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w—weighted holomorphic Besov

spaces on the unit ball in C”

A.V. HARUTYUNYAN, W. LUSKY

Abstract. The w-weighted Besov spaces of holomorphic functions on the unit ball
B™ in C™ are introduced as follows. Given a function w of regular variation and
0 < p < o0, a function f holomorphic in B™ is said to belong to the Besov space
By (w) if

(=)
1910 = [, (0= EBPIDI P T2l

where dv(z) is the volume measure on B™ and D stands for the fractional deri-
vative of f.

The holomorphic Besov space is described in the terms of the corresponding
Ly (w) space. Some projection theorems and theorems on existence of the inver-
sions of these projections are proved. Also, explicit descriptions of the duals of

dv(z) < 400,

the considered Besov spaces are given.

Keywords: weighted Besov spaces, unit ball, projection

Classification: 32C37, 47B38, 46T25, 46E15

1. Introduction and basic constructions

Let C™ denote the complex Euclidean space of dimension n. For any points
z=1(z1,.-+y2n), ¢ = ((1,...,¢n) in C™, we define the inner product as (z,({) =
21C,+. . —|—an and note that |z|? = |2:1|2—|— Alzn?. By B ={z € C", |z| < 1}
and C™: S™ = {z € C", |z| = 1} we denote the open unit ball and its boundary,
i.e. the unit sphere, in C™. Further, by H(B™) we denote the set of holomorphic
functions on B™ and by H°°(B™) the set of bounded holomorphic functions on B™.

If f € HB"), then f(z) = ), amz™ (2 € B"), where the sum is taken
over all multiindices m = (mq,...,m,) with nonnegative integer components
my and 2™ = 2" ...z Assuming that |m| = my + ...+ m, and putting

n
fe(z) = Z|m\:k amz™ for any k > 0, one can rewrite the Taylor expansion of f

(1) 1) =3 hul2),
k=0

which is called homogeneous expansion of f, since each fx is a homogeneous
polynomial of the degree k.
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Further, for a holomorphic function f the fractional differential D is defined
as

NE

Df(z) = ) (k+1)"fir(2),

=

(=)

Df(z) = (k+1)*fs(2), a=(a,...,an), z€B"
k=0

We consider the inverse operator D~ defined in the standard way:

D™D f(z) = [(2).

Particularly, if o = 1 we set D' f(2) := Df(z).

By dv we denote the volume measure on B™, normalized so that v(B™) = 1, and
by do the surface measure on S™, normalized so that o(S™) = 1. Then following
lemma, the proof of which can be found in [12] or [15], reveals the connection
between these measures.

Lemma 1. If f is a measurable function with summable modulus over B™, then

f(z)dv(z) =2n / " rdr [ f(r¢)do(C).
Bn 0 Sn

Definition 1. By S we denote the well-known class of all non-negative measurable

functions w on (0, 1)
1
w(z) = exp{/ wdu}, x € (0,1),

u

where (u) is a bounded measurable function on (0,1) and —ay, < e(u) < .

Note that the functions of S are called functions of regular variation (see [13]).
Throughout the paper, we shall assume that w € S. Besides, for any functions f
and g by f 2 g (f = g) we shall mean that [f(z)| < Clg(2)| (l9(2)| < C|f(2)]) and
by f =< g that C1|f(2)| < |g(2)] < C2|f(2)| for some positive constants C, Cy, Cs
independent of z.

Proposition 1. If 1 —|z| < 1 — |w|, then w(1 — |z|) < w(1 — |w]).

PROOF: Let C1(1 —7r) <1—1z| < Ce(l—r)and 1 —r=p, 1 —|z| =t. Then we

get
() =w(tyexo ( / %du) < wit)exp / t L) - (%)wam
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() 2 (0 e~ / t )= (4) ew

which proves our statement. ([

and

We define the holomorphic Besov spaces on the unit ball as follows.

Definition 2. Let p > n+ .. Then a function f € H(B") is said to be in B,(w)
if

My@) = [ = BRPIDF P ) < 4.

We introduce the norm on H(B") as || f||g,w) = My(w) (|f(0)] needs not to
be added since Df = 0 implies f = 0 for a holomorphic function f). Besides, it is
easy to check that if p > 1, n =1 and w(¢) = 1, then B,(w) becomes the classical
Besov space (see [1], [2], [8], [14])-

In particular, for p = 400 we shall write Boo(w) = By, where B,, denotes the
w—weighted Bloch space on the ball (see [4]).

In [9], [10], [11], one can see some other definitions and some characterizations
of holomorphic Besov spaces on B"™. For a holomorphic Besov space on the
polydisc of C", see [5], [6].

Proposition 2. H>*(B") C B,(w) for all 0 < p < 0.

PRrOOF: Let f € H*°(B™). Then, using the Cauchy inequality in the ball E(z) =
{¢, 1€ =2 < (1—|z])/2} we get [Df(2)] = (1—]2])~", and hence | D f(2)[(1—|z]) <
const. Thus,

[ a-iprioser 2 g < o

(1= [z[2)m+1
for p > n+ f.,, and hence f € By(w). O
By L,(w) we denote the class of all measurable functions on B", for which

11,0 = [ 1P 2 o) < o0

and we shall assume that n + 3, < 0. Further, by L., we denote the set of all
measurable functions f for which

[flleo = sup {[f(2)[} < oc.
zeB™
Besides, we shall consider also the set of holomorphic functions f for which

1710 = /B FEPw(l— |z dv(z) < +00, a>—1, 0<p < .
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The following lemmas will be used for the proof of the main results of the paper.
Lemma 2. Let w € S and let f € Bp(w) for some 0 < p < co. Then

11l B, ()
1=z —[2]?)

PROOF: Let z € B", and let B?(r) be the disc centered at z, with the radius
r=(1—|z|)/2. If we BZ(r), then

z € B".

IDIE) < S

1+ |7] <1

] < Jw = 2| +]2] < -

1-lz

Hence B?(r) C B™. Besides, the function |Df|? is subharmonic and hence
1

|B2(r)] Br(r)

On the other hand, it is not difficult to show that 1 — |z| < 1 — |w|. Therefore,
w(l —|z]) < w(1l — |w|) by Proposition 1. Consequently,

IDf ()P < =y |Df(w)[” dv(w).

W)
(17|Z|2) |Df(2)| (1—|Z|2)"+1
1 w(l —|wl) 115 (W)
17 w2 pD w pid w —
STBEEN Sy T IPI P e ) < Jpay
and
11l B, w)
D <
DI = S = =) =Ta)
since | B2 (r)| = (1 — |2[)"+L. 0

Lemma 3. Let w € S and let f € Bp(w) for some 0 < p < co. Then

I f1 B, (w)
|f(2)| < Cln,w,p)-—~5 . # € B,
(1 —z))7
where y = 22=L if 9n > p+1;and y =0 if 2n < p+ 1.

PRrOOF: The function |Df(z)[? is subharmonic in B™ and, hence,

PP < [ IDIGOP( Q) do(0)

where P(z,() is the Poisson kernel which satisfies the estimate

1—1z2 2
€= 2P = (1= 2]t

P(z,¢) =

¢esm.
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Consequently,

DS < oy [ DGO datC),

and it is clear that
[ 10roP oo < [ Df=0P do(@), i <1,
sn sn

Hence

/ (- t()l”w(;)—nil)t = /Sn [Df(rQ)I” do(C) dt

</ (1 t()lpcj(;)”il)t — /S IDf ()P do () dt

B /r /sn |Df(t¢)|P do(C) (- t()lpw(tlg)nil)t n— "

p (L= [w)Pw(l — |w[?) B
j/Bn |Df(w)] 1= [wP)y dv(w) = || f]l ()

Consequently, the following estimate is true:

9 11— 42yp(] — ¢2)¢2n—1 -1
DIl = e (/ ( ()1 W(tQ)nH) dt) 171V, )

Changing here rz — z and putting r = (1 + 2|z|)/3, we get

11, )
|IDf(2)] < C(”,W,p)ﬁ .
(L—1]z2) >
Therefore
1
dr £l B, w)
£ < Cnwop) ) | —— s < Clmwp) 220
“ o (=) (1= )
Wherefy:2”})—71,if2n2p+1;and*y=0,if2n<p+1. O

Lemma 4. Let w € S and let f € By(w) for some 0 < p < 1. Then

WP =) o\ Al Pe =)
(A;IDf@H T d()) <[ s AT )

PRrROOF: Noting that |Df(z)| = |Df(2)[P|Df(z)|*7P and using Lemma 2 we get

1£ 150t
wI=P/p(1—[2)(1 = [2]) P

[Df(2)] <[Df(2)
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Therefore

(1= lePw/P(1 — |2])

s < prapia, S

(1 —lzpmtt 7
and the proof is completed by integration over B™. (I
Corollary 1. If 0 < p < 1, then B,(w) C By(w*), where w*(t) = w'/P(t).

Lemma 5. Let 1 < p < oo and let f € By(w). Further, let @ > —n/p + Bu/p-
Then

[ a-lpripse)ane) <.
Bn

PRrROOF: For 1 < p < co Holder’s inequality gives

/ (1~ |22)*| DS (2)] diz)

_ s w(l = |21 = )+
_/n — 2| Df(= )|( 1— |22 w1 = |2 dv(z)

(/ (1—1z[% |Df(z)|p%dy(z)>1/p
) (/"(1 — Pyl Izl)du(z))l/q.

It is obvious that if « > —n/p — 8,,/p, then
[ @taa e - et ange)

1
< / (1 = pyeatnla=D=1-Ao(0-0) g < o,
0

Now, let p = 1. Then, evidently,

[ =it B EDE )

(1= |2?)r el = [2])

: Wl =Jel)
< [ 0= ERIDI Ity ) = s

O

Corollary 2. Let 1 <p < oo and let f € By(w). Further, let o > —n/p — B, /p-
Then the function D f(z) lies in the space Al(a) and can be represented as

@) Df)=Cna) [ H=H gf)ffﬁj dv(¢), =€ B

T'(n+a+1)

where C(n, Oé) = m
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PROOF: (2) is a simple consequence of the well known representation in the one-
dimensional case (for details, see [3], [15]). O

Also the following auxiliary lemma will be used.
Lemma 6. If 0 < p < oo and f € By(w), then
(1 — ¢
012 [ e DR vie
FOIZ | oy DFQ ()
for sufficiently great a.

ProoOF: Obviously, f(z) = fol Df(rz)dr, and by Corollary 2

(1- )“D
C(n,«a / /n 1—7“|<| n{g-l-)a dv(Q) dr

~Cna) [ 1= DIO | s O

G [ QB ey
- [, S =g g OO

Hence the desired statement follows. O

To prove the other main results, we need also the following lemma.

Lemma 7. Let D™ f € B,(w) for some 0 < p < +00 and m € N. Then

1= [ G El Q"i'ﬁia_m D™ Q)] dw()

for sufficiently great a.

Lemma 8. For any numbers o € N and 8 >0

P (<1<z,<>>ﬂ)”<1<z,<>>ﬂ+a’ CEB

PROOF: One can see that D®f(z) = D* 'Df(z) and Df(z) = Rf(z) + f(2),

where

R = 32

V4
k=1 Oz

On the other hand, R(1—(2,¢))™% = a{z,{)(1—(z,¢))~*"! and we get the proof
of the lemma. 0
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2. Description of the spaces B,(w)

The following theorem is one of the main results of the paper.
Theorem 1. For any 0 < p < oo, the space By(w) is a closed subspace of Ly(w).

PRrROOF: First, we show that if f € By(w), then f € L,(w) N H(B™). Indeed, if
1 <p<ooand vy >0, then by Lemma 4 we obtain

, (L= [gP) =t dw() \ "
ser = ([, g )
o [ QoD

IDf ()] dr ()

Tl
<=y [ LR C KDY o anto)
Hence
s

P(1 _ |12\ (n+1)(p—1) w(l — [2]) dv(2) dv(C)
= J, 1prora - ) Sy = g = oy

o1 201D
= /Bn, |Df(C)| (1 |C| ) (1 — |C|2)n+1 d (O - ||f||B,,(w)-

If 0 < p <1, then by Lemma 4

p [DFQIP( = [¢prrorts
lf(2)F = /Bn 11— (2, O)|(etmp (1 = [C[2)n+1

dv(¢).

Consequently,

Iz, )
112y (n41) (p=1) w(l — [2]) dv(2) dv(C)
= /Bn IDF(OIP(1 — [¢*) D /Bn 11— (z,O)[(@tmp(1 — |22)n+1

= flB,w)

by [15, Theorem 1.12] and [7, Lemma 1.6].
Next, we show that if f € L,(w) N H(B"), then f € By(w). Indeed, using (2)

we obtain
, 1 [P IAC v
DI < ( /| |(1 - <'Z7' C)H,,'Hiﬁl dv(<)>

for sufficiently great m. If 1 < p < oo, then by Hdélder’s inequality

1- d
ln = [ a=icpmisor [ 2EEEE <0,
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If 0 < p <1, then by Lemma 4 we obtain

|f(<)|p(1 — |C|)p(n+1)+mp
IDf(z)P < /B”’ 11— (2, O)|(mn2p(1 — |C]?)

)
and hence

Hf”Bp(w) < / (1 _ |C|2)(n+1)(P—1)+7nP|f(C)|
BTL
w(l — |z))(1 — |2[*)? dv(2)
J,

n 1= (2, Q)| 2p (L — [2]2)n+1

dv(C)
p w(l — |C|) v _
= /B" |f(C)| (1 — |<|2)n+1 d (C) HfHLp(w)-

Now, we shall show that for any sequence { fx} C By(w) such that || fx — fllz, @) —
0 as k — oo, the limit function f € L,(w) is holomorphic in B™. To this end,
suppose that K is a compact set in B". Then by Lemma 3 there exists a constant
C(K,n,w,p) such that max,cx |f(2)| < C(K,n,w,p)||fls Hence

p(w):

rzrle%?'fk(z) - f’m(z)| S C(K7nawap)||fk - fnLHBp(w)

for all k,m. Thus, {fx} uniformly converges to a holomorphic function g(z) on
all compact subsets of B™. Since the compact sets are arbitrary, ¢ is holomorphic
on B™. By Riesz’ theorem, some subsequence of {f;(z)} pointwise converges to
f for almost all z € B™. Hence f = g for almost all z € B", and the desired
statement follows. O

Corollary 3. B,(w) is a Banach space for 1 < p < oo, and a complete metric
space for 0 < p < 1.

Theorem 2. The following statements are true for any 0 < p < +o0:

L If f € By(w) and f-(2) = f(rz), 0 <r < 1, then || f — frl[B,w) — 0 as
r—1-0.

2. The set of polynomials is dense in Bp(w), i.e. for any f € Bp(w) there is
a sequence {P,} of polynomials such that || P, — f| g, ) — 0 as n — oo.

PROOF: For completeness, we give a full proof, although it is based on a standard
argument.
1. By the inequality (a + b)? < 2P(a? + b”) (a,b > 0), for § € (0,1) we get

° 1 —1z|2)Pw(1 —
||f*fr||Bp(w) §/O /sn |Df(2) *Dfr(z)|p( (1|Zl |ZT; 1)

do(z)dr

1 , )
+/5 /n |Df(z) — Df.(2)] 0=z do(z)dr.
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The function |D f|P is subharmonic in B™, and hence

/ IDf ()P do(z) < / IDF ()P do(2).
Sn Sn
Therefore,

g APw(l — |z
15 =t < [ [ 1056) - Dp P C DS S oty ar

[ PP )
2/6/n|Df()| A doe)dr

The first integral in the right-hand side of this inequality vanishes as r — 1 — 0,
and the second one can be made arbitrarily small by choosing d close enough to 1.

2. Let f € Bp(w) be an arbitrary function. Then

lim Hf f7||B (w) =

r—1-0

Further, the function f, can be uniformly approximated by its Taylor polynomials
in a neighborhood of B". Therefore, the function f can be uniformly approxi-
mated in norm by a sequence of polynomials. (I

The following theorem gives a description of the space B,(w) in the terms of
Ly() (0 < p < +00).

Theorem 3. Let f € H(B™). Then for any 0 < p < +oc0 the inclusion f € Bp(w)
is true if and only if the function g(z) = (1 — |2|?)?DP f(z) is in L,(w) for some
B > 1. Moreover, there are some constants C7, Cy such that

(3) CillgllLyw) < 1flByw) < CillgllL,w)-

ProoF: If f € Bp(w), then by (2) and Lemmas 8, 7

s < ot [ L2 IDIQL
D) < Cnm) [ RS )

Let p > 1. Then

/ IDP £ ()P dor(<)
STI,

1
_ 2\m 2n—1 |Df(pC)|dU(C)
, L) /s T rp(z. Qo en s
" do(2)(1 = p2ymen=1r g

p

< C(m, n) do(z)dp

cmn ],

/ |Df pC [do (<)
sn 1=

>|m+n+ﬁ
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[Df(pQ)]P do(C)
mn//"/nu*?"p |m+n+5
) P/q i .
" (]Q“|1TP<, >P”+n+6) do(z)(1 — p*)™ pP" =P dp

Further, using [15, Theorem 1.12] we get

[ D2 0P do(o
< C(m,n / / / D( pC Pr(Q) oy A=)

|1 — 'rp z C |m+n+ﬂ (1 — rp)(m‘f‘ﬁ)l)/q

Clm,n / [ ISP doc )/m e

(1 _ p2)’mpp(2n 1)p » (1 _ p2)mpp(2n—1)p
X (1 _ Tp)(erﬁ)p/q dp S 0 gn |Df(pC)| dU(C) (1 _ Tp)(erB)p dp

Therefore,
11— 2)Bru(1
/ ( ;—)¢2U;75+1 7“)/3 |DP f(pC)|P do (¢t dr
/ / / |Dﬂf (pQ)|P do (¢ )( — p2)mp p(2n=Dpp2n=1,,(1 _ ) (1 — r2)BP i

(L= pr) 0 Pe(1 = 241

= [ [ 1D st0pa - pyreptenhr

x/ w1 = (1= r2) dr dp do(C).
o (

1-— pr)(mJFB)P(l — r2)"+1

Further, by [7, Lemma 1.6] we obtain

/1 2=l (1 — r)(1 — r2)8P 0 < w(l—p)
o (

1— p’l“)("H_ﬂ)p(l _ 7«2)n+1 — (1 _ p)mern :
Consequently,
w(l — |w])
/n MWPW dv(w) =2 || fll B, (w)-

Conversely, if f € H(U™) and g € LP(w), then f € Bp(w). Indeed, using Lemma 7

we obtain
1—[¢*)™|D?
D= | |(1 - 'é' C))',L_ﬂﬁ%' av ()
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(recall that m is assumed to be sufficiently great). Using Holder’s inequality, we
get

_ |12 ymA+pB
D) = /B i (1<Z '§>'|3L+n+w IDPF(OF dv(C)

(1= [¢[)m P du(¢) \ "'
. </B T (=, QFnT2=> )
2= (Ba+1-B)p/ (1= [¢])m+pP
= (1 |Z| ) " b Q/Bn |1 _ <Z7C>|m+n+2_

SID? (O dv (),

where [15, Theorem 1.12] is used for obtaining the last inequality. Consequently,

Iz = [ IDMFOPQ =GPy

1
d

X /0 w(l—=r)(1- T2)p—n—1—(5‘1+1—ﬂ)1)/q /Sn e T<Z,z>(|i)b+n+2ﬁ p2n—1 dv(C)

1 _ _ »2\p—n—1—(Bq+1-B)p/q,2n—1
B _ 2\Bp+m W(l 7’)(1 r )p T

< [ wrrora - [ e r
1-— 1 — [¢]|2)p—n—1=(Ba+1-B)p/q,2n—1

< [ ptropa -1y S O e e ()

1—1¢D)
= [ iporra -1l a0 = gl .
L s@r =1y s a0 = ol
where g(z) = (1 — |2/?)# D f(2). Summing up, we get the proof of (3).
The case 0 < p < 1 requires a different proof. Let f € Bp(w). Then by
Lemmas 8, 7

(1 _ |C|2)mp+(n+1)p—n—1
11— (2, Q)|(mtntAlr

[DF(OF dv(C).

n

Drrer = [

Therefore,

oy = [ (= BEPIDP P )

_ 2\mp+(n+1)p—n—1
<[ a-ip) DS
— |z|2)8p—n—1 (1 — |
o UED (D) 40y doe)

1= (z,Q)|(mtnthlr

—12)P pM U(C) = 00
< [ Q= IPPIDIOP G 6) = 1z, < +oc.
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Conversely, if g € L,(w), then using Lemmas 8 and 7 one more time we get

_ mp+(n+1)p—n—1
prar = [ A it (o antc)

Therefore,

el
| a=lpyinser it v

n

1— 2\p—n—1 1—
< [ a—gpyrimireepapqp [ EEIm i e

< [ =P sor U T () = gl

where [7, Lemma 1.7] and [15, Theorem 1.12] were used for the last inequality. O

3. Bounded and inverse operators on Bj(w)

Let us consider the linear operator

W R0E = [ S 0w @

If f € Ly(w), then obviously P.(f) is holomorphic on B". For finding the class
of functions to which it belongs, we prove the following theorem stating that P,
is a bounded operator on Ly(w).

Theorem 4. If @« > —a, —n—1 and 1 < p < oo, then P, : Ly(w) = Bp(w)
boundedly.

PrOOF: We shall prove that if f € L,(w) and F' = P,(f), then F € Bp(w). It is

obvious that
|DﬁF(z)| j/ (1*|<| )a|f(<)| dI/(C),

g L= (2, Q)[rt1tath
where we assume that a + 8+ 1> 0and 8> n+ 3.
If p > 1, then by Hélder’s inequality

[ a-k >BP|D5F<z>|p%dv<z>

— |2|2)Bp—Bp/q—n—1 — |z
(1 [P >|p/ Sl 01D ) e

1= Qe

n

g
- [ u-iprior [ [ G g
AL

7,2n 1 B—n—1 —r
PP / A=) "Wl =1) g gy

(T=rich=+7+1

n

49
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2\« p W(l - |C|) _
< [ A= T e (6 = 1y

where [15, Theorem 1.12] and [7, Lemma 1.7] were used for the last inequality.
If p=1, then

/| a- |z|2>B|DﬂF<z>|% e

)Pw(l — d
< [ a-ipriso [ GEEIEREREERE gy,

O
For the case when 1 < p < oo and @ > —1, v > 0, we define the inverse
mapping R, - of P, by the formula

®)  Ra(Ne) = - fapy [ LG

One can prove that PyRa ~(f)(2) = f(2) for all f € Bp(w) if a > 2n — 2. To this
end, observe that a change of integration order gives

1—|t ) dv(t
FoBar(1)(Z) :/B ((1 |<<| t>)n(+1+a£w) dv(C)

Dk 1 —[¢]2)o+ dv(¢
T L L L S N—YY)
B O G L H
- /B" (1— (¢ t))ntite dv(t) = f(2).

Further, we show that R, 4(f) € Lp(w) for all f € L,(w). Indeed, if 1 < p < oo,
then by Holder’s inequality

s [ U0l

(1= [¢P)™|DF(Q)P e
R (/ R Ava T d”“)) |
Consequently,

L [CP)e S v
</ . <1(— <z,|c|>>)n+1(+c3+v d”(o)
— |z 2\—vp/q (1 - |<|2)a|f(<|) )y
<=y : av(0)

Bn 1— (Z, C))n-{-l-{-a-{-'y

(1— |C|2)a—(m—1)l)/q (1— [t[2)™?|Df(t)[P ’ )
= /Bn (1 — (z,¢))nt1taty /n |1 — (¢, t)|mtn d (t)d (C)7

dv(¢), =ze€ B™

<(1-
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and hence

/H%Ra(ﬂ(zwdwz) j/ (1 — [¢t2)™P|Df ()P

n

(1 — |¢[2)e—(m=1p/a (1 — |z|)P—rp/a—n—1
- /" |1 - <<’t>|m+n /Bn |1 — <z, <>|n+1+a+7 dV(C) dl/(ﬁ)

< [ a-eyiser

(1 = gy mDplasmr w1 — [g)
S TG O

0 e C )
< [ rap i 0

(1~ )
= [ a—eprinsor Lot avo = 1150,
If p =1, then
[ =k
pn |1 = (z,¢)nH1roty

(1=1[¢P) (1— [t2)™|Df(t)|
= /Bn |1 — (z, )|+ itaty /n 1 — (t, )|+ dv(t) dv(Q).

Hence

W fel) e
| e (DEI gy dve) < [ =)

(1= ¢ w(l — | — ¢ dv(C)
8 /Bn [1— (t,¢)ntm /Bn |1 — (t,C)[nti+atr (1 — [¢[2)ntT dv(t)

w(l — |¢]) dv (<)
g 1= (& QP (1= [¢2)+!

. w(1 —|¢]) dv(t)

B w(l —[t))dv(t) _
_/n |Df(t)|w =l fllB,(w)-

Thus, we proved the following

dv(t)

< [ a-upripse)

Theorem 5. If 1 < p < oo and a4+ > —1, then R, is a bounded operator from
B,(w) to Ly(w).

For the case 0 < p < 1, we consider the harmonic subspace by,(w) of L,(w).
Repeating the argument of [3, Lemma 2.3] one can prove the following lemma.
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Lemma 9. Let 0 < p < oo and let g be harmonic on the ball B} = B} (z).
Then there is a constant C}, depending only on p and such that

[u(zo)|? < WSZH/B |u(2)|P dv(2).

As corollaries of the above lemma, one can prove also the following two state-
ments.

Lemma 10. Let 0 < p < oo and let g € by(w). Then

gy, ()

—— B".

Lemma 11. Let 0 < p < oo and let g € by(w). Then

| s e ) < [l e ).

The last lemma gives a possibility to consider the operator P,(f) on b,(w)
in the case when 0 < p < 1. Assuming that f € by(w), we shall show that
P,(f) € Bp(w). To this end, we use Lemma 11 and obtain

p (=)
| Parer S o)

P (L= [CPYEEDP 1 (1 = [af) (1 [of?) ="
< [ ortiae— [ A ave v

w(l —[¢)(1 = [¢]*)P » B
2 /n (1 — |C[2)nt1+ap LFOIP dv(Q) = I llb, (w)-

Thus, we proved
Theorem 6. If 0 < p < 1, then P, is a bounded operator b,(w) — Bp(w).

For 0 < p < 1, the inverse operator R, defined by (5) maps Bp(w) to Ly(w).
Indeed, by Lemma 11

L 90D [ (= KRR QP du(Q) du(z)
[ - <1—|z|2>n+1/ 2= (e Qe R p(1— [Py
Cp R (1 )Rl — []) du(Q) dulz)
= [ e or | (L[ — {7, Q)+ Fatnp

1 — [¢|2)ert(ntDp (1 — |¢]2)7Pw(1 — |¢
< [ 0 )= 1

Summing up, we come to

Theorem 7. If 0 < p < 1, then the operator R, boundedly maps b,(w) to By(w).
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4. Duals of B,(w) spaces

Theorem 8. If 1 < p < oo and o > —(n + fB,)/p, then the dual of the space
B, (w) under the pairing

(6) (f.9) = o Df(¢)Dg(¢)(1 — [¢I*)* dv(c)

is isomorphic to B, (@), where &(t) = w™9/P(t)tletn=Na 1/p+1/q = 1.

PROOF: Let ® € (Bp(w))*. In virtue of Theorem 2, we can consider B,(w) as
a subspace of L,(w). Then, by the Hahn-Banach theorem, we can assume that
® € L,(w)*, and hence there is a function G € Lq(w) (1/g + 1/p = 1) such that

_ e wli=l)
q)(F) - /n F(<)G(<) (1 _ |C|2)n+1 d (<)a

and ||®|| = ||G|| L, (). Taking F(z) = (1 — |z]*)Df(z), where f € B,(w), we get

O(F) = D G—M d
Using the fact that o > —(n + f.,)/p we can write (2) for Df and get

. w(l = [¢NG(C) dv(C
o) = [ a-pwlrosw | - <(<,w>|>a|)+"£1)<1 (|2|2>n dvw).

v(C)-

Let G1(w) be the middle integral:

w(l ~ [E)G(Q) dv(¢)
Gl w) = /
W= Jon T (ot~ P
It is clear that G;(w) is a holomorphic funct1on and there exists a function g(w)

such that Dg(w) = G1(w) (for example g(z fo G1(rz)dr). Next we show that
g € By(w). By Holder’s inequality we get

wI/P(1 — Juwl) / w1 = [EPIG(Q]* dv (<)
(1 = Jw)(etma/p [ [1— (¢ w)[* 1+ (1 — [¢[?)

|Gr(w)]? <

Then

w(1 —|z])

| = RyDg ol e avte)
qw=[C) [ @ — [Pl (1 — |2 [2) " tdv(z)
< /n|G(O| ERDE /Bn 11— (z,C)|ntite(l — |2[2)(@tma/p dv(¢)

Jo( =) [ (Rt
= GO g . g O
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w(l —¢])
< e Sl 1 VA — _
i /n |G(C)| (1 — |<|2)n+1 dV(Z) ||GHLp(w)

Conversely, if g € By(w), then by Holder’s inequality one can prove that the
functional ® of the form (6) is bounded on B, (w):

WHP(1L = [C)(1 = g2t
(1= ()2l e(1 = ]

@)1 < [ IDFQIDY(O) ()

o ¢ S I
< ([ a-eripser s wo)

(1= [¢?)Hhated dy (c)
wi/P(1 — |)(1 —[¢]?)*

1/q
) — 5,0l 5.3)

O

([ a- o

The case 0 < p < 1 calls for a different statement connected with the defined
below holomorphic Bloch space on the unit ball of C™ (for details see [4]).

Definition 3. Let w € S. We say that a function f € H(B"™) belongs to the
Bloch space B, if
1—|z?)|D
My — s L EPIDIGN
zepr - w(l—|z])

Theorem 9. If 0 < p <1, then the dual of the space B,(w) under the pairing
(7) (f.9) = - Df(Q)Dg(Q)(1 = [¢)*dv(¢)  (a>n/p—Bu/p)

is isomorphic to the holomorphic weighted Bloch space Bg with
() = wl/P(t)t—r—ott,

PROOF: Let f € Bi(w) and let g € By and ® be the functional generated by g,
ie. ®(f) = (f,g). Then using Lemma 4 we obtain

w9 < sop SRUREEL [ D@~ )1 = ¢t @)
wt/r(1 —
<lallo. [ 10O a0
(1 — 1/p
gl ([ 0= 1GPPIDIOP 7o ks dv(0))

= llgllBz 11 f1 B, ()

Hence || @[] < {|g]| ;-
Conversely, if ® € (By(w))*, f € Bp(w), then f € Bi(w*) by Corollary 1.
Considering B;(w*) as a subspace of L;(w*) and using the Hahn-Banach theorem
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we get @ € (L1(w*))*. Therefore, there is a function G € Lo, (B™) such that

_ e a—id)

and ||®|| = ||G||r... Particularly, taking F(¢) = (1 — [¢|*)Df(C), [ € Bp(w) we

obtain
e )
F(¢ d .
= ), FOTO e 40
If  >n/p— B.,/p, then Df € Al(a). Therefore, by (2)

e G(Qw'/?(1 —|¢]) dv(¢) dv(w
o) = [ a-wPros [ o i

As in the case p > 1, we consider the inner integral separately, as a function
G1(w) = Dg(w). Then we show that g € Bg. To this end, observe that the
following estimate is true:

w!/P(1—|¢)) dv(Q) w!/P(1 = |w|)
Gi(w) < |G m/ < |G p U
Gr() < Clew | oy prra ey < NG T papyere
Hence
(1 — |w]®)"**|Dg(w)| _ (1 — |w|?)|Dg(w)|
T (A —ju) e T e
where &(t) = wl/P(t)t—"—oF1, U
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