Archivum Mathematicum

P. M. Kouotchop Wamba; A. Ntyam; J. Wouafo Kamga
Tangent Dirac structures of higher order

Archivum Mathematicum, Vol. 47 (2011), No. 1, 17--22

Persistent URL: http://dml.cz/dmlcz/141506

Terms of use:

© Masaryk University, 2011
Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

TANGENT DIRAC STRUCTURES OF HIGHER ORDER

P. M. Kouotchop Wamba, A. Ntyam, and J. Wouafo Kamga

```
AbStract. Let L be an almost Dirac structure on a manifold M. In 2]
Theodore James Courant defines the tangent lifting of L on TM and proves
that:
If L is integrable then the tangent lift is also integrable.
In this paper, we generalize this lifting to tangent bundle of higher order.
```


Introduction

Let M be a differential manifold ($\operatorname{dim} M=m>0$). Consider the mapping ϕ_{M} defined by:

$$
\begin{aligned}
\phi_{M}: \quad T M \oplus T^{*} M \times_{M} T M \oplus T^{*} M & \rightarrow \mathbb{R} \\
\left(\left(X_{1}, \alpha_{1}\right),\left(X_{2}, \alpha_{2}\right)\right) & \mapsto \frac{1}{2}\left(\left\langle X_{1}, \alpha_{2}\right\rangle_{M}+\left\langle X_{2}, \alpha_{1}\right\rangle_{M}\right)
\end{aligned}
$$

where $\langle\cdot\rangle_{M}$ is the canonical pairing defined by:

$$
\begin{array}{rll}
T M \times_{M} T^{*} M & \rightarrow \mathbb{R} \\
(X, \alpha) & \mapsto\langle X, \alpha\rangle_{M}
\end{array}
$$

An almost Dirac structure on M, is a sub vector bundle L of the vector bundle $T M \oplus T^{*} M$, which is isotropic with respect to the natural indefinite symmetric scalar product ϕ_{M} (i.e $\left.\forall\left(X_{1}, \alpha_{1}\right),\left(X_{2}, \alpha_{2}\right) \in \Gamma(L), \phi_{M}\left(\left(X_{1}, \alpha_{1}\right),\left(X_{2}, \alpha_{2}\right)\right)=0\right)$, and such that the rank of L is equal to the dimension of M.

We define on the set $\Gamma\left(T M \oplus T^{*} M\right)$ of sections of $T M \oplus T^{*} M$ a bracket by:

$$
\begin{aligned}
\forall\left(X_{1}, \alpha_{1}\right),\left(X_{2}, \alpha_{2}\right) & \in \Gamma\left(T M \oplus T^{*} M\right) \\
{\left[\left(X_{1}, \alpha_{1}\right),\left(X_{2}, \alpha_{2}\right)\right]_{C} } & =\left(\left[X_{1}, X_{2}\right], \mathcal{L}_{X_{1}} \alpha_{2}-i_{X_{2}} d \alpha_{1}\right)
\end{aligned}
$$

This bracket is called Courant bracket. A Dirac structure (or generalized Dirac structure) is an almost Dirac structure such that:

$$
\forall\left(X_{1}, \alpha_{1}\right),\left(X_{2}, \alpha_{2}\right) \in \Gamma(L), \quad\left[\left(X_{1}, \alpha_{1}\right),\left(X_{2}, \alpha_{2}\right)\right] \in \Gamma(L)
$$

This condition is called "integrability condition".

[^0]For $\left(X_{3}, \alpha_{3}\right) \in \Gamma\left(T M \oplus T^{*} M\right)$, in [2] is defined the 3 -tensor $T_{T M \oplus T^{*} M}$ on the vector bundle $T M \oplus T^{*} M$ by:

$$
T_{T M \oplus T^{*} M}\left(\left(X_{1}, \alpha_{1}\right),\left(X_{2}, \alpha_{2}\right),\left(X_{3}, \alpha_{3}\right)\right)=\phi_{M}\left(\left[\left(X_{1}, \alpha_{1}\right),\left(X_{2}, \alpha_{2}\right)\right],\left(X_{3}, \alpha_{3}\right)\right) .
$$

We put $T_{L}=\left.T_{T M \oplus T^{*} M}\right|_{\Gamma(L) \times \Gamma(L) \times \Gamma(L)}$. The integrability condition of L is determined by the vanishing of the 3 -tensor T_{L} on the vector bundle L.

For all integer $r, k \geq 1$, we have the jet functor T_{k}^{r} of k-dimensional velocity of order r and, when $k=1$, this functor is denoted by T^{r} and is called tangent bundle of order r. When $r=1, T^{1}$ is a natural equivalence of tangent functor T.

The main results of this paper are theorems 2 and 3: giving an almost Dirac structure L on M, we construct an almost Dirac structure L^{r} on $T^{r} M$ and we prove that: L is integrable if and only if L^{r} is integrable.

All manifolds and maps are assumed to be infinitely differentiable. r will be a natural integer $(r \geq 1)$.

1. Other characterization of generalized Dirac structure

Let V be a real vector space of dimension m. We consider the map

$$
\begin{aligned}
\phi_{V}: \quad V \oplus V^{*} \times V \oplus V^{*} & \rightarrow \\
& \rightarrow \mathbb{R} \\
\left(\left(u, u^{*}\right),\left(v, v^{*}\right)\right) & \mapsto
\end{aligned} \frac{1}{2}\left(\left\langle u, v^{*}\right\rangle+\left\langle v, u^{*}\right\rangle\right) .
$$

where $\langle\cdot\rangle$ is the dual bracket $V \times V^{*} \rightarrow \mathbb{R}$.
Definition 1. A constant Dirac structure on V is a sub vector space L of dimension m of $V \oplus V^{*}$ such that:

$$
\forall\left(u, u^{*}\right),\left(v, v^{*}\right) \in L, \quad \phi_{V}\left(\left(u, u^{*}\right),\left(v, v^{*}\right)\right)=0 .
$$

Theorem 1. A constant Dirac structure L on V is determined by a pair of linear maps $a: \mathbb{R}^{m} \rightarrow V$ and $b: \mathbb{R}^{m} \rightarrow V^{*}$ such that:

$$
\begin{equation*}
a^{*} \circ b+b^{*} \circ a=0 \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{ker} a \cap \operatorname{ker} b=\{0\} \tag{2}
\end{equation*}
$$

Proof. Condition (11) is the isotropy of constant Dirac structure, and condition (2) is the maximality of the isotropy.

Remark 1.

(1) We say that the constant Dirac structure L is determined by the linear maps a and b.
(2) An almost Dirac structure on a differential manifold M is a sub vector bundle of $T M \oplus T^{*} M$ such that: $\forall x \in M$, the fiber L_{x} of L over x is a constant Dirac structure on $T_{x} M$.
(3) An almost Dirac structure at a point $x \in M$ is determined by a pair of maps $a_{x}: \mathbb{R}^{m} \rightarrow T_{x} M, b_{x}: \mathbb{R}^{m} \rightarrow T_{x}^{*} M$ such that:

$$
\left\{\begin{array}{l}
a_{x}^{*} \circ b_{x}+b_{x}^{*} \circ a_{x}=0 \\
\operatorname{ker} a_{x} \cap \operatorname{ker} b_{x}=\{0\}
\end{array}\right.
$$

Corollary. An almost Dirac structure is determined in a neighbourhood U of a local trivialization $\left.L\right|_{U} \approx U \times \mathbb{R}^{m}$ by a pair of vector bundle morphisms a: $U \times \mathbb{R}^{m} \rightarrow$ $T_{U} M, b: U \times \mathbb{R}^{m} \rightarrow T_{U}^{*} M$ over U such that:

$$
\forall x \in U, \quad\left\{\begin{array}{l}
a_{x}^{*} \circ b_{x}+b_{x}^{*} \circ a_{x}=0 \\
\operatorname{ker} a_{x} \cap \operatorname{ker} b_{x}=\{0\}
\end{array}\right.
$$

We denote by p_{1} and p_{2} the natural projections of $T M \oplus T^{*} M$ onto $T M$ and $T^{*} M$ respectively. Note that $a: L \rightarrow T M$ and $b: L \rightarrow T^{*} M$ are really globally defined and are nothing more than the projections p_{1} and p_{2}.

Example 1. Let M be an m-dimensional manifold.
(1) Let ω be a differential form on M of degree 2 .

$$
\Gamma=\left\{\left(X, i_{X} \omega\right), \quad X \in \mathfrak{X}(M)\right\}
$$

Γ is the set of differential sections of an almost Dirac structure on M. It is a Dirac structure if and only if ω is pre-symplectic form.
(2) Let Π be a bivector field on M.

$$
\Gamma^{\prime}=\left\{\left(i_{\Pi} \alpha, \alpha\right), \quad \alpha \in \Omega^{1}(M)\right\}
$$

Γ^{\prime} is the set of differential sections of an almost Dirac structure on M. It is a Dirac structure if and only if Π is a Poisson bivector.

We denote by $\left(x^{i}, \dot{x}^{i}\right)$ and $\left(x^{i}, p_{i}\right)$ a local coordinates system of $T M$ and $T^{*} M$ respectively. Let L be an almost Dirac structure on M defined locally by:

$$
a: U \times \mathbb{R}^{m} \rightarrow T M \quad \text { and } \quad b: U \times \mathbb{R}^{m} \rightarrow T^{*} M
$$

We have:

$$
\left\{\begin{array}{l}
a\left(x^{i}, e_{j}\right)=a_{j}^{k} \frac{\partial}{\partial x^{k}} \\
b\left(x^{i}, e_{j}\right)=b_{j k} d x^{k}
\end{array}\right.
$$

where $\left(e_{j}\right)$ denote the canonical basis of \mathbb{R}^{m}. Locally the 3 -tensor field T_{L} is:

$$
T_{L}=\sum_{\text {cyclic }, i, j, k}\left(a_{i}^{p} \frac{\partial b_{j s}}{\partial x^{p}} a_{k}^{s}+a_{i}^{p} \frac{\partial a_{j}^{s}}{\partial x^{p}} b_{k s}\right) .
$$

2. Tangent Dirac structure of higher order

$\kappa_{M}^{r}: T^{r} T M \rightarrow T T^{r} M$ and $\alpha_{M}^{r}: T^{*} T^{r} M \rightarrow T^{r} T^{*} M$ denote the natural transformations defined in [1] and [7. We have:

$$
\left\langle\kappa_{M}^{r}(u), v^{*}\right\rangle_{T^{r} M}=\left\langle u, \alpha_{M}^{r}\left(v^{*}\right)\right\rangle_{T^{r} M}^{\prime}, \quad\left(u, v^{*}\right) \in T^{r} T M \times_{T^{r} M} T^{*} T^{r} M
$$

where $\langle\cdot\rangle_{T^{r} M}^{\prime}=\tau_{r} \circ T^{r}\langle\cdot\rangle$ and $\tau_{r}\left(j_{0}^{r} \varphi\right)=\left.\frac{d^{r} \varphi}{d t^{r}}(t)\right|_{t=0}$.
We denote by ε_{M}^{r} the inverse map of α_{M}^{r}.
Consider the maps $a: U \times \mathbb{R}^{m} \rightarrow T M$ and $b: U \times \mathbb{R}^{m} \rightarrow T^{*} M$. We take their tangents of order r, to get:

$$
T^{r} a: T^{r} U \times \mathbb{R}^{m(r+1)} \rightarrow T^{r} T M \quad \text { and } \quad T^{r} b: T^{r} U \times \mathbb{R}^{m(r+1)} \rightarrow T^{r} T^{*} M
$$

We apply natural transformations κ_{M}^{r} and ε_{M}^{r} respectively, to get the vector bundle maps over $i d_{T^{r} U}$ defined by:

$$
a^{r}: T^{r} U \times \mathbb{R}^{m(r+1)} \rightarrow T T^{r} M \quad \text { and } \quad b^{r}: T^{r} U \times \mathbb{R}^{m(r+1)} \rightarrow T^{*} T^{r} M
$$

Theorem 2. The pair of maps a^{r} and b^{r} determines a generalized almost Dirac structure L^{r} on $T^{r} M$, which we call the tangent lift of order r of the generalized almost Dirac structure on M determined by a and b.

Proof. Firstly, we prove that: $\left(a^{r}\right)^{*} \circ b^{r}+\left(b^{r}\right)^{*} \circ a^{r}=0$. Let $j_{0}^{r} \psi, j_{0}^{r} \varphi \in T^{r}\left(U \times \mathbb{R}^{m}\right)$, where $\varphi, \psi: \mathbb{R} \rightarrow U \times \mathbb{R}^{m}$ differentials. We have:

$$
\begin{aligned}
\left\langle\left(a^{r}\right)^{*} \circ b^{r}\left(j_{0}^{r} \varphi\right), j_{0}^{r} \psi\right\rangle & =\left\langle b^{r}\left(j_{0}^{r} \varphi\right), a^{r}\left(j_{0}^{r} \psi\right)\right\rangle \\
& =\left\langle\varepsilon_{M}^{r} \circ T^{r} b, \kappa_{M}^{r} \circ T^{r} a\left(j_{0}^{r} \psi\right)\right\rangle \\
& =\left\langle T^{r} b\left(j_{0}^{r} \varphi\right), T^{r} a\left(j_{0}^{r} \psi\right)\right\rangle_{T^{r} M}^{\prime} \\
& =\tau^{r} \circ j_{0}^{r}\left(\langle b \circ \varphi, a \circ \psi\rangle_{M}\right) \\
& =\tau^{r} \circ j_{0}^{r}\left(\left\langle a^{*} \circ b \circ \varphi, \psi\right\rangle_{M}\right) .
\end{aligned}
$$

By the same way, we have:

$$
\left\langle\left(b^{r}\right)^{*} \circ a\left(j_{0}^{r} \varphi\right), j_{0}^{r} \psi\right\rangle=\tau^{r} \circ j_{0}^{r}\left(\left\langle b^{*} \circ a \circ \varphi, \psi\right\rangle_{M}\right)
$$

we deduce that:

$$
\left\langle\left(\left(a^{r}\right)^{*} \circ b^{r}+\left(b^{r}\right)^{*} \circ a\right)\left(j_{0}^{r} \varphi\right), j_{0}^{r} \psi\right\rangle=\tau^{r} \circ j_{0}^{r}\left(\left\langle\left(a^{*} \circ b+b^{*} \circ a\right) \circ \varphi, \psi\right\rangle_{M}\right)=0 .
$$

Secondly we prove that: $\operatorname{ker} a^{r} \cap \operatorname{ker} b^{r}=\{0\}$. We prove this case for $r=2$. The proof for $r \geq 3$ is similar.

In the local coordinates system, we have:

$$
\begin{aligned}
& \begin{array}{clllll}
a: U \times \mathbb{R}^{m} & \rightarrow & U \times \mathbb{R}^{m}
\end{array} \quad \text { and } \quad b: U \times \mathbb{R}^{m} \quad \rightarrow \quad U \times\left(\mathbb{R}^{m}\right)^{*} \\
& a^{2}(x, \dot{x}, \ddot{x}, e, \dot{e}, \ddot{e})=(x, \dot{x}, \ddot{x}, a e, \dot{a} e+a \dot{e}, \ddot{a} e+\dot{a} \dot{e}+a \ddot{a}) \\
& b^{2}(x, \dot{x}, \ddot{x}, e, \dot{e}, \ddot{e})=(x, \dot{x}, \ddot{x}, \ddot{b} e+\dot{b} \dot{e}+b \ddot{e}, \dot{b} e+b \dot{e}, b e) \\
& a^{2}(e, \dot{e}, \ddot{e})=\left(\begin{array}{ccc}
a & 0 & 0 \\
\dot{a} & a & 0 \\
\ddot{a} & \dot{a} & a
\end{array}\right)\left(\begin{array}{l}
e \\
\dot{e} \\
\ddot{e}
\end{array}\right) \quad \text { and } \quad b^{2}(e, \dot{e}, \ddot{e})=\left(\begin{array}{lll}
\ddot{b} & \dot{b} & b \\
\dot{b} & b & 0 \\
b & 0 & 0
\end{array}\right)\left(\begin{array}{l}
e \\
\dot{e} \\
\ddot{e}
\end{array}\right) .
\end{aligned}
$$

If $a^{2}(e, \dot{e}, \ddot{e})=b^{2}(e, \dot{e}, \ddot{e})=0$, we have:

$$
a e=0 \quad b e=0 \quad \Rightarrow \quad e \in \operatorname{ker} a \cap \operatorname{ker} b=\{0\}
$$

and it follows that $e=0$.

$$
\left\{\begin{array} { l }
{ b \dot { e } + \dot { b } e = 0 } \\
{ a \dot { e } + \dot { a } e = 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
b \dot{e}=0 \\
a \dot{e}=0
\end{array}\right.\right.
$$

e and \dot{e} are constant, it follows that $\dot{e}=0$.

$$
\left\{\begin{array}{l}
b \ddot{e}=0 \\
a \ddot{e}=0
\end{array} \quad \Rightarrow \quad \ddot{e}=0 .\right.
$$

Thus ker $a^{2} \cap \operatorname{ker} b^{2}=\{0\}$.
Theorem 3. The almost Dirac structure L on M is integrable if and only if the almost Dirac structure L^{r} on $T^{r} M$ is integrable.

Proof. Consider the local coordinates system $\left\{x^{1}, \ldots, x^{m}\right\}$ of M, we have:

$$
a\left(x^{i}, e_{j}\right)=a_{k}^{i} \frac{\partial}{\partial x^{k}} \quad \text { and } \quad b\left(x^{i}, e_{j}\right)=b_{i k} d x^{k}
$$

We have:

$$
a^{r}=\left(\begin{array}{ccc}
a_{j}^{i} & \ldots & 0 \\
\vdots & \ldots & \vdots \\
(r) & & \\
a_{j}^{i} & \ldots & a_{j}^{i}
\end{array}\right) \quad \text { and } \quad b^{r}=\left(\begin{array}{ccc}
(r) & & \\
b_{i j} & \ldots & b_{i j} \\
\vdots & \ldots & \vdots \\
b_{i j} & \ldots & 0
\end{array}\right)
$$

We get $a^{r}=\left(A_{j}^{i}\right)_{1 \leq i, j \leq m(r+1)}$ and $b^{r}=\left(B_{i j}\right)_{1 \leq i, j \leq m(r+1)}$. For $q, d=0,1, \ldots r$, we have:

$$
\begin{aligned}
& \forall(i, j) \in\{q m+1, \ldots, m(q+1)\} \times\{d m+1, \ldots, m(d+1)\}, \\
&\left\{\begin{array}{l}
A_{j}^{i}=\left(a_{j-m d}^{i-m q}\right)^{(q-d)} \\
B_{i j}=\left(b_{i-m q, j-m d}\right)^{(r-q-d)}
\end{array}\right.
\end{aligned}
$$

We adopt the following notation:

$$
\frac{\partial}{\partial x^{p}}=\frac{\partial}{\partial x_{\alpha}^{p-m \alpha}}=\left(\frac{\partial}{\partial x^{p-m \alpha}}\right)^{(\alpha)} \quad(\alpha m+1 \leq p \leq \alpha(m+1)) .
$$

The Courant tensor $T_{i j k}$ of the almost Dirac structure is given by:

$$
T_{i j k}=\sum_{\text {cyclic }, i, j, k} A_{i}^{p} \frac{\partial B_{j s}}{\partial x^{p}} A_{k}^{s}+A_{i}^{p} \frac{\partial A_{j}^{s}}{\partial x^{p}} B_{k s}, \quad \text { we wish to verify that } \quad T_{i j k}=0
$$

We take $h m+1 \leq i \leq m(h+1), \ell m+1 \leq j \leq m(\ell+1)$ and $t m+1 \leq k \leq m(t+1)$ for $h, \ell, t=0,1, \ldots, r$. We have:

$$
\begin{aligned}
T_{i j k}= & \sum_{q=0}^{r} \sum_{d=0}^{r} \sum_{p=q m+1}^{q(m+1)} \sum_{s=d m+1}^{d(m+1)}\left(A_{i}^{p} \frac{\partial B_{j s}}{\partial x^{p}} A_{k}^{s}+A_{i}^{p} \frac{\partial A_{j}^{s}}{\partial x^{p}} B_{k s}\right) \\
= & \left(a_{i-m h}^{p-m q}\right)^{(q-h)} \frac{\partial\left(b_{j-m \ell, s-m d}\right)^{(r-\ell-d)}}{\partial x_{q}^{p-m q}}\left(a_{k-m t}^{s-m d}\right)^{(d-t)} \\
& +\left(a_{i-m h}^{p-m q}\right)^{(q-h)} \frac{\partial\left(a_{j-m \ell}^{s-m d}\right)^{(d-\ell)}}{\partial x_{q}^{p-m q}}\left(b_{k-m t, s-m d}\right)^{(r-d-t)}
\end{aligned}
$$

$$
\begin{aligned}
= & \left(a_{i-m h}^{p-m q}\right)^{(q-h)}\left(\frac{\partial b_{j-m \ell, s-m d}}{\partial x^{p-m q}}\right)^{(r-\ell-d-q)}\left(a_{k-m t}^{s-m d}\right)^{(d-t)} \\
& +\left(a_{i-m h}^{p-m q}\right)^{(q-h)}\left(\frac{\partial a_{j-m \ell}^{s-m d}}{\partial x^{p-m q}}\right)^{(d-\ell-q)}\left(b_{k-m t, s-m d}\right)^{(r-d-t)} \\
= & \left(a_{i-m h}^{p-m d} \frac{\partial b_{j-m \ell, s-m d}}{\partial x^{p-m q}} a_{k-m t}^{s-m d}\right)^{(r-\ell-h-t)}+\left(a_{i-m h}^{p-m q} \frac{\partial a_{j-m \ell}^{s-m d}}{\partial x^{p-m q}} b_{k-m t, s-m d}\right)^{(r-\ell-h-t)} \\
= & \left(a_{i-m h}^{p-m q} \frac{\partial b_{j-m \ell, s-m d}}{\partial x^{p-m q}} a_{k-m t}^{s-m d}+a_{i-m h}^{p-m q} \frac{\partial a_{j-m \ell}^{s-m d}}{\partial x^{p-m q}} b_{k-m t, s-m d}\right)^{(r-\ell-h-t)}
\end{aligned}
$$

the calculation above shows that $T_{L}=0$ if and only if $T_{L^{r}}=0$.
Remark 2. This construction generalizes the tangent lifts of higher order of Poisson and pre-symplectic structure to tangent bundle of higher order.

References

[1] Cantrijn, F., Crampin, M., Sarlet, W., Saunders, D., The canonical isomorphism between $T^{k} T^{*}$ and $T^{*} T^{k}$, C. R. Acad. Sci., Paris, Sér. II 309 (1989), 1509-1514.
[2] Courant, T., Tangent Dirac Structures, J. Phys. A: Math. Gen. 23 (22) (1990), 5153-5168.
[3] Courant, T., Tangent Lie Algebroids, J. Phys. A: Math. Gen. 27 (13) (1994), 4527-4536.
[4] Gancarzewicz, J., Mikulski, W., Pogoda, Z., Lifts of some tensor fields and connections to product preserving functors, Nagoya Math. J. 135 (1994), 1-41.
[5] Grabowski, J., Urbanski, P., Tangent lifts of Poisson and related structures, J. Phys. A: Math. Gen. 28 (23) (1995), 6743-6777.
[6] Kolář, I., Michor, P., Slovák, J., Natural Operations in Differential Geometry, Springer-Verlag, 1993.
[7] Morimoto, A., Lifting of some type of tensors fields and connections to tangent bundles of p^{r}-velocities, Nagoya Math. J. 40 (1970), 13-31.
[8] Ntyam, A., Wouafo Kamga, J., New versions of curvatures and torsion formulas of complete lifting of a linear connection to Weil bundles, Ann. Pol. Math. 82 (3) (2003), 233-240.

Department of Mathematics, The University of Yaoundé 1 , P.O BOX, 812, Yaoundé, Cameroon

E-mail: wambapm@yahoo.fr

Department of Mathematics, ENS Yaoundé,
P.O BOX, 47 Yaoundé, Cameroon

E-mail: antyam@uy1-uninet.cm

Department of Mathematics, The University of Yaoundé 1, P.O BOX, 812, Yaoundé Cameroon

E-mail: wouafoka@yahoo.fr

[^0]: 2010 Mathematics Subject Classification: primary 53C15; secondary 53C75, 53D05.
 Key words and phrases: Dirac structure, almost Dirac structure, tangent functor of higher order, natural transformations.

 Received August 24, 2009, revised August 2010. Editor I. Kolář.

