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Abstract

Multivariate models frequently used in many branches of science have
relatively large number of different structures. Sometimes the regularity
condition which enable us to solve statistical problems are not satisfied
and it is reasonable to recognize it in advance. In the paper the model
without constraints on parameters is analyzed only, since the greatness of
the class of such problems in general is out of the size of the paper.
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1 Introduction

The aim of the paper is to attract an attention to solvability of basic statis-
tical problems in multivariate models. They are estimation, construction of
confidence regions and testing statistical hypotheses.
Plenty of nice solutions of such problems are given in statistical monographs

[1], [6], [7], [24], however comments on situations where some of given problems
are unsolvable, are rather rare. The monograph [12] is devoted to such problems.
An attempt in this paper is to give an overview of basic statistical problems

which either can be or cannot be solved in a standard way on the basis of [12].
Therefore majority of statements given here are given without proofs (they
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54 Lubomír KUBÁČEK

are given in [12]). Exception are the proof of Lemma (Rao) and proof of the
statements in a consideration on insensitivity regions, since these approaches
are not commonly used.
The multivariate linear models without constraints are considered only, be-

cause of the greatness of the class of such problems in models with constraints
(see in more detail in [12]).

2 Structures of the models; structures of the covariance
matrices

In the following text Y means a random matrix which realization gives us a
set of measured data, X is a known design matrix, B is a matrix of unknown
parameters and Σ is a covariance matrix either of the rows, or the columns of
the matrix Y. The symbol I means the identity matrix.
The following models without constraints on the matrixB will be considered.

vec(Yn,m) ∼nm [(Im,m ⊗Xn,k) vec(Bk,m),Σm,m ⊗ In,n], (1)

vec(Yn,m) ∼nm [(Im,m ⊗Xn,k) vec(Bk,m), Im,m ⊗Σn,n]. (2)

Here ⊗ denotes the Kronecker multipication of matrices and vec(B) means the
vector composed of the columns of the matrix B. The notation in (1) means
that the mean of the vector Y is (I ⊗ X) vec(B) and its covariance matrix is
Σ⊗ I.
The model (2) is in fact m univariate not correlated models

Yi ∼n (Xβi,Σ), i = 1, . . . ,m,

Y = (Y1, . . . ,Ym), B = (β1, . . . ,βm)

The model (2) is considered here because of purposes given in the following text.

vec(Yn,r) ∼nr [(Z′
r,m ⊗Xn,k) vec(Bk,m),Σr,r ⊗ In,n], (3)

vec(Yn,r) ∼nr [(Z′
r,m ⊗Xn,k) vec(Bk,m), Ir,r ⊗Σn,n]. (4)

The models (3) and (4) are the same from the viewpoint of theory however from
the viewpoint of application it is reasonable to analyze them separately.
It is to be said some comments to these four models. The first one occurs

frequently when a group of patients is investigated. The i-th row of the ob-
servation matrix Y means the observation vector of the i-th patient, where m
values of some physiological quantities are measured. The j-th column of the
matrix B are parameters of the j-th quantity measured in the experiment and
they are common for all patients. It is assumed that the design matrix X is the
same for all quantities. The matrix Σ is the covariance matrix of the rows of
the observation matrix Y (it is assumed that patients are stochastically inde-
pendent). The i-th row of the matrix X can be given, e.g. by the quantities as
age, weight, body mass index, etc., of the i-th patient.
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The model (2) is typical for deformation measurement in m epochs. The
j-th column of Y is the observation vector of the j-th epoch, the j-th column
of the matrix B is the vector parameters of the investigated object (e.g. the
3D coordinates of a group of points in the j-th epoch of measurement, which
positions are measured on the investigated object m-times in order to detect
their changes during the time of deformation process), Σ is the covariance ma-
trix of the columns of the matrix Y (the measurements of two different epochs
are stochastically independent) and X characterizes the design of measurement,
which is assumed to be the same in all m-epochs.
The third model is the growth curve model. It arises, e.g. when a time

course of a physiological parameter in investigated for n patients. The indirectly
measured values of them for the i-th patient are φi(t1), φi(t2), . . . , φi(tr). If the
polynomial time course is assumed, i.e.

φi(t) = Θi,0 +Θi,1t+ . . .+Θi,m−1t
m−1,

then

E(Y) = X

⎛⎝Θ1,0, Θ1,1, . . . , Θ1,m−1

. . . . . . . . . . . . . . . . . . . . . . .
Θk,0, Θk,1, . . . , Θk,m−1

⎞⎠
⎛⎜⎜⎝

1, 1, . . . , 1
t1, t2, . . . , tr
. . . . . . . . . . . . . . . . . . . . . .
tm−1
1 , tm−1

2 , . . . , tm−1
r

⎞⎟⎟⎠ .

Thus X characterizes the design of indirect measurement,

B =

⎛⎝Θ1,0, Θ1,1, . . . , Θ1,m−1

. . . . . . . . . . . . . . . . . . . . . . .
Θk,0, Θk,1, . . . , Θk,m−1

⎞⎠ , Z =

⎛⎜⎜⎝
1, 1, . . . , 1
t1, t2, . . . , tr
. . . . . . . . . . . . . . . . . . . . . .
tm−1
1 , tm−1

2 , . . . , tm−1
r

⎞⎟⎟⎠ .

The matrix Σ is the covariance matrix of the rows of the observation matrix Y.
The model (4) is typical for deformation measurement. Let a time course of

coordinates of a characteristic point of the investigated object is investigated,
i.e.

{B}i,j = Θi,1ϕ1(tj) + . . .+Θi,mϕm(tj)

(the matrix B is from the model (2)), where ϕ1(·), . . . , ϕm(·) are suitable func-
tions for characterizing the deformation process. Thus the following model

E(Y) = X

⎛⎝Θ1,1, Θ1,2, . . . , Θ1,m

. . . . . . . . . . . . . . . . . . . . .
Θk,1, Θk,2, . . . , Θk,m

⎞⎠⎛⎝ ϕ1(t1), ϕ1(t2), . . . , ϕ1(tr)
. . . . . . . . . . . . . . . . . . . . . . . . . . . .
ϕm(t1), ϕm(t2), . . . , ϕm(tr)

⎞⎠ ,

is obtained.
Thus in the model (4) we have

B =

⎛⎝Θ1,1, Θ1,2, . . . , Θ1,m

. . . . . . . . . . . . . . . . . . . . .
Θk,1, Θk,2, . . . , Θk,m

⎞⎠ , Z =

⎛⎝ ϕ1(t1), ϕ1(t2), . . . , ϕ1(tr)
. . . . . . . . . . . . . . . . . . . . . . . . . . . .
ϕm(t1), ϕm(t2), . . . , ϕm(tr)

⎞⎠ .
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Regularity conditions:

r(Xn,k) = k < n, r(Zm,r) = m < r, Σ positive definite.

In the following text no regularity is assumed.
Structures of the covariance matrix is assumed to be of the forms:

Σ . . . completely known,

Σ = σ2V, σ2 ∈ (0,∞) unknown, V known positive definite,

Σ =

p∑
i=1

ϑiVi, ϑ = (ϑ1, . . . , ϑp)
′ unknown, ϑi > 0, i = 1, . . . , p,

V1, . . . ,Vp known, symmetric and positive semidefinite,

Σ . . . completely unknown.

3 Estimability of the first order parameters

The statements of this section are proved in [12].
Model (1): LetM(H′

u,k) ⊂ M(X′). (The notationM(X′) means the space
{X′v : v ∈ Rn} and Rn is the n-dimensional linear space.) Then HB is unbias-
edly estimable and there exists the BLUE of it independently on the knowledge
of the matrix Σ.
Model (2):

Σ known : ifM(H′) ⊂ M(X′) the BLUE of HB exists,

Σ = σ2V : dtto,

Σ =

p∑
i=1

ϑiVi : ifM(H′) ⊂ M(X′)

the ϑ0-LBLUE exists only; if “plug-in” estimator is used, then

the sensitivity analysis is necessary, see section 6,

Σ unknown : the BLUE does not exist.

Model (3):

Σ known : ifM(H′
1) ⊂ M(X′) & M(H2) ⊂ M(Z)

the BLUE of H1BH2 exists,

Σ = σ2V : dtto,

Σ =

p∑
i=1

ϑiVi : ifM(H′
1) ⊂ M(X′) & M(H2) ⊂ M(Z)

the ϑ0-LBLUE exists only; if “plug-in” estimator is used, then

the sensitivity analysis is necessary, see section 6,

Σ unknown : the BLUE does not exist.

Model (4): The same is valid as in the model (3). (See also the paper [2],
where insensitivity regions in multivariate statistical model (4) is constructed.)
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4 Estimability of the second order parameters

The statements in this section are proved in [12].

(i) The case Σ = σ2V; the parameter σ2 is estimable if

Model (1): r(V) > 0 & n− r(X) > 0,

Model (2): r(V,X)− r(X) > 0,

Model (3):
(
(r(V)> 0 & n−r(X)> 0)

)∨((r(X)> 0 & r(V,Z′)−r(Z′)> 0)
)
,

Model (4):
(
(r(V) > 0 & r−r(Z) > 0)

)∨((r(Z) > 0 & r(V,X)−r(X) > 0)
)
.

(ii) The case Σ =
∑p

i=1 ϑiVi; the parameters ϑ1, . . . , ϑp, are unbiasedly
eastimable if

Model (1): SΣ+
0
regular,

{
SΣ+

0

}
i,j

= Tr(ViΣ
+
0 VjΣ

+
0 ), i, j = 1, . . . , p,

Model (2): S(MXΣ0MX)+ regular,{
S(MXΣ0MX)+

}
i,j

= Tr[Vi(MXΣ0MX)+Vj(MXΣ0MX)+], j = 1, . . . , p,

Model (3): [n− r(X)]SΣ+
0
+ r(X)S(MXΣ0MX)+ regular,

Model (4): [r − r(Z)]SΣ+
0
+ r(Z)S(MXΣ0MX)+ regular.

Here the following notations are used. Σ0 =
∑p

i=1 ϑ0,iVi, ϑ0 = (ϑ0,1 . . . , ϑ0,p)
′

is an approximate value of the parameter ϑ, MX = I − PX , PX = XX+ and
+ means the Moore–Penrose generalized inverse of a matrix, i.e.

AA+A = A, A+AA+ = A+, (AA+)′ = AA+, (A+A)′ = A+A.

(iii) The case of the completely unknown Σ; the covariance matrix Σ
is estimable by the matrix Σ̂

Model (1): Σ̂m,m = Y′MXY/[n− r(X)] & if m < n− r(X),

Model (2): estimator does not exist,

Model (3): Σ̂r,r = Y′MXY/[n− r(X)] & if r < n− r(X),

Model (4): Σ̂n,n = YMZ′Y′/[r − r(Z)] & if n < r − r(Z).

5 Confidence regions of the first order parameters
(normality is assumed)

The statements of this section are proved in [12].
(i) The case of the known Σ. If M(H′) ⊂ M(X′), then there exists

confidence regions for HB in the models (1) and (2).
IfM(H′

1) ⊂ M(X′) & M(H2) ⊂ M(Z), then there exists confidence regions
for H1BH2 in the models (3) and (4).
(ii) The case Σ = σ2V. The same is valid as in the case “Σ is known”,

however σ2 must be estimable.
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(iii) The case Σ =
∑p

i=1 ϑiVi. “Plug-in” determination of the confidence
regions for estimable linear functions of B can be used, however an additional
sensitivity analysis should be used.
(iv) The case Σ is completely unknown.
Model (1): IfM(H′) ⊂ M(X′) and l ∈ Rm is arbitrary, then there exists a

confidence region for the vector HBl.
If h ∈ M(X′), then there exists a confidence region for the vector h′B.
Model (2): Confidence regions based on Y do not exist for any functions of

B. If the Wishart matrixW ∼ Wn(f,Σ) independent of Y is at our disposal,
then there exist confidence regions for the vector HBl, where

M(H′) ⊂ M(X′)

and l ∈ Rm, however the condition

f > r[(MXΣMX)+] + r(VH)− 1,

where VH = H{[X′(Σ + XX′)+X]+ − I}H′, must be satisfied. More on this
approach cf. [23].
The confidence region exists also for the vector vec(k′B), where k ∈ M(X′).

However the estimator of the vector vec(k′B), is based on

[k′(X′X)+X′Y]

only, i.e. the estimator is not the BLUE. The degrees of freedom f of the Wishart
matrix must satisfy the condition f > m.
Model (3): If the Wishart matrixW ∼ Wr(f,Σ) independent of Y is at our

disposal, then the confidence region exists for the vector vec(h′
1BH2), where

h1 ∈ M(X′) andM(H2) ⊂ M(Z). In this case the condition

f > r(Σ,Z′)− r(Z′) + r(VH2
)− 1

must be satisfied. Here

VH2
= H′

2{[Z(Σ+ ZZ′)+Z′]+ − I}H2.

Model (4): The confidence region for the function H1Bh2,

M(H′
1) ⊂ M(X′), h2 ∈ M(Z),

exists if the Wishart matrix W = fS ∼ Wn(f,Σ) independent of Y is at our
disposal. The inequality

f > r(Σ,X)− r(X) + r[Var( ̂H1Bh2)]− 1

must be satisfied. Here

VH1
= H1[(X

′T+X)+ − I]H′
1, T = Σ+XX′, T̃ = S+XX′.

In the following text an example is given how to proceed in the model (4)
when an additional Wishart matrix is at our disposal.
The following lemma, which is a nonessential modification (see in [12]) of

the Rao’s statement given in [23], is necessary.
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Lemma 1 (Rao, C. R.) Let an observation vector Y ∼ Nn(Xn,kβ,Σ), β ∈ Rk,
and the Wishart matrix fS = W =

∑f
α=1 UαU

′
α ∼ Wn(f,Σ), f > r(Σ)

be stochastically independent. Let Hh,k be a given matrix with the property
M(H′) ⊂ M(X′) (i.e. the vector Hβ is unbiasedly estimable). The BLUE of
the function Hβ, β ∈ Rk, is

Ĥβ = H[(X′)−m(Σ)]
′Y.

Here (X′)−m(Σ) means the matrix with the following property.

∀{y ∈ M(X′)}{X′(X′)−m(Σ)y = y} & ∀{x : X′x = y}{x′Σx

≥ [
(X′)−m(Σ)y

]′
Σ(X′)−m(Σ)y}.

Let
τ̂ = H[(X′)−m(S)]

′Y

and t2 = MXY (the vector t2 represents all linear unbiased estimators, based
on the vector Y, of zero function). The upper index (p) means that a random
vector is conditioned by the random vector t2 and simultenously by the random
matrix Λ̂2,2, where fΛ̂2,2 = MX

∑f
α=1 UαU

′
αMX .

Then

τ̂ (p) ∼ Nh

{
Hβ,H[(X′)−m(Σ)]

′Σ(X′)−m(Σ)]H
′
(
1 +

1

f
t′2Λ̂

−
2,2t2

)}
,

f
{
H[(X′)−m(S)]

′S(X′)−m(S)H
′
}(p)

∼ Wh

{
f − r[Var(t2)],H[(X′)−m(Σ)]

′Σ(X′)−m(Σ)H
′
}
.

Proof The statistic t1 = HX−Y is an unbiased linear estimator of the vector
Hβ, β ∈ Rk. The matrix X− is an arbitrary g-inverse of the matrix X. Then
the BLUE of Hβ is

Ĥβ = t1 − cov(t1, t2) Var(t2)
−t2,

since
cov

{
[t1 − cov(t1, t2)[Var(t2)]

−t2, t2
}
= 0.

Let

Vα =

(
Vα,1

Vα,2

)
=

(
HX−

MX

)
Uα,

i.e.

Vα ∼ Nh+n

[(
0
0

)
,

(
Λ1,1, Λ1,2

Λ2,1, Λ2,2

)]
,(

Λ1,1, Λ1,2

Λ2,1, Λ2,2

)
=

(
HX−Σ(X−)′H′, HX−ΣMX

MXΣ(X−)′H′, MXΣMX

)
.
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It is valid that

f∑
α=1

(
HX−

MX

)
UαU

′
α[(X

−)′H′,MX ] ∼ Wh+n

[
f,

(
Λ1,1, Λ1,2

Λ2,1, Λ2,2

)]
,

fΛ̂i,j =

f∑
α=1

Vα,iV
′
α,j , i, j = 1, 2,

and
V

(p)
α,1 ∼ Nh

(
Λ1,2Λ

−
2,2Vα,2,Λ1,1 −Λ1,2Λ

−
2,2Λ2,1

)
.

Since

Ĥβ = H
[
(X′)−m(Σ)

]′
Y

= HX−Y − cov(HX−Y,MXY)
[
Var(MXY)

]−
MXY

= HX−Y −HX−ΣMX(MXΣMX)+MXY,

τ̂ = H
[
(X′)−m(S)

]′
Y = HX−Y −HX−SMX(MXSMX)+MXY

= HX−Y −
f∑

α=1

Vα,1V
′
α,2

(
p∑

α=1

Vα,2V
′
α,2

)−
t2,

it is valid that

τ̂ (p) = HX−Y(p) −
f∑

α=1

V
(p)
α,1V

′
α,2

(
p∑

α=1

Vα,2V
′
α,2

)−
t2,

E(τ̂ (p)) = E[(HX−Y)(p)]−
f∑

α=1

E[V
(p)
α,1]V

′
α,2

(
f∑

α=1

Vα,2V
′
α,2

)−

t2

= Hβ +Λ1,2Λ
−
2,2t2 −

f∑
α=1

Λ1,2Λ
−
2,2Vα,2V

′
α,2

f∑
α=1

(Vα,2V
′
α,2)

−t2

= Hβ,

Var(τ̂ (p)) = Var[(HX−Y)(p)] +

f∑
α=1

Var
(
V

(p)
α,1

)
t′2

(
f∑

α=1

Vα,2V
′
α,2

)−

t2

= (Λ1,1 −Λ1,2Λ
−
2,2Λ2,1)

(
1 +

1

f
t′2Λ̂

−
2,2t2

)
.

As far as the matrix Λ̂
(p)

11.2 = Λ̂
(p)

1,1− Λ̂
(p)

1,2(Λ̂2,2)
−Λ̂

(p)

2,1 is concerned, it is valid
that

fΛ̂
(p)

11.2 =

f∑
α=1

V
(p)
α,1(V

(p)
α,1)

′ −
f∑

α=1

V
(p)
α,1V

′
α,2

(
f∑

α=1

Vα,2(Vα,2)
′
)− f∑

α=1

Vα,2(V
(p)
α,1)

′
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what means that fΛ̂
(p)

11.2 ∼ Wh[f − r(Λ2,2),Λ11.2]. Here

Λ11.2 = Λ1,1 −Λ1,2Λ
−
2,2Λ2,1 = H

[
(X′)−m(Σ)

]′
Σ(X′)−m(Σ)H

′.
�

Corollary 1 With respect to the preceding Lemma and the relations

r(S) = r(Σ),

r(Λ11.2) = r{H[(X′T̃+X)+ − I]H′},
r(Λ2,2) = r(MXS) = r(S,X)− r(X),

T̃ = S+XX′,

the (1− α)-confidence region for the vector Hβ is

CHβ =

{
u : u ∈ Rh,

(u− τ̂ )′{H[(X′T̃+X)+ − I]H′}+(u− τ̂ )

1 + 1
f ṽ

′S+ṽ

× f − r(S,X) + r(X)− r(ṼH) + 1

fr(VH)
≤ Ff1,f2(1− α)

}
,

f1 = r(VH), f2 = f − r(S,X) + r(X)− r(VH) + 1

and Ff1,f2(1 − α) is the (1 − α)-quantile of the central Fisher–Snedecor distri-
bution with f1 and f2 degrees of freedom.
Here

ṽ = Y −X[(X′)−m(S)]
′Y, ṼH = H[(X′T̃+X)+ − I]H′.

The proof that t′2Λ̂
−
2,2t2 = ṽ′S+ṽ, is implied by the following consideration.

t′2Λ̂
−
2,2t2 = YMX(MXSMX)+MXY

= Y′[T̃+ − T̃+X(X′T̃+X)+X′T̃+]Y = Y′T̃+[I−X(X′T̃+X)+X′T̃+]Y

= Y′T̃+ṽ = ṽ′T̃+ṽ = ṽ′S+ṽ.

The last equality follows from the fact that T̃+ and also S+ are g-inverses of
the matrix S−S(X′)−m(S)X

′ and v̂ ∈ M[S−S(X′)−m(S)X
′] with probability one.

Theorem 1 Let in the model (4) the Wishart matrix

fS = W ∼ Wr(f,Σ), f > r(Σ,X)− r(X) + r[Var( ̂H1Bh2)]− 1,

independent on the observation matrix Y, be at our disposal. Then the (1−α)-
confidence region for the vector H1Bh2, where M(H′

1) ⊂ M(X′) and h2 ∈
M(Z), is

CH1Bh2
=

{
u : u ∈ Rn,

Q1(u)

Q2(Y)

d2
d1

≤ Fd1,d2
(1− α)

}
,
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where

Q1(u) = (u− ̂˜H1Bh2)
′{H1[(X

′T̃+X)+ − I]H′
1}+(u− ̂˜H1Bh2),

Q2(Y) = h′
2(Z

′Z)+h2

{
1 +

1

f

1

h′
2(ZZ

′)+h2
h′
2(ZZ

′)+ZY′(MXSMX)+

×YZ′(ZZ′)+h2

}
,

d1 = r[Var( ̂H1Bh2)] = r{H1[(X
′T̃X)+ − I]H′

1},
d2 = f − r(Σ,X) + r(X)− r(Var( ̂H1Bh2) + 1,

T̃ = S+XX′,
̂˜H1Bh2 = H1(X

′T̃X)+X′T̃YZ′(ZZ′)+h2.

Proof The BLUE of the vector H1Bh2 in the model (4) is the same as in the
model

YZ′(ZZ′)+h2 ∼ Nn[(h
′
2 ⊗X) vec(B),h′

2(ZZ
′)+h2Σ],

i.e.
̂H1Bh2 = H1(X

′T+X)+X′T+YZ′(ZZ′)+h2.

Now regarding preceding Lemma let

t2 = Mh′
2⊗XYZ′(ZZ′)+h2

= MXYZ′(ZZ′)+h2 ∼ Nn(0,h
′
2(ZZ

′)+h2MXΣMX).

Thus

t′2Λ̂
−
2,2t2 = [vec(Y)]′

{
[Z′(ZZ′)+h2]⊗MX

}1⊗ (MXSMX)+

h′
2(ZZ

′)+h2

×
{
[h′

2(ZZ
′)+Z]⊗MX

}
vec(Y)

=
1

h′
2(ZZ

′)+h2
h′
2(ZZ

′)+ZY′(MXSMX)+YZ′(ZZ′)+h2.

Regarding Lemma and Corollary we have

̂˜H1Bh2

(p)

∼
∼ Nn

(
H1Bh2,h

′
2(ZZ

′)+h2

{
H1[(X

′T+X)+ − I]H′
1

}{
1 +

1

f
t′2Λ̂

−
2,2t2

})
,

{
H1[(X

′T̃+X)+ − I]H′
1

}(p)

∼ W
{
f − r(Λ2,2),H1[(X

′T+X)+ − I]H′
1

}
and the proof can be easily finished. �



Multivariate statistical models; solvability of basic problems 63

6 Linear hypotheses on the first order parameters
(normality is assumed)

The statements of this section are proved in [12].
(i) The case of the known Σ.
Model (1). The hypothesis H0 : HB + H0 = 0 versus Ha : HB + H0 �= 0

can be tested ifM(H′) ⊂ M(X′).
Model (2). dtto
Model (3). The hypothesis H0 : H1BH2 + H0 = 0 versus Ha : H1BH2 +

H0 �= 0 can be tested ifM(H′
1) ⊂ M(X′) & M(H2) ⊂ M(Z).

Model (4). dtto
(ii) The case Σ = σ2V. If σ2 is estimable, the situation is analogous as in

“Σ is known”.
(iii) The case Σ =

∑p
i=1 ϑiVi. “Plug-in” test statistics for the cases

“Σ is known” exist however the sensitivity analysis is to be made. The vector
ϑ = (ϑ1, . . . , ϑp)

′ must be estimable.
(iv) The case Σ is completely unknown.
Model (1). The hypothesis H0 : h

′B + h0 = 0 versus Ha : h
′B + h0 �= 0

can be tested if h ∈ M(X′). The hypothesis H0 : H1Bl + h0 = 0 versus
Ha : H1Bl + h0 �= 0 can be tested if M(H′

1) ⊂ M(X′), l �∈ Ker(Σ). The
hypothesis H0 : h

′
1BH2 + h′

0 = 0 versus Ha : h
′
1BH2 + h′

0 �= 0 can be tested if
h1 ∈ M(X′) and n− r(X) > r(H′

2ΣH2) + 1, where H2 is arbitrary.
Model (2). The matrix Σ cannot be estimated and thus test statistics cannot

be constructed.
Models (3) and (4). The BLUEs of linear functions of B do not exist and

thus test statistics cannot be constructed.
Thus in the models (2), (3) and (4) it must be assumed that a Wishart matrix

with proper dimension and degrees of freedom independent of the observation
matrix Y is at our disposal.

7 The sensitivity approach for the case Σ =
∑p

i=1 ϑiVi

The statements of this section are proved in [12].
In the case Σ =

∑p
i=1 ϑiVi with the unknown parameters ϑi, i = 1, . . . , p,

the BLUEs cannot be determined and neither linear hypothesis can be tested,
nor the (1− α)-confidence region can be determined.
The plug-in approach can be used, i.e. statistical inference is realized with

the matrix

Σ̂ =

p∑
i=1

ϑ̂iVi

instead the matrix Σ, however some analysis is necessary. In some cases the
sensitivity approach can be used, i.e. if we know that the actual value ϑ∗ of the
parameter ϑ is with sufficiently high probability in so called insensitivity region,
then, e.g. the plug-in estimator is almost BLUE, or the power function of the
test is destroyed less than in advance prescribed sufficiently small ε > 0, etc.
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The only problem is to find the insensitivity region. It is to be remarked that
for different statistical inference, the insensitivity regions are different. More on
the sensitivity approach cf. [2], [4], [5], [15], [22], [16], [8], [9], [21], [10], [20],
[17], [18], [11], [19], [13], [14].
In the following text the insensitivity regions are demonstrated for the BLUE

of estimable linear functions of the parameter matrix B.
It is to be remarked that in the model (1) the insensitivity region for the

BLUE is not necessary, since estimators do not depend on the covariance ma-
trix Σ.
Let us consider the model (2). Let the matrix H, M(H′) ⊂ M(X′), be

given. In the following text the symbol T = Σ+XX′ will be used.

Theorem 2 Let in the model (2) the function Tr(HB),B ∈ Mk×m, must be
estimated (M(H′) ⊂ M(X′)). Let WH be p× p matrix with the (i, j)-th entry
equal to

{WH}i,j = Tr
[
H(X′T−

0 X)−X′T−
0 Vi(MXΣ0MX)+VjT

−
0 X(X′T−

0 X)−H′
]
,

i, j = 1, . . . , p,

where Σ0 =
∑p

i=1 ϑ0,iVi, ϑ0 = (ϑ0,1, . . . , ϑ0,p)
′ is an approximate value of the

true value ϑ∗ of the parameter ϑ and T0 = Σ0+XX′. Let δϑ = ϑ∗−ϑ0. Then

δϑ ∈ NH ⇒
√
Varϑ∗

{
Tr[ĤB(ϑ0)]

}
≤ (1 + ε)

√
Varϑ∗

{
Tr[ĤB(ϑ∗)]

}
,

where

Tr
[
ĤB(ϑ0)

]
= Tr

[
H(X′T−

0 X)−X′T−
0 Y

]
,

Varϑ∗
{
Tr[ĤB(ϑ0)]

}
= Tr

[
H(X′T−

0 X)−X′T−
0 T

∗T−
0 X(X′T−

0 X)−H′]
−Tr(HH′),

Tr
[
ĤB(ϑ∗)

]
= Tr

{
H
[
X′(T∗)−X

]−
X′(T∗)−Y

}
,

Varϑ∗
{
Tr[ĤB(ϑ∗)]

}
= Tr

{
H
[
X′(T∗)−X

]−
H′]− Tr(HH′),

ε > 0 is sufficiently small real number and

NH =
{
δϑ : δϑ′WHδϑ ≤ (2ε+ ε2) Varϑ∗

{
Tr[ĤB(ϑ∗)]

}}
.

In the model (3) we obtain analogously the following theorem.

Theorem 3 Let in the model (3) the function Tr(H1BH2),B ∈ Mk×m must
be estimated. The matrices H1,H2 satisfy the conditions M(H′

1) ⊂ M(X′)
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and M(H2) ⊂ M(Z). Let the matrixWH1BH2
be defined as follows

{WH1BH2
}i,j =

= Tr

(
H′

2

[
Z(Σ0 + Z′Z)−Z′

]
Z(Σ0 + Z′Z)−Vj(MZ′Σ0MZ′)+Vi

× (Σ0 + Z′Z)−Z′
[
Z(Σ0 + Z′Z)−Z′

]
H2H1(X

′X)−H′
1

)
,

i, j = 1, . . . , p,

where Σ0 =
∑p

i=1 ϑ0,iVi, ϑ0 = (ϑ0,1, . . . , ϑ0,p)
′ is an approximate value of the

true value ϑ∗ of the parameter ϑ. Then

δϑ ∈ NH1BH2

⇒
√
Varϑ∗

{
Tr[ ̂H1BH2(ϑ0)]

}
≤ (1 + ε)

√
Varϑ∗

{
Tr[ ̂H1BH2(ϑ

∗)]
}
,

where ε > 0 is sufficiently small real number and

NH1BH2
=

{
δϑ : δϑ′WH1BH2

δϑ ≤ (2ε+ ε2) Varϑ∗
{
Tr[ ̂H1BH2(ϑ

∗)]
}}

.

In the following example it is shown the insensitivity region for the estimator
of a linear function of the matrix B in the model (4), which is used in the
paper [2].

Theorem 4 Let in the model (4)

vec(Y) ∼nr

[
(Z′ ⊗X)vec(B), I⊗

p∑
i=1

ϑiVi

]
,

the function Tr(H1BH2),B ∈ Mk×m must be estimated. The matrices H1,H2

satisfy the conditions M(H′
1) ⊂ M(X′) and H2,M(H2) ⊂ M(Z) (i.e. the

matrix function of the parameter matrix B is unbiasedly estimable).
Let the matrixWH1BH2

be defined as follows{
WH1BH2

}
i,j

= Tr
[
H1(X

′T0X)−X′T−
0 Vi(MXΣ0MX)+VjT

−
0 X

× (X′T0X)−H′
1H

′
2(ZZ

′)−H2

]
, i, j = 1, . . . , p,

where Σ0 =
∑p

i=1 ϑ0,iVi, ϑ0 = (ϑ0,1, . . . , ϑ0,p)
′ is an approximate value of the

true value ϑ∗ of the parameter ϑ and T0 = Σ0+XX′. Let δϑ = ϑ∗−ϑ0. Then

δϑ ∈ NH1BH2

⇒
√
Varϑ∗

{
Tr[ ̂H1BH2(ϑ0)]

}
≤ (1 + ε)

√
Varϑ∗

{
Tr[ ̂H1BH2(ϑ

∗)]
}
,

where ε > 0 is sufficiently small real number and the insensitivity region is

NH1BH2
=

{
δϑ : δϑ′WH1BH2

δϑ ≤ (2ε+ ε2) Varϑ∗
{
Tr[ ̂H1BH2(ϑ

∗)]
}}

.



66 Lubomír KUBÁČEK

Conclusion

Basic statistical problems, i.e. estimation, determination of confidence regions
and testing statistical hypotheses cannot be sometimes solved by standard pro-
cedures. It is important to recognize it before realizing experiments which must
be evaluated in a statistical way, since an effort and financial investment nec-
essary for an experiment can be lost. If the situation is recognized in advance,
then it is possible either to realize some auxiliary experiment, or to gain some
additional information, or to find some other way how to make statistical prob-
lems solvable.
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