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TANGENT DIRAC STRUCTURES OF HIGHER ORDER

P. M. Kouotchop Wamba, A. Ntyam, and J. Wouafo Kamga

Abstract. Let L be an almost Dirac structure on a manifold M . In [2]
Theodore James Courant defines the tangent lifting of L on TM and proves
that:
If L is integrable then the tangent lift is also integrable.
In this paper, we generalize this lifting to tangent bundle of higher order.

Introduction

Let M be a differential manifold (dimM = m > 0). Consider the mapping φM
defined by:

φM : TM ⊕ T ∗M ×M TM ⊕ T ∗M → R(
(X1, α1), (X2, α2)

)
7→ 1

2
(
〈X1, α2〉M + 〈X2, α1〉M

)
where 〈·〉M is the canonical pairing defined by:

TM ×M T ∗M → R
(X,α) 7→ 〈X,α〉M

An almost Dirac structure on M , is a sub vector bundle L of the vector bundle
TM ⊕ T ∗M , which is isotropic with respect to the natural indefinite symmetric
scalar product φM (i.e ∀(X1, α1), (X2, α2) ∈ Γ(L), φM ((X1, α1), (X2, α2)) = 0),
and such that the rank of L is equal to the dimension of M .

We define on the set Γ(TM ⊕ T ∗M) of sections of TM ⊕ T ∗M a bracket by:

∀(X1, α1), (X2, α2) ∈ Γ(TM ⊕ T ∗M)
[(X1, α1), (X2, α2)]C =

(
[X1, X2],LX1α2 − iX2dα1

)
.

This bracket is called Courant bracket. A Dirac structure (or generalized Dirac
structure) is an almost Dirac structure such that:

∀(X1, α1), (X2, α2) ∈ Γ(L) , [(X1, α1), (X2, α2)] ∈ Γ(L) .

This condition is called “integrability condition”.
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For (X3, α3) ∈ Γ(TM ⊕ T ∗M), in [2] is defined the 3-tensor TTM⊕T∗M on the
vector bundle TM ⊕ T ∗M by:
TTM⊕T∗M ((X1, α1), (X2, α2), (X3, α3)) = φM

(
[(X1, α1), (X2, α2)], (X3, α3)

)
.

We put TL = TTM⊕T∗M |Γ(L)×Γ(L)×Γ(L). The integrability condition of L is deter-
mined by the vanishing of the 3-tensor TL on the vector bundle L.

For all integer r, k ≥ 1, we have the jet functor T rk of k-dimensional velocity
of order r and, when k = 1, this functor is denoted by T r and is called tangent
bundle of order r. When r = 1, T 1 is a natural equivalence of tangent functor T .

The main results of this paper are theorems 2 and 3: giving an almost Dirac
structure L on M , we construct an almost Dirac structure Lr on T rM and we
prove that: L is integrable if and only if Lr is integrable.

All manifolds and maps are assumed to be infinitely differentiable. r will be a
natural integer (r ≥ 1).

1. Other characterization of generalized Dirac structure

Let V be a real vector space of dimension m. We consider the map
φV : V ⊕ V ∗ × V ⊕ V ∗ → R(

(u, u∗), (v, v∗)
)
7→ 1

2
(
〈u, v∗〉+ 〈v, u∗〉

)
where 〈·〉 is the dual bracket V × V ∗ → R.

Definition 1. A constant Dirac structure on V is a sub vector space L of dimension
m of V ⊕ V ∗ such that:

∀(u, u∗), (v, v∗) ∈ L , φV
(
(u, u∗), (v, v∗)

)
= 0 .

Theorem 1. A constant Dirac structure L on V is determined by a pair of linear
maps a : Rm → V and b : Rm → V ∗ such that:

a∗ ◦ b+ b∗ ◦ a = 0(1)

ker a ∩ ker b = {0}(2)

Proof. Condition (1) is the isotropy of constant Dirac structure, and condition
(2) is the maximality of the isotropy. �

Remark 1.
(1) We say that the constant Dirac structure L is determined by the linear

maps a and b.
(2) An almost Dirac structure on a differential manifold M is a sub vector

bundle of TM ⊕ T ∗M such that: ∀x ∈ M , the fiber Lx of L over x is a
constant Dirac structure on TxM .

(3) An almost Dirac structure at a point x ∈ M is determined by a pair of
maps ax : Rm → TxM , bx : Rm → T ∗xM such that:{

a∗x ◦ bx + b∗x ◦ ax = 0

ker ax ∩ ker bx = {0}
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Corollary. An almost Dirac structure is determined in a neighbourhood U of a local
trivialization L|U ≈ U × Rm by a pair of vector bundle morphisms a : U × Rm →
TUM , b : U × Rm → T ∗UM over U such that:

∀x ∈ U ,

{
a∗x ◦ bx + b∗x ◦ ax = 0
ker ax ∩ ker bx = {0}

We denote by p1 and p2 the natural projections of TM ⊕ T ∗M onto TM and
T ∗M respectively. Note that a : L → TM and b : L → T ∗M are really globally
defined and are nothing more than the projections p1 and p2.

Example 1. Let M be an m-dimensional manifold.
(1) Let ω be a differential form on M of degree 2.

Γ = {(X, iXω) , X ∈ X(M)} .
Γ is the set of differential sections of an almost Dirac structure on M . It is
a Dirac structure if and only if ω is pre-symplectic form.

(2) Let Π be a bivector field on M .
Γ′ = {(iΠα, α) , α ∈ Ω1(M)} .

Γ′ is the set of differential sections of an almost Dirac structure on M . It
is a Dirac structure if and only if Π is a Poisson bivector.

We denote by (xi, ẋi) and (xi, pi) a local coordinates system of TM and T ∗M
respectively. Let L be an almost Dirac structure on M defined locally by:

a : U × Rm → TM and b : U × Rm → T ∗M .

We have: a(xi, ej) = akj
∂

∂xk

b(xi, ej) = bjkdx
k

where (ej) denote the canonical basis of Rm. Locally the 3-tensor field TL is:

TL =
∑

cyclic,i,j,k

(
api
∂bjs
∂xp

ask + api
∂asj
∂xp

bks

)
.

2. Tangent Dirac structure of higher order

κrM : T rTM → TT rM and αrM : T ∗T rM → T rT ∗M denote the natural trans-
formations defined in [1] and [7]. We have:

〈κrM (u), v∗〉T rM = 〈u, αrM (v∗)〉′T rM , (u, v∗) ∈ T rTM ×T rM T ∗T rM

where 〈 · 〉′T rM = τr ◦ T r〈·〉 and τr(jr0ϕ) = drϕ

dtr
(t)|t=0.

We denote by εrM the inverse map of αrM .
Consider the maps a : U × Rm → TM and b : U × Rm → T ∗M . We take their

tangents of order r, to get:
T ra : T rU × Rm(r+1) → T rTM and T rb : T rU × Rm(r+1) → T rT ∗M .
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We apply natural transformations κrM and εrM respectively, to get the vector bundle
maps over idT rU defined by:

ar : T rU × Rm(r+1) → TT rM and br : T rU × Rm(r+1) → T ∗T rM .

Theorem 2. The pair of maps ar and br determines a generalized almost Dirac
structure Lr on T rM , which we call the tangent lift of order r of the generalized
almost Dirac structure on M determined by a and b.

Proof. Firstly, we prove that: (ar)∗◦br+(br)∗◦ar = 0. Let jr0ψ, jr0ϕ ∈ T r(U×Rm),
where ϕ, ψ : R→ U × Rm differentials. We have:

〈(ar)∗ ◦ br(jr0ϕ), jr0ψ〉 = 〈br(jr0ϕ), ar(jr0ψ)〉

= 〈εrM ◦ T rb, κrM ◦ T ra(jr0ψ)〉

= 〈T rb(jr0ϕ), T ra(jr0ψ)〉′T rM
= τ r ◦ jr0(〈b ◦ ϕ, a ◦ ψ〉M )

= τ r ◦ jr0(〈a∗ ◦ b ◦ ϕ,ψ〉M ) .

By the same way, we have:

〈(br)∗ ◦ a(jr0ϕ), jr0ψ〉 = τ r ◦ jr0(〈b∗ ◦ a ◦ ϕ,ψ〉M )

we deduce that:〈
((ar)∗ ◦ br + (br)∗ ◦ a)(jr0ϕ), jr0ψ

〉
= τ r ◦ jr0

(〈
(a∗ ◦ b+ b∗ ◦ a) ◦ ϕ,ψ

〉
M

)
= 0 .

Secondly we prove that: ker ar ∩ ker br = {0}. We prove this case for r = 2. The
proof for r ≥ 3 is similar.

In the local coordinates system, we have:

a : U × Rm → U × Rm

(x, e) 7→ (x, ae)
and

b : U × Rm → U × (Rm)∗

(x, e) 7→ (x, be)

a2(x, ẋ, ẍ, e, ė, ë) = (x, ẋ, ẍ, ae, ȧe+ aė, äe+ ȧė+ aä)

b2(x, ẋ, ẍ, e, ė, ë) = (x, ẋ, ẍ, b̈e+ ḃė+ bë, ḃe+ bė, be)

a2(e, ė, ë) =

a 0 0
ȧ a 0
ä ȧ a

eė
ë

 and b2(e, ė, ë) =

b̈ ḃ b

ḃ b 0
b 0 0

eė
ë

 .

If a2(e, ė, ë) = b2(e, ė, ë) = 0, we have:

ae = 0 be = 0 ⇒ e ∈ ker a ∩ ker b = {0} .

and it follows that e = 0.{
bė+ ḃe = 0
aė+ ȧe = 0 ⇒

{
bė = 0
aė = 0
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e and ė are constant, it follows that ė = 0.{
bë = 0
aë = 0 ⇒ ë = 0 .

Thus ker a2 ∩ ker b2 = {0}. �

Theorem 3. The almost Dirac structure L on M is integrable if and only if the
almost Dirac structure Lr on T rM is integrable.

Proof. Consider the local coordinates system {x1, . . . , xm} of M , we have:

a(xi, ej) = aik
∂

∂xk
and b(xi, ej) = bikdx

k .

We have:

ar =


aij . . . 0
... . . .

...
(r)
aij . . . aij

 and br =


(r)
bij . . . bij
... . . .

...
bij . . . 0

 .

We get ar = (Aij)1≤i,j≤m(r+1) and br = (Bij)1≤i,j≤m(r+1). For q, d = 0, 1, . . . r, we
have:

∀(i, j) ∈{qm+ 1, . . . ,m(q + 1)} × {dm+ 1, . . . ,m(d+ 1)} ,
Aij = (ai−mqj−md)(q−d)

and

Bij = (bi−mq,j−md)(r−q−d)

We adopt the following notation:
∂

∂xp
= ∂

∂xp−mαα

= ( ∂

∂xp−mα
)(α) (

αm+ 1 ≤ p ≤ α(m+ 1)
)
.

The Courant tensor Tijk of the almost Dirac structure is given by:

Tijk =
∑

cyclic, i,j,k
Api

∂Bjs
∂xp

Ask +Api
∂Asj
∂xp

Bks, we wish to verify that Tijk = 0.

We take hm+ 1 ≤ i ≤ m(h+ 1), `m+ 1 ≤ j ≤ m(`+ 1) and tm+ 1 ≤ k ≤ m(t+ 1)
for h, `, t = 0, 1, . . . , r. We have:

Tijk =
r∑
q=0

r∑
d=0

q(m+1)∑
p=qm+1

d(m+1)∑
s=dm+1

(
Api

∂Bjs
∂xp

Ask +Api
∂Asj
∂xp

Bks

)

= (ap−mqi−mh)(q−h) ∂(bj−m`,s−md)(r−`−d)

∂xp−mqq

(as−mdk−mt)
(d−t)

+ (ap−mqi−mh)(q−h) ∂(as−mdj−m` )(d−`)

∂xp−mqq

(bk−mt,s−md)(r−d−t)
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= (ap−mqi−mh)(q−h)
(∂bj−m`,s−md

∂xp−mq

)(r−`−d−q)
(as−mdk−mt)

(d−t)

+ (ap−mqi−mh)(q−h)
(∂as−mdj−m`

∂xp−mq

)(d−`−q)
(bk−mt,s−md)(r−d−t)

=
(
ap−mdi−mh

∂bj−m`,s−md
∂xp−mq

as−mdk−mt

)(r−`−h−t)
+
(
ap−mqi−mh

∂as−mdj−m`

∂xp−mq
bk−mt,s−md

)(r−`−h−t)

= (ap−mqi−mh
∂bj−m`,s−md
∂xp−mq

as−mdk−mt + ap−mqi−mh
∂as−mdj−m`

∂xp−mq
bk−mt,s−md)(r−`−h−t)

the calculation above shows that TL = 0 if and only if TLr = 0. �

Remark 2. This construction generalizes the tangent lifts of higher order of
Poisson and pre-symplectic structure to tangent bundle of higher order.
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