whence, in accordance with (12),

(32)

∫ T

0

∫

Ωε

Pε divx ϕdxdt =

∫ T

0

∫

Ωε

pε∂t divx ϕdxdt

for all ϕ ∈ D((0, T ) × Ωε;R
3).

Finally, we set

(33) pharm,ε(τ, ·) = pε(τ, ·) −

∫ τ

0

(

preg,ε −
1

|Ωε|

∫

Ωε

preg,ε dx

)

dt.

As relation (27) follows from (32), it remains to show that pharm,ε is a harmonic

function in the x-variable. In order to see this, we use (30) to obtain

∫

Ωε

preg,ε∆ϕdx(34)

=

∫

Ωε

[uε ⊗ uε − µ(∇xuε + ∇t
xuε)] : ∇2

xϕdx a.a. in (0, T )

for any ϕ ∈ D(Ωε). Consequently, taking ψ = ∇xϕ in (31) and comparing the

resulting expression with (33), (34) we deduce the desired conclusion

∫

Ωε

pharm,ε(τ, ·)∆ϕdx = 0 for all ϕ ∈ D(Ωε) and a.a. τ ∈ (0, T ).

�

4.2. Limit equations

It follows from (27) that the quantities Pε and preg,ε−∂tpharm,ε differ only by a spa-

tially homogeneous time dependent function; in particular, the integral identity (12)

can be replaced by

∫ T

0

∫

Ωε

(uε · ∂tϕ+ uε ⊗ uε : ∇xϕ+ preg,ε divx ϕ+ pharm,ε∂t divx ϕ) dxdt(35)

=

∫ T

0

∫

Ωε

µ(∇xuε + ∇t
xuε) : ∇xϕdxdt

to be satisfied for any test function ϕ ∈W
1,∞
0 ((0, T ) × Ωε;R

3), ϕ · n|∂Ωε = 0.

Any test function ϕ for the limit problem in the sense specified in (18) can be

extended to (0, T ) × Ω to be admissible in (35); specifically, we can take ϕ1, ϕ3 to

be zero outside Ωε. In particular, taking relation (26) together with the uniform
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pressure estimates (28), (29) into account, we can let ε → 0 in (35) in order to

conclude that

∫ T

0

∫

Ω

(u · ∂tϕ+ (u ⊗ u) : ∇xϕ) dxdt =

∫ T

0

∫

Ω

µ(∇xu + ∇t
xu) : ∇xϕdxdt

for any test function ϕ ∈ D((0, T ) × Ω;R3),

divx ϕ = 0, ϕ · n|{x3=0} = 0, ϕ1|{x3=1} = ϕ3|{x3=1} = 0,

where the symbol u⊗ u stands for the weak limit of the sequence {uε ⊗ uε}ε>0 in

the Lebesgue space L3/2((0, T ) × Ω;R3×3). Consequently, it remains to identify the

quantity u ⊗ u. This will be done in the last section.

5. Convergence of the convective terms

In order to complete the proof of Theorem 2.1, we have to show that

(36)

∫ T

0

∫

Ω

(uε ⊗ uε) : ∇xϕdxdt→

∫ T

0

∫

Ω

(u ⊗ u) : ∇xϕdxdt as ε→ 0

for any ϕ ∈ D((0, T ) × Ω;R3),

divx ϕ = 0, ϕ · n|{x3=0} = 0, ϕ1|{x3=1} = ϕ3|{x3=1} = 0.

To begin, it is easy to observe that it is enough to show (36) for any ϕ ∈ D((0, T )×

Ω;R3), divx ϕ = 0. Indeed we have

∫ T

0

∫

Ω

(uε ⊗ uε) : ∇xϕdxdt = −

∫ T

0

∫

Ω

∇xuεuε · ϕdxdt,

whence (36) implies

(37)

∫ T

0

∫

Ω

∇xuεuε · ϕdxdt→

∫ T

0

∫

Ω

∇xuu · ϕdxdt

as soon as ϕ ∈ D((0, T ) × Ω;R3), divx ϕ = 0. On the other hand, relation (37) is

easily extended to ϕ ∈ D((0, T ) × Ω;R3), divx ϕ = 0, ϕ · n|∂Ω = 0.

In order to see that (36) holds for any ϕ ∈ D((0, T ) × Ω;R3), divx ϕ = 0, we

evoke the method developed in [4] based on the pressure decomposition established

in Lemma 4.1. The reader may consult [4] for details.
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It follows from (35) that

uε + ∇xpharm,ε → u + ∇xpharm in Cweak([0, T ];L2(V ;R3)), V ⊂ V ⊂ Ω,

where pharm denotes the weak limit of {pharm,ε}ε>0. Here, we have used the fact that

the harmonic part of the pressure is smooth in the x-variable on any set V ⊂ V ⊂ Ω.

Consequently, a simple Lions-Aubin type argument yields

uε + ∇xpharm,ε → u + ∇xpharm in L
2(0, T ;L2(V ;R3)).

Finally, we get

∫ T

0

∫

Ω

u ⊗ u : ∇xϕdxdt = lim
ε→0

∫ T

0

∫

Ω

(uε ⊗ uε) : ∇xϕdxdt

= lim
ε→0

∫ T

0

∫

Ω

((uε + ∇xpharm,ε) ⊗ uε) : ∇xϕdxdt

− lim
ε→0

∫ T

0

∫

Ω

(∇xpharm,ε ⊗ (uε + ∇xpharm,ε)) : ∇xϕdxdt

+ lim
ε→0

∫ T

0

∫

Ω

(∇xpharm,ε ⊗∇xpharm,ε) : ∇xϕdxdt

=

∫ T

0

∫

Ω

(u⊗ u) : ∇xϕdxdt

whenever ϕ ∈ D((0, T )×Ω;R3), divx ϕ = 0. Thus we have shown relation (36). The

proof of Theorem 2.1 is complete.
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