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Abstract. In this paper we establish sufficient conditions for the existence of mild solutions
and extremal mild solutions for some densely defined impulsive semilinear neutral functional
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1. Introduction

In this paper we are concerned with the existence of mild solutions and extremal

mild solutions defined on a compact real interval for first order impulsive semilinear

neutral functional inclusions in a separable Banach space. More precisely, we will

consider the following first order impulsive semilinear neutral functional differential

inclusions:

d

dt
[y(t) − g(t, yt)] −A[y(t) − g(t, yt)] ∈ F (t, yt),(1)

a.e. t ∈ J = [0, b], t 6= tk, k = 1, . . . ,m,

∆y|t=tk
∈ Ik(y(t−k )), k = 1, . . . ,m,(2)

y(t) = ϕ(t), t ∈ (−∞, 0],(3)

where F : J × D → P(E) is a compact and convex valued multivalued map, g :

J ×D → E is a given function, 0 = t0 < t1 < . . . < tm < tm+1 = b, ϕ ∈ D, where
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D is the phase space that will be specified later, Ik : E → P(E), k = 1, 2, . . . ,m,

are bounded valued multivalued maps, P(E) is the collection of all subsets of E,

A : D(A) ⊂ E → E is a densely defined closed linear operator on E, and E is

a real separable Banach space with a norm | · |. For any function y defined on

(−∞, b] \ {t1, t2, . . . , tm} and any t ∈ J , we denote by yt the element of D defined by

yt(θ) = y(t+ θ), θ ∈ (−∞, 0].

Functional and neutral functional differential equations arise in a variety of areas

of biological, physical, and engineering applications, see, for example, the books of

Hale [21], Hale and Verduyn Lunel [23], Kolmanovskii and Myshkis [32], Kuang [33]

and Wu [45], and the references therein. Impulsive differential and partial differen-

tial equations are used to describe various models of real processes and phenomena

studied in physics, chemical technology, population dynamics, biotechnology, and

economics. That is why in recent years they have been the object of investigations.

We refer to the monographs of Bainov and Simeonov [7], Benchohra et al [10], Lak-

shmikantham et al [34], and Samoilenko and Perestyuk [42], where numerous prop-

erties of their solutions are studied, and a detailed bibliography is given. Semilinear

functional differential equations and inclusions with or without impulses have been

extensively studied where the operator A generates a C0-semigroup. The existence

and uniqueness, among other things, have been derived; see the books of Ahmed [3],

[4], Benchohra et al [9], Heikkila and Lakshmikantam [24], Kamenskii et al [29] and

the papers by Ahmed [5], [6], Liu [37], and Rogovchenko [40], [41]. In [2] Abada

et al have studied the controllability of a class of impulsive semilinear functional

differential inclusions in Fréchet spaces by means of the extrapolation method ([13],

[18]), and in [1] the existence of mild and extremal mild solutions for first-order

semilinear densely defined impulsive functional differential inclusions in separable

Banach spaces with local and nonlocal conditions has been considered. To the best

of our knowledge, there are very few results for impulsive evolution inclusions with

multivalued jump operators; see [1], [11], [38]. The notion of the phase space D plays

an important role in the study of both the qualitative and quantitative theory. A

usual choice is a semi-normed space satisfying suitable axioms, which was introduced

by Hale and Kato [22] (see also Kappel and Schappacher [30] and Schumacher [43]).

For a detailed discussion on this topic we refer the reader to the book by Hino et

al [27]. For the case where the impulses are absent (i.e. Ik = 0, k = 1, . . . ,m), an

extensive theory has been developed for the problem (1)–(3). We refer to Belmekki et

al [8], Corduneanu and Lakshmikantham [12], Hale and Kato [22], Hino et al [27],

Lakshmikantham et al [35] and Shin [44]. The study of first order abstract neutral

functional differential equations with unbounded delay was initiated by Hernandez
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and Henriquez [25], [26]. The goal of the present paper is to give existence results for

first order impulsive neutral functional differential inclusions with multivalued jump

functions and infinite delay. The paper is organized as follows. In Section 2 we recall

briefly some basic definitions and preliminaries facts which will be used throughout

the subsequent sections. In Section 3 we establish sufficient conditions for the exis-

tence of mild solutions for the problem (1)–(3) by relying on a fixed point theorem

due to Dhage. In Section 4 sufficient conditions for the existence of extremal mild

solutions for the problem (1)–(3) are established. The last section is devoted to an

example illustrating the abstract theory.

2. Preliminaries

In this section we state some facts about semigroups, notation and definitions

that are used throughout this paper. C(J,E) is the Banach space of all continuous

functions from J into E with the norm

‖y‖∞ = sup{|y(t)| : t ∈ J},

and B(E) denotes the Banach space of bounded linear operators from E into E, with

the norm

‖N‖B(E) = sup{|N(y)| : |y| = 1}.

Let L1(J,E) denote the Banach space of measurable functions y : J → E which are

Bochner integrable normed by

‖y‖L1 =

∫ b

0

|y(t)| dt.

In order to define the phase space and the solution of (1)–(3) we shall consider the

space

PC = {y : J → E, y(t−k ), y(t+k ) exist with y(tk) = y(t−k ), yk ∈ C(Jk, E)},

where yk is the restriction of y to Jk = (tk, tk+1], k = 0, . . . ,m. Let ‖ · ‖PC be the

norm in PC defined by

‖y‖PC = sup{|y(s)| : 0 6 s 6 b}, y ∈ PC.

We will assume that D satisfies the following axioms:

(A) If y : (−∞, b] → E, b > 0 and y(t−k ), y(t+k ) exist with y(tk) = y(t−k ), k =

1, . . . ,m and y0 ∈ D, then for every t in [0, b] the following conditions hold:
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(i) ‖yt‖D 6 K(t) sup{|y(s)| : 0 6 s 6 t} +M(t)‖y0‖D,

(ii) |y(t)| 6 H‖yt‖D,

where H > 0 is a constant, K : [0,∞) → [0,∞) is continuous, M : [0,∞) →

[0,∞) is locally bounded and H , K, M are independent of y(·).

(B) The space D is complete.

Set

Db = {y : (−∞, b] → E, y ∈ PC ∩D},

and let ‖ · ‖b be the seminorm in Db defined by

‖y‖b := ‖y0‖D + sup{|y(t)| : 0 6 t 6 b}, y ∈ Db.

Denote

Kb = sup{K(t) : t ∈ J} and Mb = sup{M(t) : t ∈ J}.

Let (X, d) be a metric space. We use the notation:

Pcl(X) = {Y ∈ P(X) : Y closed}, Pbd(X) = {Y ∈ P(X) : Y bounded},

Pcv(X) = {Y ∈ P(X) : Y convex}, Pcp(X) = {Y ∈ P(X) : Y compact}.

Consider Hd : P(X) × P(X) → R+ ∪ {∞} given by

Hd(A,B) = max
{

sup
a∈A

d(a,B), sup
b∈B

d(A, b)
}

,

where d(A, b) = inf
a∈A

d(a, b), d(a,B) = inf
b∈B

d(a, b). Then (Pbd,cl(X), Hd) is a metric

space and (Pcl(X), Hd) is a generalized metric space (see [31]).

A multivalued map N : J → Pcl(X) is said to be measurable if, for each x ∈ X ,

the function Y : J → R defined by

Y (t) = d(x,N(t)) = inf{d(x, z) : z ∈ N(t)}

is measurable.

Definition 2.1. A measurable multivalued function F : J → Pbd,cl(X) is said to

be integrably bounded if there exists a function w ∈ L1(J,R+) such that ‖v‖ 6 w(t)

a.e. t ∈ J for all v ∈ F (t).

A multivalued map F : X → P(X) is convex (closed) valued if F (x) is convex

(closed) for all x ∈ X . F is bounded on bounded sets if F (B) =
⋃

x∈B

F (x) is bounded

in X for all B ∈ Pb(X), i.e. sup
x∈B

{sup{|y| : y ∈ F (x)}} <∞. The function F is called
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upper semi-continuous (u.s.c. for short) on X if for each x0 ∈ X the set F (x0) is a

nonempty, closed subset of X , and for each open set U of X containing F (x0), there

exists an open neighborhood V of x0 such that F (V) ⊆ U . The function G is said to

be completely continuous if F (B) is relatively compact for every B ∈ Pbd(X). If the

multivalued map F is completely continuous with nonempty compact values, then

F is u.s.c. if and only if F has closed graph, i.e. xn → x∗, yn → y∗, yn ∈ F (x∗)

implies y∗ ∈ F (x∗).

Definition 2.2. A multivalued map F : J × D → P(E) is said to be L1-

Carathéodory if

(i) t 7→ F (t, u) is measurable for each u ∈ D;

(ii) u 7→ F (t, u) is u.s.c. for almost all t ∈ J ;

(iii) for each q > 0 there exists ϕq ∈ L1(J,R+) such that

‖F (t, u)‖ = sup{|v| : v ∈ F (t, u)} 6 ϕq(t) for all ‖u‖D 6 q and for a.e. t ∈ J.

Definition 2.3. A multivalued operator N : J → Pcl(X)

(a) is called contraction if and only if there exists γ > 0 such that

Hd(N(x), N(y)) 6 γd(x, y) for each x, y ∈ X,

with γ < 1,

(b) has a fixed point if there exists x ∈ X such that x ∈ N(x).

For more details on multivalued maps and proofs of the known results cited in this

section we refer the interested reader to the books of Deimling [17], Gorniewicz [20],

and Hu and Papageorgiou [28]. Details on semigroup theory can be found in the

books by Ahmed [3] and Pazy [39]. The key tool in our approach is the following

form of the fixed point theorem of Dhage [14], [16].

Theorem 2.1. Let X be a Banach space, A : X → Pcl,cv,bd(X) and B : X →

Pcp,cv(X) two multivalued operators satisfying

(a) A is a contraction, and

(b) B is completely continuous.

Then either

(i) the operator inclusion λx ∈ Ax+ Bx has a solution for λ = 1, or

(ii) the set E = {u ∈ X : u ∈ λAu+ λBu, 0 6 λ 6 1} is unbounded.
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3. Existence of mild solutions

In this section we present an existence result of mild solutions for the problem

(1)–(3). First, we define what we mean by a mild solution.

Definition 3.1. A function y ∈ Db is said to be a mild solution of system (1)–(3)

if y(t) = ϕ(t) for all t ∈ (−∞, 0], and there exist v(·) ∈ L1(Jk, E) and Ik ∈ Ik(y(t−k ))

such that v(t) ∈ F (t, yt) a.e. t ∈ J , and y satisfies the integral equation

y(t) = T (t)(ϕ(0) − g(0, ϕ(0))) + g(t, yt)

+

∫ t

0

T (t− s)v(s) ds+
∑

0<tk<t

T (t− tk)Ik, t ∈ J.

Here T (t), t > 0, denotes the semigroup generated by the operator A. For each

y ∈ Db define the set of selections of the multivalued F by

SF,y = {v ∈ L1(J,E) : v(t) ∈ F (t, yt) a.e. t ∈ J}.

In our proof we use the following result due to Lasota and Opial [36].

Lemma 3.1. Let E be a Banach space and F an L1-Carathéodory multivalued

map with compact convex values, and let Γ: L1(J,E) → C(J,E) be a linear contin-

uous mapping. Then the operator

Γ ◦ SF : C(J,E) → Pcp,cv(C(J,E))

is a closed graph operator in C(J,E) × C(J,E).

Let us introduce the following hypotheses:

(H1) A : D(A) ⊂ E → E is the infinitesimal generator of a strongly continuous

semigroup {T (t)}, t ∈ J which is compact for t > 0 in the Banach space E,

and there exists a constant M > 0 such that

‖T (t)‖B(E) 6 M ; t ∈ J.

(H2) There exist constants ck > 0, k = 1, . . . ,m such that

Hd(Ik(y), Ik(x)) 6 ck|y − x| for each x, y ∈ E.

(H3) The function g(t, ·) is continuous on J and there exists a constant lg > 0 such

that

|g(t, u) − g(t, v)| 6 lg‖u− v‖D for each u, v ∈ D.
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(H4) There exist constants α1, α2 > 0 such that

|g(t, u)| 6 α1‖u‖D + α2 for each (t, u) ∈ [0, b]×D,

and

M

m
∑

k=1

ck +Kbα1 < 1.

(H5) F is L1-Carathéodory with compact convex values.

(H6) There exist a function p ∈ L1(J,R+) and a continuous nondecreasing function

ψ : [0,∞) → (0,∞) such that

‖F (t, x)‖ 6 p(t)ψ(‖x‖D) for a.e. t ∈ J and each x ∈ D,

with

(4) lim sup
u→+∞

(

1 − α1Kb −M
m
∑

k=1

ck

)

u

C0 +M‖p‖L1ψ(Kbu+ (MKb +Mb)‖ϕ‖D)
> 1,

where

C0 = α1(MKb +Mb)‖ϕ‖D) + α2 +M(α1‖ϕ‖D + α2)(5)

+M2
m

∑

k=1

ck‖ϕ‖D +M

m
∑

k=1

‖Ik(0)‖.

Theorem 3.1. Assume that (H1)–(H6) hold. If

(6) lg +M

m
∑

k=1

ck < 1,

then IVP (1)–(3) has at least one mild solution on (−∞, b].

P r o o f. Transform the problem (1)–(3) into a fixed point problem. Consider

the multivalued operator N : Db → P(Db) defined by

N(y) =















































h ∈ Db : h(t) =















































ϕ(t) if t 6 0;

T (t)(ϕ(0) − g(0, ϕ(0)) + g(t, yt)

+

∫ t

0

T (t− s)v(s) ds

+
∑

0<tk<t

T (t− tk)Ik,

v ∈ SF,y, Ik ∈ Ik(y(t−k )) if t ∈ J.
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It is clear that the fixed points of N are mild solutions of IVP (1)–(3). For ϕ ∈ Db

define a function x(·) : (−∞, b] → E such that

x(t) =

{

ϕ(t) if t 6 0,

T (t)ϕ(0) if t ∈ J.

Then x(·) is an element of Db, and x0 = ϕ(s), s 6 0. Set

y(t) = z(t) + x(t).

Obviously, if y satisfies the integral equation

y(t) = T (t)(ϕ(0) − g(0, ϕ(0))) + g(t, yt)

+

∫ t

0

T (t− s)v(s) ds+
∑

0<tk<t

T (t− tk)Ik, t ∈ J,

then z satisfies z0 = 0 and

z(t) = g(t, zt + xt) − T (t)g(0, ϕ(0))

+

∫ t

0

T (t− s)v(s) ds+
∑

0<tk<t

T (t− tk)Ik, t ∈ J,

where v(t) ∈ F (t, zt + xt) for a.e. t ∈ J and Ik ∈ Ik(z(t−k ) + x(t−k )).

Let D0
b = {z ∈ Db : z0 = 0}. For any z ∈ D0

b we have

‖z‖b = ‖z0‖D + sup{|z(s)| : 0 6 s 6 b} = sup{|z(s)| : 0 6 s 6 b}.

Thus (D0
b , ‖ · ‖b) is a Banach space. Let the operator P : D0

b → P(D0
b ) defined by

P (z) =































h ∈ D0
b : h(t) =































0 if t ∈ (−∞, 0];

g(t, zt + xt) − T (t)g(0, ϕ(0))

+

∫ t

0

T (t− s)v(s) ds

+
∑

0<tk<t
T (t− tk)Ik if t ∈ J.































The operator N having a fixed point is equivalent to P having one, so it suffices to

prove that P has a fixed point. Consider the operators A,B : D0
b → P(D0

b ) defined

by

A(z) :=















h ∈ D0
b : h(t) =















0 if t 6 0;

g(t, zt + xt) − T (t)g(0, ϕ(0))

+
∑

0<tk<t

T (t− tk)Ik, Ik ∈ Ik(z(t−k ) + x(t−k )) if t ∈ J,
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and

B(z) :=







h ∈ D0
b : h(t) =







0 if t 6 0;
∫ t

0

T (t− s)v(s) ds if t ∈ J,







where

v ∈ SF,z+x = {v ∈ L1(J,E) : v(t) ∈ F (t, zt + xt) for a.e. t ∈ J}.

It is clear that P = A + B. Hence, the problem of finding mild solutions of (1)–(3)

is then reduced to finding solutions of the operator inclusion z ∈ A(z) + B(z). We

shall show that the operators A and B satisfy all conditions of Theorem 2.1. The

proof will be given in several steps.

Step 1 : A is a contraction.

Let z1, z2 ∈ D0
b . Then (H2) yields

Hd(A(z1),A(z2))

6 |g(t, z1t
+ xt) − g(t, z2t

+ xt)|

+Hd

(

∑

0<tk<t

T (t− tk)Ik(z1(t
−

k ) + x(t−k )),
∑

0<tk<t

T (t− tk)Ik(z2(t
−

k ) + x(t−k ))

)

6 lg‖z1 − z2‖D0
b

+M

m
∑

k=1

ck|z1(t
−

k ) − z2(t
−

k )|

6

(

lg +M

m
∑

k=1

ck

)

‖z1 − z2‖D0
b
.

Hence, by (6), A is a contraction.

Step 2 : B has compact, convex values, and it is completely continuous.

This will be proved in several claims.

Claim 1. B has compact values.

The operator B is equivalent to the composition L ◦ SF on L
1(J,E), where L :

L1(J,E) → D0
b is the continuous operator defined by

L(v)(t) =

∫ t

0

T (t− s)v(s) ds, t ∈ J.

Hence, it suffices to show that L ◦ SF has compact values on D
0
b .

Let z ∈ D0
b be arbitrary and let vn be a sequence in SF,z+x, then vn(t) ∈

F (t, zt + xt) for a.e. t ∈ J . Since F (t, zt + xt) is compact, we may pass to a sub-

sequence. Suppose that vn → v in L1
w(J,E) (the space endowed with the weak
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topology), where v(t) ∈ F (t, zt + xt) a.e. t ∈ J . An application of Mazur’s theo-

rem ([46]) implies that vn converges strongly to v and hence v ∈ SF,z+x. From the

continuity of L it follows that Lvn(t) → Lv(t) pointwise on J as n→ ∞. In order to

show that the convergence is uniform, we first show that {Lvn} is an equicontinuous

sequence. Let τ1, τ2 ∈ J . Then we have

|L(vn(τ1)) − L(vn(τ2))| =

∣

∣

∣

∣

∫ τ1

0

T (τ1 − s)vn(s) ds−

∫ τ2

0

T (τ2 − s)vn(s) ds

∣

∣

∣

∣

6

∫ τ1

0

‖T (τ1 − s) − T (τ2 − s)‖B(E)|vn(s)| ds

+

∫ τ2

τ1

‖T (τ2 − s)‖B(E)|vn(s)| ds.

As τ1 → τ2, the right-hand side of the above inequality tends to zero. Since T (t) is

a strongly continuous operator and due to the compactness of T (t), t > 0, the

uniform continuity follows (see [3], [39]). Hence, {Lvn} is equi-continuous, and an

application of the Arzéla-Ascoli theorem implies that there exists a subsequence

which is uniformly convergent. Then we have Lvnj
→ Lv ∈ (L ◦ SF )(z) as j → ∞,

and so (L◦SF )(z) is compact. Therefore, B is a compact valued multivalued operator

on D0
b .

Claim 2. B(z) is convex for each z ∈ D0
b .

Let h1, h2 ∈ B(z), then there exist v1, v2 ∈ SF,z+x such that for each t ∈ J we

have (i = 1, 2)

hi(t) =







0 if t ∈ (−∞, 0],
∫ t

0

T (t− s)vi(s) ds if t ∈ J.

Let 0 6 δ 6 1. Then for each t ∈ J we have

(δh1 + (1 − δ)h2)(t) =







0 if t ∈ (−∞, 0],
∫ t

0

T (t− s)[δv1(s) + (1 − δ)v2(s)] ds if t ∈ J.

Since F (t, zt + xt) has convex values, one has

δh1 + (1 − δ)h2 ∈ B(z).
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Claim 3. B maps bounded sets into bounded sets in D0
b .

Let B = {z ∈ D0
b ; ‖z‖D0

b
6 q}, let q ∈ R

+ be a bounded set in D0
b . For each

h ∈ B(z) and each z ∈ B there exists v ∈ SF,z+x such that

h(t) =

∫ t

0

T (t− s)v(s) ds.

From (A) we have

‖zs + xs‖D 6 ‖zs‖D + ‖xs‖D 6 Kbq +KbM |ϕ(0)| +Mb‖ϕ‖D = q∗.

Then by (H6) we have

|h(t)| 6 Mψ(q∗)

∫ t

0

p(s) ds 6 Mψ(q∗)‖p‖L1 := l.

This further implies that

‖h‖D0
b

6 l.

Hence, B(B) is bounded.

Claim 4. B maps bounded sets into equicontinuous sets.

Let B be, as above, a bounded set and let h ∈ B(z) for some z ∈ B. Then there

exists v ∈ SF,z+x such that

h(t) =

∫ t

0

T (t− s)v(s) ds, t ∈ J.

Let τ1, τ2 ∈ J \ {t1, t2, . . . , tm}, τ1 < τ2. Thus if ε > 0, we have

|h(τ2) − h(τ1)| 6

∫ τ1−ε

0

‖T (τ2 − s) − T (τ1 − s)‖B(E)|v(s)| ds

+

∫ τ1

τ1−ε

‖T (τ2 − s) − T (τ1 − s)‖B(E)|v(s)| ds

+

∫ τ2

τ1

‖T (τ2 − s)‖B(E)|v(s)| ds

6 ψ(q∗)

∫ τ1−ε

0

‖T (τ2 − s) − T (τ1 − s)‖B(E)p(s) ds

+ ψ(q∗)

∫ τ1

τ1−ε

‖T (τ2 − s) − T (τ1 − s)‖B(E)p(s) ds

+ ψ(q∗)

∫ τ2

τ1

‖T (τ2 − s)‖B(E)p(s) ds.
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As τ1 → τ2 and ε becomes sufficiently small, the right-hand side of the above inequal-

ity tends to zero, since T (t) is a strongly continuous operator and the compactness

of T (t) for t > 0 implies the uniform continuity. This proves the equicontinuity for

the case where t 6= ti, i = 1, . . . ,m+ 1. It remains to examine the equicontinuity at

t = ti. First we prove the equicontinuity at t = t−i . We have that for some z ∈ B

there exists v ∈ SF,z+x such that

h(t) =

∫ t

0

T (t− s)v(s) ds, t ∈ J.

Fix δ1 > 0 such that {tk, k 6= i} ∩ [ti − δ1, ti + δ1] = ∅. For 0 < ̺ < δ1 we have

|h(ti − ̺) − h(ti)| 6

∫ ti−̺

0

‖T (ti − ̺− s) − T (ti − s)‖B(E)|v(s)| ds

+ ψ(q∗)M

∫ ti

ti−̺

p(s) ds,

which tends to zero as ̺→ 0. Define

ĥ0(t) = h(t), t ∈ [0, t1]

and

ĥi(t) =

{

h(t) if t ∈ (ti, ti+1],

h(t+i ) if t = ti.

Next, we prove equicontinuity at t = t+i . Fix δ2 > 0 such that {tk : k 6= i} ∩ [ti − δ2,

ti + δ2] = ∅. Then

ĥ(ti) =

∫ ti

0

T (ti − s)v(s) ds.

For 0 < ̺ < δ2 we have

|ĥ(ti + ̺) − ĥ(ti)| 6

∫ ti

0

‖T (ti + ̺− s) − T (ti − s)‖B(E)|v(s)| ds

+ ψ(q∗)M

∫ ti+̺

ti

p(s) ds.

The right-hand side tends to zero as ̺ → 0. The equicontinuity for the cases τ1 <

τ2 6 0 and τ1 6 0 6 τ2 follows from the uniform continuity of ϕ on the interval

(−∞, 0]. As a consequence of Claims 1 to 3 together with the Arzelá-Ascoli theorem

it suffices to show that B maps B into a precompact set in E.
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Let 0 < t < b be fixed and let ε be a real number satisfying 0 < ε < t. For z ∈ B

we define

hε(t) = T (ε)

∫ t−ε

0

T (t− s− ε)v(s) ds,

where v ∈ SF,z+x. Since T (t) is a compact operator for t > 0, the set

Hε(t) = {hε(t) : hε ∈ B(z)}

is precompact in E for every ε, 0 < ε < t. Moreover, for every h ∈ B(z) we have

|h(t) − hε(t)| =

∣

∣

∣

∣

∫ t

0

T (t− s)v(s) ds− T (ε)

∫ t−ε

0

T (t− s− ε)v(s) ds

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ t

t−ε

T (t− s)v(s) ds

∣

∣

∣

∣

6 Mψ(q∗)

∫ t

t−ε

p(s) ds.

Therefore, there are precompact sets arbitrarily close to the set H(t) = {h(t) : h ∈

B(z)}. Hence, the set H(t) = {h(t) : h ∈ B(B)} is precompact in E. Consequently,

the operator B is totally bounded.

Claim 5. B has a closed graph.

Let zn → z∗, hn ∈ B(zn), and hn → h∗. We shall show that h∗ ∈ B(z∗). The

relation hn ∈ B(zn) means that there exists vn ∈ SF,zn+x such that

hn(t) =

∫ t

0

T (t− s)vn(s) ds, t ∈ J.

We must prove that there exists v∗ ∈ SF,z∗+x such that

h∗(t) =

∫ t

0

T (t− s)v∗(s) ds.

Consider the linear and continuous operator K : L1(J,E) → D0
b defined by

(Kv)(t) =

∫ t

0

T (t− s)v(s) ds.

We have

|hn(t) − h∗(t)| 6 ‖hn − h∗‖D0
b
→ 0 as n→ ∞.

From Lemma 3.1 it follows that K ◦ SF is a closed graph operator and from the

definition of K one has

hn(t) ∈ K ◦ SF,zn+x.
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As zn → z∗ and hn → h∗, there is a v∗ ∈ SF,z∗+x such that

h∗(t) =

∫ t

0

T (t− s)v∗(s) ds.

Hence, the multivalued operator B is upper semi-continuous.

Step 3. A priori bounds on solutions.

Now, it remains to show that the set

E = {z ∈ D0
b : z ∈ λAz + λBz, 0 6 λ 6 1}

is bounded.

Let z ∈ E be any element. Then there exist v ∈ SF,z+x and Ik ∈ Ik(z(t−k )+x(t−k ))

such that

z(t) = λg(t, zt + xt) − λT (t)g(0, ϕ(0))

+ λ

∫ t

0

T (t− s)v(s) ds+ λ
∑

0<tk<t

T (t− tk)Ik.

Then (H1), (H2), (H4), and (H6) yield

|z(t)| 6 α1‖zt + xt‖D + α2 +M(α1‖ϕ‖D + α2)

+M

∫ t

0

p(s)ψ(‖zs + xs‖D) ds+M

m
∑

k=1

ck|z(t
−

k ) + x(t−k )| +M

m
∑

k=1

‖Ik(0)‖

6 α1(Kb‖z‖D0
b
+ (MKb +Mb)‖ϕ‖D) + α2 +M(α1‖ϕ‖D + α2)

+M

∫ t

0

p(s)ψ(Kb‖z‖D0
b
+ (MKb +Mb)‖ϕ‖D) ds

+M
m

∑

k=1

ck|z(t
−

k )| +M
m

∑

k=1

ck|x(t
−

k )| +M
m

∑

k=1

‖Ik(0)‖

6 α1(Kb‖z‖D0
b
+ (MKb +Mb)‖ϕ‖D) + α2 +M(α1‖ϕ‖D + α2)

+M

∫ t

0

p(s)ψ(Kb‖z‖D0
b
+ (MKb +Mb)‖ϕ‖D) ds

+M

m
∑

k=1

ck|z(t
−

k )| +M2
m

∑

k=1

ck‖ϕ‖D +M

m
∑

k=1

‖Ik(0)‖

6 α1(Kb‖z‖D0
b
+ (MKb +Mb)‖ϕ‖D) + α2 +M(α1‖ϕ‖D + α2)

+M‖p‖L1ψ(Kb‖z‖D0
b

+ (MKb +Mb)‖ϕ‖D)

+M
m

∑

k=1

ck‖z‖D0
b
+M2

m
∑

k=1

ck‖ϕ‖D +M
m

∑

k=1

‖Ik(0)‖.
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Hence, by (5) we have

(

1 − α1Kb −M

m
∑

k=1

ck

)

‖z‖D0
b

6 α1(MKb +Mb)‖ϕ‖D) + α2 +M(α1‖ϕ‖D + α2)

+M‖p‖L1ψ(Kb‖z‖D0
b
+ (MKb +Mb)‖ϕ‖D)

+M2
m

∑

k=1

ck‖ϕ‖D +M
m

∑

k=1

‖Ik(0)‖

= C0 +M‖p‖L1ψ(Kb‖z‖D0
b

+ (MKb +Mb)‖ϕ‖D).

Thus

(7)

(

1 − α1Kb −M
m
∑

k=1

ck

)

‖z‖D0
b

C0 +M‖p‖L1ψ(Kb‖z‖D0
b
+ (MKb +Mb)‖ϕ‖D)

6 1.

From (4) it follows that there exists a constant R > 0 such that for each z ∈ E with

‖z‖D0
b
> R the condition (7) is violated. Hence, ‖z‖D0

b
6 R for each z ∈ E , which

means that the set E is bounded. As a consequence of Theorem 2.1, A+B has a fixed

point z∗ in the interval (−∞, b], so y∗ = z∗ + x is a fixed point of the operator N

which is the mild solution of problem (1)–(3). �

4. Existence of extremal mild solutions

In this section we will prove the existence of maximal and minimal solutions of

problem (1)–(3) under suitable monotonicity conditions on the multivalued functions

involved in it.

Definition 4.1. A nonempty closed subset C of a Banach space (X, ‖ · ‖) is

called a cone if

(i) C + C ⊂ C,

(ii) λC ⊂ C for λ > 0,

(iii) {−C} ∩ {C} = {0}.

A cone C is called normal if the norm ‖ · ‖ is semi-monotone on C, i.e., there

exists a constant N > 0 such that ‖x‖ 6 N‖y‖ whenever x 6 y. We equip the space

X = C(J,E) with the order relation 6 induced by a regular cone C in E, that is, for

all y, y ∈ X we put y 6 y if and only if y(t)− y(t) ∈ C, for all t ∈ J . In what follows

we will assume that the cone C is normal. Cones and their properties are detailed
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in [19], [24]. Let a, b ∈ X be such that a 6 b. Then by an order interval [a, b] we

mean the set of points in X given by

[a, b] = {x ∈ X : a 6 x 6 b}.

Let Q1, Q2 ∈ Pcl(X). Then by Q1 6 Q2 we mean a 6 b for all a ∈ Q1 and b ∈ Q2.

Thus a 6 Q2 implies that a 6 b for all b ∈ Q2; in particular, if Q1 6 Q1, then it

follows that Q1 is a singleton set.

Definition 4.2. Let X be an ordered Banach space. A multivalued mapping

T : X → P (X) is called isotone increasing if T (x) 6 T (y) for any x, y ∈ X with

x < y. Similarly, T is called isotone decreasing if T (x) > T (y) whenever x < y.

Definition 4.3. We say that x ∈ X is the least fixed point of G in X if x ∈ Gx

and x 6 y whenever y ∈ X and y ∈ Gy. The greatest fixed point of G in X is defined

similarly by reversing the inequality. If both the least and greatest fixed points of G

in X exist, we call them extremal fixed points of G in X .

Very recently Dhage has proved the following assertion.

Theorem 4.1 ([15]). Let [a, b] be an order interval in a Banach space and let

B1, B2 : [a, b] → P (X) be two functions satisfying

(a) B1 is a contraction,

(b) B2 is completely continuous,

(c) B1 and B2 are strictly monotone increasing, and

(d) B1(x) +B2(x) ∈ [a, b] for all x ∈ [a, b].

If the cone C in X is normal, then the inclusion x ∈ B1(x) +B2(x) has at least one

fixed point x∗ and a greatest fixed point x
∗ ∈ [a, b]. Moreover, x∗ = lim

n→∞
xn and

x∗ = lim
n→∞

yn, where {xn} and {yn} are sequences in [a, b] defined by

xn+1 ∈ B1(xn) +B2(xn), x0 = a and yn+1 ∈ B1(yn) +B2(yn), y0 = b.

We adopt the following definitions in the sequel.

Definition 4.4. We say that a continuous function ṽ ∈ Db is a lower mild

solution of problem (1)–(3) if ṽ(t) = ϕ(t), t ∈ (−∞, 0], and there exist v(·) ∈

L1(Jk, E) and Ik ∈ Ik(ṽ(t−k )) such that v(t) ∈ F (t, ṽt) for a.e. t ∈ J , and ṽ satisfies

ṽ(t) 6 T (t)(ϕ(0) − g(0, ϕ(0))) + g(t, ṽt)

+

∫ t

0

T (t− s)v(s) ds+
∑

0<tk<t

T (t− tk)Ik, t ∈ J, t 6= tk,

and ṽ(t+k ) − ṽ(t−k ) 6 Ik, k = 1, . . . ,m.
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Similarly an upper mild solution w̃ of problem (1)–(3) is defined by reversing the

order.

Definition 4.5. A solution xM of (1)–(3) is said to be maximal if for any other

solution x of (1)–(3) on J we have that x(t) 6 xM (t) for each t ∈ J . Similarly a

minimal solution of (1)–(3) is defined by reversing the order of the inequalities.

Definition 4.6. A multivalued function F (t, x) is called strictly monotone in-

creasing in x almost everywhere for t ∈ J , if F (t, x) 6 F (t, y) for a.e. t ∈ J for all

x, y ∈ X with x < y. Similarly F (t, x) is called strictly monotone decreasing in x

almost everywhere for t ∈ J , if F (t, x) > F (t, y) for a.e. t ∈ J for all x, y ∈ X with

x < y.

We consider the following assumptions in the sequel.

(H7) The multivalued function F (t, y) is strictly monotone increasing in y for almost

each t ∈ J .

(H8) The problem (1)–(3) has a lower mild solution ṽ and an upper mild solution w̃

with ṽ 6 w̃.

(H9) T (t) is preserving the order, that is, T (t)v > 0 whenever v > 0.

(H10) The functions Ik, k = 1, . . . ,m, are nondecreasing.

Theorem 4.2. Assume that assumptions (H1)–(H10) hold. Then the prob-

lem (1)–(3) has minimal and maximal solutions on Db.

P r o o f. We can write ṽ and w̃ as

ṽ(t) = v∗(t) + x(t), w̃(t) = w∗(t) + x(t),

where v∗ ∈ D0
b , w

∗ ∈ D0
b and x is defined as in Section 3. Then ṽ is a lower solution

to (1)–(3) if v∗ satisfies

v∗(t) 6 T (t)g(0, ϕ(0)) + g(t, v∗t + xt)

+

∫ t

0

T (t− s)v(s) ds+
∑

0<tk<t

T (t− tk)Ik, t ∈ J, t 6= tk,

and v∗(t+k ) − v∗(t−k ) 6 Ik with Ik ∈ Ik(v∗(t−k ) + x(t−k )), k = 1, . . . ,m.

The function w̃ is an upper solution to (1)–(3) if w∗ satisfies the reversed inequality.

It can be shown as in the proof of Theorem 3.1 that A is completely continuous and

B is a contraction on [v∗, w∗]. We shall show that A and B are isotone increasing on

[v∗, w∗]. Let z, z ∈ [v∗, w∗] be such that z 6 z, z 6= z. Then by (H10) we have for
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each t ∈ J

A(z) =

{

h ∈ D0
b : h(t) = T (t)g(0, ϕ(0)) + g(t, zt + xt)

+
∑

0<tk<t

T (t− tk)Ik, Ik ∈ Ik(z(t−k ) + x(t−k ))

}

6

{

h ∈ D0
b : h(t) = T (t)g(0, ϕ(0)) + g(t, zt + xt)

+
∑

0<tk<t

T (t− tk)Ik, Ik ∈ Ik(z(t−k ) + x(t−k ))

}

= A(z).

Similarly, by (H7), (H9),

B(z) =

{

h ∈ D0
b : h(t) =

∫ t

0

T (t− s)v(s) ds, v ∈ SF,z+x

}

6

{

h ∈ D0
b : h(t) =

∫ t

0

T (t− s)v(s) ds, f ∈ SF,z+x

}

= B(z).

Therefore, A and B are isotone increasing on [v∗, w∗]. Finally, let y ∈ [v∗, w∗] be any

element. By (H8) and (H9) we deduce that

v∗ 6 A(v∗) + B(v∗) 6 A(y) + B(y) 6 A(w∗) + B(w∗) 6 w∗,

which shows that A(y) + B(y) ∈ [v∗, w∗] for all y ∈ [v∗, w∗]. Thus, A and B satisfy

all conditions of Theorem 4.1. Hence, problem (1)–(3) has maximal and minimal

solutions on (−∞, b]. This completes the proof. �

5. Application

In this section we apply some of the results established in this paper. We begin

by mentioning some examples of the phase space.

5.1. Phase space

Let g : (−∞, 0] → [1,∞) be a continuous, nonincreasing function with g(0) = 1

which satisfies the conditions (g-1), (g-2) of [27]. This means that the function

G(t) = sup
−∞<θ6−t

g(t+ θ)

g(θ)

is locally bounded for t > 0 and that lim
θ→−∞

g(θ) = ∞.
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We say that ϕ : (−∞, 0] → E is normalized piecewise continuous, if ϕ is left

continuous and the restriction of ϕ to any interval [−r, 0] is piecewise continuous.

Next, we modify slightly the definition of the spaces Cg, C
0
g of [27]. We de-

note by PCg((−∞, 0], E) the space formed by the normalized piecewise continuous

functions ϕ such that ϕ/g is bounded on (−∞, 0], and by PC0
g the subspace of

PCg((−∞, 0], E) formed by the functions ϕ such that

lim
θ→−∞

ϕ(θ)

g(θ)
= 0.

It is easy to see that D = PCg((−∞, 0], E) and D = PC0
g((−∞, 0], E) endowed with

the norm

‖ϕ‖D = sup
θ∈(−∞,0]

|ϕ(θ)|

g(θ)

are phase spaces. Moreover, in these cases K(s) = 1 for s > 0.

Let 1 6 p < ∞, 0 6 r < ∞, and let g(·) be a Borel nonnegative measurable

function on (−∞, r) which satisfies the conditions (g-5)–(g-6) in the terminology

of [27]. This means that g(·) is locally integrable on (−∞,−r) and there exists a

nonnegative and locally bounded functionG on (−∞, 0] such that g(ξ+θ) 6 G(ξ)g(θ)

for all ξ 6 0 and θ ∈ (−∞,−r) \Nξ, where Nξ ⊂ (−∞,−r) is a set with Lebesgue

measure 0. Let D := PCr × Lp(g, E), r > 0, p > 1, be the space formed by all

classes of functions ϕ : (−∞, 0] → E such that ϕ|[−r,0] ∈ PC([−r, 0], E), ϕ(·) is

Lebesgue measurable on (−∞,−r] and g|ϕ|p is Lebesgue integrable on (−∞,−r].

The seminorm in ‖ · ‖D is defined by

‖ϕ‖D := sup
θ∈[−r,0]

|ϕ(θ)| +

(
∫ −r

−∞

g(θ)|ϕ(θ)|p dθ

)1/p

.

Proceeding as in the proof of ([27], Theorem 1.3.8), we conclude that D is a phase

space which satisfies Axioms (A) and (B). Moreover, for r = 0 and p = 2 this space

coincides (see [27]) with C0 × L2(g, E), H = 1, M(t) = G(−t)1/2 and

K(t) = 1 +

(
∫ 0

−t

g(s) ds

)1/2

, for t > 0.
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5.2. An example

As an application of our results we consider the impulsive partial functional dif-

ferential inclusion of the form

∂

∂t

[

v(t, ξ) −

∫ 0

−∞

K1(θ)g1(t, v(t+ θ, ξ)) dθ

]

∈
∂2

∂ξ2

[

v(t, ξ) −

∫ 0

−∞

K1(θ)g1(t, v(t+ θ, ξ)) dθ

]

+

∫ 0

−∞

K2(θ)[Q1(t, v(t+ θ, ξ)), Q2(t, v(t+ θ, ξ))] dθ

for ξ ∈ [0, π], t ∈ J \ {t1, t2, . . . , tm},

(8)

v(t+k , ξ) − v(t−k , ξ) ∈ [−bk|v(t
−

k , ξ)|, bk|v(t
−

k , ξ)|], ξ ∈ [0, π], k = 1, . . . ,m,(9)

v(t, 0) −

∫ 0

−∞

K1(θ)g1(t, v(t+ θ, 0)) dθ = 0 for t ∈ J,(10)

v(t, π) −

∫ 0

−∞

K1(θ)g1(t, v(t+ θ, π)) dθ = 0 for t ∈ J,(11)

v(θ, ξ) = v0(θ, ξ) for −∞ < θ 6 0 and ξ ∈ [0, π],(12)

where bk > 0, k = 1, . . . ,m, K1 : (−∞, 0] → R, K2 : (−∞, 0] → R and g1, g2 :

J × R → R and v0 : (−∞, 0] × [0, π] → R are continuous functions, 0 = t0 <

t1 < t2 < . . . < tm < tm+1 = b, v(t+k , ξ) = lim
(h,ξ)→(0+,ξ)

v(tk + h, ξ), v(t−k , ξ) =

lim
(h,ξ)→(0−,ξ)

v(tk + h, ξ), Q1, Q2 : J × R → R, are given functions. We assume that

for each t ∈ J , Q1(t, ·) is lower semi-continuous (i.e, the set {y ∈ R : Q1(t, y) > µ}

is open for each µ ∈ R), and assume that for each t ∈ J , Q2(t, ·) is upper semi-

continuous (i.e. the set {y ∈ R : Q2(t, y) < µ} is open for each µ ∈ R).

Let

y(t)(ξ) = v(t, ξ), t ∈ J, ξ ∈ [0, π],

Ik(y(t−k ))(ξ) = [−bk|v(t
−

k , ξ)|, bk|v(t
−

k , ξ)|], ξ ∈ [0, π], k = 1, . . . ,m,

F (t, ϕ)(ξ) =

∫ 0

−∞

K2(θ)[Q1(t, ϕ(θ, ξ)), Q2(t, ϕ(θ, ξ))] dθ, θ ∈ (−∞, 0], ξ ∈ [0, π],

h(t, ϕ)(ξ) =

∫ 0

−∞

K1(θ)g1(t, v(t+ θ, ξ)) dθ

and

ϕ(θ)(ξ) = ϕ(θ, ξ), θ ∈ (−∞, 0], ξ ∈ [0, π].
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Take E = L2[0, π] and define A : D(A) ⊂ E → E by Aw = w′′ with the domain

D(A) = {w ∈ E, w,w′ are absolutely continuous, w′′ ∈ E, w(0) = w(π) = 0}.

Then

Aw =
∞
∑

n=1

n2(w,wn)wn, w ∈ D(A)

where (·, ·) is the inner product in L2 and wn(s) =
√

2/π sinns, n = 1, 2, . . ., is

the orthogonal set of eigenvectors in A. It is well known (see [39]) that A is the

infinitesimal generator of an analytic semigroup T (t), t ∈ (0, b], in E and

T (t)w =

∞
∑

n=1

exp(−n2t)(w,wn)wn, w ∈ E.

Since the analytic semigroup T (t), t ∈ (0, b] is compact, there exists a constant

M > 1 such that

‖T (t)‖B(E) 6 M.

It is clear that F is compact and convex valued, and it is upper semi-continuous

(see [17]). Assume that there are p ∈ C(J,R+) and ψ : [0,∞) → (0,∞) continuous

and nondecreasing such that

max(|Q1(t, y)|, |Q2(t, y)|) 6 p(t)ψ(|y|), t ∈ J and y ∈ R.

Assume that there exist functions l̃1, l̃2 ∈ L1(J,R+) such that

|Q1(t, w) −Q1(t, w)| 6 l̃1(t)|w − w|, t ∈ J, w,w ∈ R,

and

|Q2(t, w) −Q2(t, w)| 6 l̃2(t)|w − w|, t ∈ J, w,w ∈ R.

We can show that problem (1)–(3) is an abstract formulation of problem (8)–(12).

Since all conditions of Theorem 3.1 are satisfied, the problem (8)–(12) has a solution z

on (−∞, b] × [0, π].
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