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K Y BE R NE T IK A — VO L UM E 4 6 ( 2 0 1 0 ) , NU MB E R 6 , P AGE S 1 0 4 9 – 1 0 6 0

SOME NEW RESULTS ABOUT BROOKS–JEWETT

AND DIEUDONNÉ–TYPE THEOREMS IN (L)-GROUPS

Antonio Boccuto and Domenico Candeloro

In this paper we present some new versions of Brooks-Jewett and Dieudonné-type the-
orems for (l)-group-valued measures.

Keywords: (l)-group, order convergence, regular measure, Brooks–Jewett theorem,
Dieudonné theorem

Classification: 28B05, 28B15

1. INTRODUCTION

Dieudonné-type theorems (see [13]) are subjects of deep studies of several mathe-
maticians. There are many versions of theorems of this kind, for example, for maps
taking values in topological groups and/or Banach spaces: we quote here Brooks
and Jewett ([8, 9]), Candeloro and Letta ([10, 11]).

We now report the classical Brooks–Jewett theorem ([9, Theorem 2]).

Theorem 1.1. Let X be a Banach space, A be a σ-ring of subsets of an abstract
set G, mj : A → X be finitely additive and (s)-bounded measures, j ∈ N. Suppose
that m(E) := limj mj(E) exists in X for every E ∈ A.

Then the mj ’s are uniformly additive.

In this paper we deal with some Brooks–Jewett (see [9]) and Dieudonné-type
theorems in the context of (l)-groups. We observe that there are Riesz spaces, in
which order convergence is not generated by any topology: for example, L0(X,B, µ),

where µ is a σ-additive and σ-finite non-atomic positive R̃-valued measure. Indeed,
in these spaces order convergence means almost everywhere convergence and it is
not compatible with any group topology.

We also use the concept of (RO)-convergence for set functions, which is inspired
by similar concepts of “equal” convergence ([12]) and convergence “with respect to
the same regulator” ([5, 6]).

In [2] similar results were proved with respect to order convergence for positive

finitely additive measures, taking values in spaces of the type L0(X,B, µ). In [5, 6]
some limit theorems and Dieudonné-type theorems were proved in the context of
(l)-groups, using another kind of convergence ((D)-convergence), which at least for
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sequences coincides with order convergence if the underlying (l)-group is Dedekind
complete and weakly σ-distributive.

We remark that in those papers all types of convergence are related to the notion
of “common regulator”, while here at least the concepts of (s)-boundedness, σ-
additivity and regularity are formulated in a more intuitive way, and not directly
related to (o)-sequences or similar objects.

In [7] some limit theorems were proved, in which σ-additivity is considered not
necessarily “with respect to the same regulator”. In this paper, avoiding those
technicalities, we obtain some Brooks–Jewett and Dieudonné-type theorems, only
assuming that pointwise convergence of the involved measures takes place with re-
spect to the same (o)-sequence.

2. PRELIMINARIES

Definitions 2.1. An Abelian group (R, +) is called (l)-group if it is endowed with
a compatible ordering ≤, and is a lattice with respect to it.
An (l)-group R is said to be Dedekind complete if every nonempty subset of R,
bounded from above, has supremum in R.

A sequence (pn)n ↓ 0 in R is said to be an (o)-sequence. We say that a se-
quence (rn)n in R is order-convergent (or (o)-convergent ) to r if there exists an
(o)-sequence (pn)n with |rn − r| ≤ pn for all n ∈ N (see also [15, 18]), and we will
write (o) limn rn = r.

A sequence (rn)n is said to be (o)-Cauchy if there exists an (o)-sequence (pn)n

such that |rn − rm| ≤ pn for all n ∈ N and m ≥ n.
Given a topological space Ω and a set N ⊂ Ω, we say that N is nowhere dense

in Ω if its closure has empty interior. We say that N ⊂ Ω is meager if N can be
expressed as a countable union of nowhere dense subsets of Ω.

From now on we assume that R is a Dedekind complete (l)-group.
We now recall the following version of the Maeda-Ogasawara-Vulikh Theorem

(see [18], Theorems V.4.2, p. 138 and V.3.1, p. 131; [1], Theorem 3, p. 610).

Theorem 2.2. Every Dedekind complete (l)-group R is algebraically and lattice

isomorphic to an order dense ideal of C∞(Ω) = {f ∈ R̃
Ω : f is continuous, and

{ω ∈ Ω : |f(ω)| = +∞} is nowhere dense in Ω}, where Ω is a suitable compact
extremely disconnected topological space.

Furthermore, if we denote by â the element of C∞(Ω) which corresponds to a ∈ R
under the above isomorphism, then for any family (aλ)λ∈Λ of elements of R such
that a0 :=

∨
λ aλ ∈ R we have â0(ω) = supλ[âλ(ω)] in the complement of a meager

subset of Ω. The same is true for
∧

λ aλ.

From now on, when we regard R as a subset of C∞(Ω), we shall denote by the
symbols ∨ and ∧ the supremum and infimum in R and by sup and inf the “pointwise”
supremum and infimum, respectively.

Assumptions 2.3. From now on, we assume that G is any infinite set, and A ⊂
P(G) is an algebra. We suppose that F , G ⊂ A are two fixed lattices, such that the
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complement (with respect to G) of every element of F belongs to G and G is closed
with respect to countable disjoint unions.

If G is a normal topological space [resp. locally compact Hausdorff space], examples
of lattices A, F and G, satisfying the above properties, are the following: A =
{Borelian subsets of G}, F = {closed sets} [resp.{compact sets} ], G = {open sets}.

Definitions 2.4. We say that a set function m : A → R is bounded if there exists
w ∈ R such that |m(A)| ≤ w for all A ∈ A. The maps mj , j ∈ N, are equibounded

(or uniformly bounded) on A if there is u ∈ R, with |mj(A)| ≤ u for all j ∈ N and
A ∈ A.

If E is any sublattice of A, we say that a sequence of measures (mj : A → R)j

(RO)-converges to a map m0 on E if there is an (o)-sequence (pl)l such that to each
l ∈ N and A ∈ E it is possible to associate j0 ∈ N with |mj(A) − m0(A)| ≤ pl

whenever j ≥ j0.
Given a finitely additive bounded measure m : A → R, we define m+, m−,

‖m‖ : A → R, by setting

m+(A) = (m+)A(A) := ∨B∈A,B⊂A m(B),

m−(A) = (m−)A(A) := − ∧B∈A,B⊂A m(B), (1)

‖m‖(A) = ‖m‖A(A) := (m+)A(A) + (m−)A(A), A ∈ A.

The set functions m+, m−, ‖m‖ are called positive part, negative part and total vari-

ation of m (on A), respectively. Moreover, define the semivariation of m on A,
vA(m) : A → R, by setting

vA(m)(A) = ∨B∈A,B⊂A |m(B)|, A ∈ A.

We have (see also [14]):

vA(m)(A) ≤ ‖m‖A(A) ≤ 2vA(m)(A), for all A ∈ A. (2)

Moreover, for every A ∈ A set

(m+)G(A) := ∨B∈G,B⊂A m(B), (m−)G(A) := ∨B∈G,B⊂A [−m(B)],

vG(m)(A) := ∨B∈G,B⊂A |m(B)|;

analogously it is possible to define (m±)F and vF , the positive and negative parts
with respect to F and the F -semivariation respectively.

From now on, all involved finitely additive maps are assumed to be bounded. We
now introduce the concept of (s)-boundedness, following an approach similar to the
classical one.

A finitely additive set function m : A → R is said to be (s)-bounded on A or A-(s)-
bounded if for every disjoint sequence (Hn)n in A we have lim supn vA(m)(Hn) = 0.
We say that the maps mj : A → R, j ∈ N, are uniformly (s)-bounded on A or uni-

formly A-(s)-bounded if lim supn[∨jvA(mj)(Hn)] = 0 whenever (Hn)n is a sequence
of pairwise disjoint elements of A.
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A finitely additive set function m : A → R is said to be σ-additive if for every
disjoint sequence (Hn)n in A, ∧n [vA(m)(

⋃∞
l=n Hl)] = 0. We say that the measures

mj : A → R, j ∈ N, are uniformly σ-additive if for each disjoint sequence (Hn)n in
A, ∧n [∨jvA(mj)(

⋃∞
l=n Hl)] = 0.

Analogously as above it is possible to formulate the concepts of (uniform) G-(s)-
boundedness and G-σ-additivity, in which we replace the semivariation vA with vG .

3. THE BROOKS–JEWETT THEOREM

We now state the following Brooks–Jewett type theorem.

Theorem 3.1. Let G, A and G be as in Assumptions 2.3, Ω be as in Theorem 2.2,
and suppose that (mj : A → R)j is a sequence of (not necessarily positive) finitely
additive equibounded measures. Suppose that there is a map m0 : G → R such that
the sequence (mj)j (RO)-converges to m0 on G.

Then the real valued functions mj(·)(ω) are uniformly G-(s)-bounded on G (with
respect to j) for ω belonging to the complement of a meager subset of Ω. Moreover
the mj ’s are uniformly G-(s)-bounded on G.

P r o o f . Let Ω be as in Theorem 2.2. First of all we observe that, since the mj ’s are
equibounded, then there exists a nowhere dense set N0 ⊂ Ω such that for all ω 6∈ N0

the maps mj(·)(ω), j ∈ N, are real-valued, finitely additive and bounded on G, and
hence (s)-bounded on G. Moreover, by (RO)-convergence, there is an (o)-sequence
(pl)l with the property that to every l ∈ N and A ∈ G there corresponds a positive
integer j0 with

|mj(A) − m0(A)| ≤ pl for all j ≥ j0. (3)

Thanks to Theorem 2.2, a meager set N ⊂ Ω can be found, without loss of generality
with N ⊃ N0, such that the sequence (pl(ω))l is a real-valued (o)-sequence, whenever
ω /∈ N . Thus for every l ∈ N and A ∈ G there is j0 ∈ N such that for all ω ∈ Ω \ N
and j ≥ j0 we get:

|mj(A)(ω) − m0(A)(ω)| ≤ pl(ω). (4)

This implies that limj mj(A)(ω) = m0(A)(ω) for each A ∈ G and ω 6∈ N . Thus for
such ω’s the real-valued set functions mj(·)(ω) satisfy the hypotheses of the classical
version of the Brooks–Jewett theorem (see [9, Theorem 2]), and so they are uniformly
G-(s)-bounded on G. This concludes the first part of the assertion.

We now prove that the measures mj , j ∈ N, are uniformly G-(s)-bounded on G.
Fix arbitrarily any disjoint sequence (Hk)k in G and let us check that

∧s [∨k≥s(∨j [∨B∈G,B⊂Hk
|mj(B)|]) = 0. (5)

Since the measures mj(·)(ω) are uniformly G-(s)-bounded on G for all ω ∈ Ω \ N ,
where N is as in (4), then

inf
s

[
sup
k≥s

{
sup

j

[
vG(mj(·)(ω))(Hk)

]}]
= lim

k

{
sup

j

[
vG(mj(·)(ω))(Hk)

]}
= 0 (6)
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for every ω 6∈ N . Since the union of countably many meager sets is still meager, then
in the complement of a suitable meager set, without loss of generality containing N ,
for all k ∈ N we get:

sup
j

[
sup

B∈G,B⊂Hk

|mj(B)(ω)|
]

=
{
∨j [∨B∈G,B⊂Hk

|mj(B)|]
}
(ω). (7)

From (6) and (7) it follows that, again up to complements of meager sets,

∧s [∨k≥s(∨j [∨B∈G,B⊂Hk
|mj(B)|])](ω) = 0. (8)

By a density argument we get (5).
Hence lim supk(∨j [∨B∈G,B⊂Hk

|mj(B)|]) = 0, namely lim supk(∨jvG(mj)(Hk)) = 0.
Thanks to arbitrariness of the chosen sequence (Hk)k, we get uniform (s)-boundedness
of the mj ’s on G. �

We now prove a technical lemma, which will be useful in the sequel.

Lemma 3.2. Under the same hypotheses and notations as above, suppose that
there exists a meager set N ⊂ Ω such that the real-valued measures mj(·)(ω), j ∈ N,
are uniformly (s)-bounded on G for all ω 6∈ N . Fix W ∈ F , and assume that the
sequences (Gn)n and (Fn)n, from G and F respectively, satisfy

W ⊂ Fn+1 ⊂ Gn ⊂ Fn for all n ∈ N

and the following equality:

lim
n

[
sup

A∈G,A⊂Gn\W

|mj(A)(ω)|
]

= 0 for all j ∈ N (9)

for ω belonging to the complement of a meager set NW ⊂ Ω. Then

lim
n

(
sup

j

[
sup

A∈G,A⊂Gn\W

|mj(A)(ω)|
])

= 0 (10)

whenever ω ∈ Ω \ (N ∪ NW ).

P r o o f . Fix arbitrarily ω ∈ Ω \ (N ∪ NW ), set W := {A ∈ G : A ∩ W = ∅} and let
A ∈ W . Since A ∩ Fq ⊂ Gq−1 \ W for all q ∈ N, from (9) for all j ∈ N we get

mj(A)(ω) = lim
q

mj(A ∩ F c
q )(ω) (11)

uniformly with respect to A ∈ W .
If we deny the thesis of the lemma, then there exists ε > 0 with the property

that to every p ∈ N there correspond n ∈ N, n > p, j ∈ N and A ∈ G such that
A ⊂ Gn \ W , |mj(A)(ω)| > ε, and hence, thanks to (11),

|mj(A ∩ F c
q )(ω)| > ε (12)

for q large enough.
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At the first step, in correspondence with p = 1, there exist: A1 ∈ G; three integers
n1 ∈ N \ {1}, j1 ∈ N and q1 > max{n1, j1}, with A1 ⊂ Gn1

\ W and

|mj1(A1)(ω)| > ε; |mj1(A1 ∩ F c
q1

)(ω)| > ε.

From (9), in correspondence with j = 1, 2, . . . , j1 we get the existence of an integer
h1 > q1 such that

|mj(A)(ω)| ≤ ε (13)

whenever n ≥ h1 and A ⊂ Gn \ W .
At the second step, there exist: A2 ∈ G; three integers n2 > h1, j2 ∈ N and

q2 > max{n2, j2}, with A2 ⊂ Gn2
\ W and

|mj2(A2)(ω)| > ε; |mj2(A2 ∩ F c
q2

)(ω)| > ε. (14)

From (13) and (14) it follows that j2 > j1.
Thus, proceeding by induction, it is possible to construct a sequence (Ak)k in G

and three strictly increasing sequences in N, (nk)k, (jk)k, (qk)k, with qk > nk > qk−1,
k ≥ 2; qk > jk and

Ak ⊂ Gnk
\ W ; |mjk

(Ak ∩ F c
qk

)(ω)| > ε

for all k ∈ N. But this is impossible, since the sets Ak ∩ F c
qk

, k ∈ N, are pairwise
disjoint elements of G, ω ∈ Ω\(N∪NW ), and the maps mj(·)(ω), j ∈ N are uniformly
(s)-bounded on G for each fixed ω ∈ Ω \ N . This concludes the proof. �

If A is a σ-algebra, then, analogously as in Lemma 3.2, by considering G = F = A
and W = ∅ it is possible to prove the following:

Corollary 3.3. With the same assumptions as above, let A be a σ-algebra and sup-
pose that there is a meager set N ⊂ Ω such that the real-valued measures mj(·)(ω),
j ∈ N, are uniformly (s)-bounded on A for all ω 6∈ N . Assume that (Hn)n is a
decreasing sequence in A, Hn ↓ ∅. If

lim
n

[
sup

A∈A,A⊂Hn

|mj(A)(ω)|
]

= 0 for all j ∈ N (15)

for ω ∈ Ω \ N1, where N1 is a suitable meager set, then

lim
n

(
sup

j

[
sup

A∈A,A⊂Hn

|mj(A)(ω)|
])

= 0 (16)

whenever ω ∈ Ω \ (N ∪ N1).

4. REGULAR SET FUNCTIONS

In this section we investigate some fundamental properties of (l)-group-valued reg-
ular set functions. In [5] we formulated regularity of the involved measures “with
respect to a same regulator”. Here we do not assume any hypothesis of this kind.

From now on, assume that A ⊂ P(G) is a σ-algebra.
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Definitions 4.1. A finitely additive measure m : A → R is said to be regular if for
each A ∈ A and W ∈ F there exist four sequences (Fn)n, (F ′

n)n in F , (Gn)n, (G′
n)n

in G, such that:

Fn ⊂ Fn+1 ⊂ A ⊂ Gn+1 ⊂ Gn for all n ∈ N, (17)

W ⊂ F ′
n+1 ⊂ G′

n ⊂ F ′
n for any n ∈ N; (18)

moreover, ∧n[vA(m)(Gn \ Fn)] = ∧n[vA(m)(G′
n \ W )] = 0.

The finitely additive measures mj : A → R, j ∈ N, are said to be uniformly

regular if for all A ∈ A and W ∈ F there exist sequences (Fn)n, (Gn)n, (F ′
n)n, (G′

n)n

satisfying (17) and (18), and such that

∧n[∨j (vA(mj)(Gn \ Fn))] = ∧n[∨j (vA(mj)(G
′
n \ W ))] = 0.

We now prove that, if we deal with a regular measure m, for all A ∈ A the semivari-
ations vF (m)(A) and vA(m)(A) coincide; moreover, when A ∈ G, then vA(m)(A)
also coincides with vG(m)(A).

Lemma 4.2. (see also [5], Lemma 3.1) Let R, G, A, F , G be as above, and suppose

that m : A → R is any regular bounded finitely additive measure. Then for each

A ∈ A we get:

(m±)A(A) = (m±)F (A), vA(m)(A) = vF (m)(A). (19)

Moreover, for every V ∈ G one has:

(m±)A(V ) = (m±)G(V ), vA(m)(V ) = vG(m)(V ). (20)

Finally for all K ∈ F we get:

∧H∈G,K⊂H ‖m‖(H \ K) = 0. (21)

P r o o f . We begin with the first part. To this aim, it is enough to show that

(m±)A(A) ≤ (m±)F (A), vA(m)(A) ≤ vF (m)(A).

Fix arbitrarily A ∈ A, and pick B ⊂ A, B ∈ A: then there exists a sequence (Fn)n

in F , such that Fn ⊂ Fn+1 ⊂ B for all n ∈ N and ∧n [vA(m)(B \Fn)] = 0. Then, by
virtue of (2), ∧n [‖m‖(B \Fn)] = 0: this clearly implies that ∧n

∣∣ |m(B)|− |m(Fn)|
∣∣

= 0, from which |m(B)| ≤ ∨n|m(Fn)| ≤ vF (m)(A).
So far, we have proved that, for every A ∈ A:

m+(A) = ∨F⊂A,F∈F m(F ) ≤ ∨F⊂A,F∈F m+(F ) ≤ m+(A), (22)

and similarly

m−(A) = ∨F⊂A,F∈F (−m(F )) ≤ ∨F⊂A,F∈F m−(F ) ≤ m−(A), (23)

vA(m)(A) = ∨F⊂A,F∈F |m(F )| ≤ ∨F⊂A,F∈F vA(m)(F ) ≤ vA(m)(A).
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So, all inequalities in (22) and (23) are equalities. and, since m± are positive mea-
sures, then we deduce that

∧F∈F ,F⊂A ‖m‖(A \ F ) = 0 (24)

for all elements A ∈ A.
Let us consider an arbitrary element K ∈ F : since all elements F of F are

complements of elements of G, by (24) we get

0 ≤ ∧H∈G,K⊂H ‖m‖(H \ K) ≤ ∧F∈F ,F⊂G\K ‖m‖((G \ K) \ F ) = 0. (25)

Thus, all terms in (25) are equal to zero, and (21) is proved.
We now turn to (20): we just prove the last equality, the first ones are similar. To

this aim, fix an arbitrary element V ∈ G, and set S := vG(m)(V ), T := vA(m)(V ).
Clearly S ≤ T , so we just prove the converse inequality. Thanks to the previous
step, we have

T = ∨F∈F ,F⊂V |m(F )|,

hence all we must show is that |m(F )| ≤ S for any element F ⊂ V , with F ∈ F . So,
let F be such a set; then, for every element H ∈ G, with F ⊂ H , we have

|m(F )| = |m(H ∩ V )| + |m(F )| − |m(H ∩ V )| ≤ S +
∣∣ |m(F )| − |m(H ∩ V )|

∣∣,

i. e.
|m(F )| − S ≤

∣∣ |m(F )| − |m(H ∩ V )|
∣∣.

Since H is arbitrary, taking into account of (25), we have

|m(F )| − S ≤ ∧H∈G,F⊂H(
∣∣ |m(F )| − |m(H ∩ V )|

∣∣) ≤ ∧H∈G,F⊂H‖m‖(H \ F ) = 0,

and we finally obtain |m(F )| ≤ S, as requested. Since F was arbitrary, this concludes
the proof. �

The following proposition (see also [5, Proposition 2.6]) shows that, if (mj :
A → R)j is a sequence of equibounded regular means, even if they are not uniformly
regular, the sequences (Fn)n, (Gn)n, (F ′

n)n, (G′
n)n above can be taken independently

of j, satisfying the given definition of regularity.

Proposition 4.3. Let R, A, F , G be as in 2.3, A be a σ-algebra and (mj : A → R)j

be a sequence of regular means. Then for every A ∈ A and W ∈ F there exist four
sequences (Fn)n, (F ′

n)n in F , (Gn)n, (G′
n)n in G, satisfying (17) and (18), and such

that
∧n[vA(mj)(Gn \ Fn)] = ∧n[vA(mj)(G

′
n \ W )] = 0

for all j ∈ N.

P r o o f . By hypothesis, for every A ∈ A, W ∈ F and every j ∈ N there correspond

four sequences (G
(j)
n )n, (F

(j)
n )n, (G′(j)

n )n, (F ′(j)
n )n such that: F

(j)
n , F ′(j)

n ∈ F , G
(j)
n ,

G′(j)
n ∈ G for all j, n ∈ N;

F (j)
n ⊂ F

(j)
n+1 ⊂ A ⊂ G

(j)
n+1 ⊂ G(j)

n j, n ∈ N, (26)
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W ⊂ F ′(j)
n+1 ⊂ G′(j)

n ⊂ F ′(j)
n j, n ∈ N; (27)

and with the property that

∧n [vA(mj)(G
(j)
n \ F (j)

n )] = ∧n [vA(mj)(G
′(j)
n \ W )] = 0 (28)

for all j ∈ N.

For every n ∈ N, set Gn := ∩j≤n G
(j)
n , Fn := ∪j≤nF

(j)
n , F ′

n := ∩j≤nF ′(j)
n , G′

n :=

∩j≤nG′(j)
n : then Gn, G′

n ∈ G, Fn, F ′
n ∈ F , and Fn ⊂ Fn+1 ⊂ A ⊂ Gn+1 ⊂ Gn for all

n ∈ N. Moreover it is easy to see that the sequences (G′
n)n, (F ′

n)n satisfy (18).

Since Gn \ Fn ⊂ G
(j)
n \ F

(j)
n , Gn \ W ⊂ G

(j)
n \ W for each j, n ∈ N, then for all j

we get:

0 ≤ ∧n [vA(mj)(Gn \ Fn)] ≤ ∧n [vA(mj)(G
(j)
n \ F (j)

n )] = 0; (29)

0 ≤ ∧n [vA(mj)(G
′
n \ W )] ≤ ∧n [vA(mj)(G

′(j)
n \ W )] = 0.

So all the terms in (29) are equal to 0. This concludes the proof. �

Before proving our versions of the Dieudonné theorem, we state the following

Theorem 4.4. Let G be any infinite set; A ⊂ P(G) be any σ-algebra; G, F be as
in 2.3, where G and F are sublattices of A and G is closed with respect to countable
disjoint unions. Assume that: (mj : A → R)j is an equibounded sequence of regular
set functions, (RO)-convergent to m0 on G; A, W , (Fn)n, (Gn)n, (F ′

n)n, (G′
n)n

(independent of j) satisfy (17) and (18). Moreover, suppose that

∧n [vA(mj)(Gn \ Fn)] = ∧n [vA(mj)(G
′
n \ W )] = 0

for all j ∈ N.
Then ∧n[∨j vA(mj)(Gn \ Fn)] = ∧n[∨j vA(mj)(G

′
n \ W )] = 0.

P r o o f . First of all we observe that, by virtue of Lemma 4.2, vA and vG are
equivalent, because, in the involved semivariations, we deal with elements of G.

By Theorem 3.1 there exists a meager set N ⊂ Ω such that the real-valued
measures mj(·)(ω) are uniformly (s)-bounded on G for all ω 6∈ N .

Fix now arbitrarily A ∈ A, W ∈ F , and let (Fn)n, (Gn)n, (F ′
n)n, (G′

n)n be as in
the hypotheses. By arguing analogously as in (5-8), we get the existence of a meager
set N∗ ⊂ Ω (depending on A and W ), with

lim
n

[vG(mj(·)(ω))(Gn \ Fn)] = inf
n

[vG(mj(·)(ω))(Gn \ Fn)]

= lim
n

[vG(mj(·)(ω))(G′
n \ W )] = inf

n
[vG(mj(·)(ω))(G′

n \ W )] = 0

for all j ∈ N and ω 6∈ N∗. By Lemma 3.2 and Corollary 3.3, we get

inf
n
{sup

j

[vG(mj(·)(ω))(Gn \ Fn)]} = inf
n
{sup

j

[vG(mj(·)(ω))(G′
n \ W )]} = 0 (30)

for all ω 6∈ N ∪ N∗.
The assertion follows from (30), proceeding again analogously as in (5-8). �
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5. THE DIEUDONNÉ THEOREM

In this section we prove that, if a sequence (mj)j of equibounded regular finitely
additive measures (RO)-converges in G, then they are uniformly regular and have
pointwise limit on the whole of A.

Theorem 5.1. With the same notations as in the previous sections, fix A ∈ A, and
let (Gn)n, (Fn)n satisfy the hypotheses of Theorem 4.4. Moreover, suppose that
(mj)j is (RO)-convergent to m0 on G.

Then the following assertions hold.

(j) The measures mj , j ∈ N, are uniformly regular.

(jj) The sequence (mj(A))j is (o)-Cauchy in R for each A ∈ A.

(jjj) Letting A run in A, if we define

m0(A) := (o) lim
j

mj(A), (31)

then m0 is regular on A.

P r o o f . (j) Uniform regularity of the mj ’s follows easily from Theorem 4.4.

(jj) Fix arbitrarily A ∈ A. By uniform regularity of mj , j ∈ N, there is a sequence
(Gn)n in G with the property that A ⊂ Gn+1 ⊂ Gn for all n ∈ N and

∧n[∨j (vA(mj)(Gn \ A))] = (o) lim
n

[∨j (vA(mj)(Gn \ A))] = 0.

Let (vn)n be an (o)-sequence with |mj(Gn) − mj(A)| ≤ vn for all j, n ∈ N, and let
(pl)l be an (o)-sequence, related with (RO)-convergence of (mj)j to m0 on G.

For all l, n ∈ N there exists j∗ ∈ N with |mp(Gn) − mq(Gn)| ≤ 2 pl whenever
p, q ≥ j∗. In particular, to each n ∈ N we can associate a positive integer jn > n
such that

|mp(A) − mq(A)| ≤ |mp(A) − mp(Gn)| + |mp(Gn) − mq(Gn)| + |mq(Gn) − mq(A)|

≤ 2 pn + 2 vn

for all p, q ≥ jn. Set j0 := 0, p0 := p1, v0 := v1. Without loss of generality, we
can suppose jn−1 < jn for all n ∈ N. To every j there corresponds an integer
n = n(j) ∈ N∪ {0} with jn ≤ j < jn+1. Put wj := 2 pn(j) + 2 vn(j), j ∈ N. It is easy
to check that (wj)j is an (o)-sequence and that

|mj(A) − mj+r(A)| ≤ wj

for all j, r ∈ N. Therefore we obtain that the sequence (mj(A))j is (o)-Cauchy.

(jjj) For each fixed A ∈ A, define m0(A) := (o) limj mj(A). This limit exists in
R, since by (jj) the sequence (mj(A))j is (o)-Cauchy (see also [15]). Regularity of
m0 is an easy consequence of definition of m0 and uniform regularity of the measures
mj , j ∈ N. �
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