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Abstract. In this paper we obtain a strong invariance principle for negatively associ-
ated random fields, under the assumptions that the field has a finite (2 + δ)th moment
and the covariance coefficient u(n) exponentially decreases to 0. The main tools are the
Berkes-Morrow multi-parameter blocking technique and the Csörgő-Révész quantile trans-
form method.
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1. Introduction and the result

A finite family of random variables {Xi ; 1 6 i 6 n} is said to be negatively

associated (NA, for short) if for every pair of disjoint subsets A and B of {1, 2, . . . , n},

(1.1) Cov(f(Xi ; i ∈ A), g(Xj ; j ∈ B)) 6 0

whenever f and g are coordinate-wise nondecreasing and the covariance exists. An

infinite family is negatively associated if every finite subfamily is negatively associ-

ated. The concept of the negative association was introduced by Alam and Saxena

(1981) and Joag-Dev and Proschan (1983). As pointed out and proved by Joag-Dev

and Proschan (1983), a number of well-known multivariate distributions possess the

NA property. NA has found important and wide applications in multivariate statis-

tical analysis and reliability theory. In the past two decades, a lot of effort has been

dedicated to prove limit theorems for random fields {Xn ; n ∈ Z
d
+} of NA random
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variables. In the case d = 1, we refer to Joag-Dev and Proschan (1983) for funda-

mental properties, Newman (1984) for the central limit theorem, Su et al. (1997)

for the moment inequality and functional central limit theorem and Shao and Su

(1999) for the law of the iterated logarithm, and we refer to Roussas (1994) for the

central limit theorem, Zhang and Wen (2001) for the moment inequality and weak

convergence.

Let d > 2 be a positive integer, let Zd and Z
d
+ denote the d-dimensional lattices

of integers and positive integers, respectively. The notation m 6 n, where m =

(m1,m2, . . . ,md) ∈ Z
d
+ and n = (n1, n2, . . . , nd) ∈ Z

d
+, means that mk 6 nk for

k = 1, . . . , d. We also use |n| for
d
∏

k=1

nk, and ‖n‖ for max(|n1|, |n2|, . . . , |nd|). n → ∞

is to be interpreted as nk → ∞ for k = 1, . . . , d and n− m = (n1−m1, . . . , nd−md).

For any finite subset V ⊆ Z
d
+ we let |V | be the cardinality of V , S(V ) =

∑

j∈V

Xj, and

σ2(V ) = Var(S(V )). Finally, for any τ ∈ (0, 1) put

(1.2) Gτ =

d
⋂

j=1

{

n ∈ Z
d
+ ; nj >

∏

16l6d : l 6=j

nτl

}

.

Our main goal is to prove the following theorem:

Theorem 1.1. Let {Xn ; n ∈ Z
d
+} (d > 2) be a NA field of random variables

with EXn = 0. Denote Sn =
∑

k6n

Xk, σ
2
n = Var(Sn) for n ∈ Z

d
+. Assume that

(C1) {Xn ; n ∈ Z
d
+} is also a weakly stationary field, i.e., there exists a function

r : Z
d
+ → R, such that

Cov(Xi, Xj) = r(i − j) = r(j − i) ∀ i, j ∈ Z
d
+,

(C2) u(n) :=
∑

i∈Zd : ‖i‖>n

{−r(i)} = O(e−λn
ε

) for some λ, ε > 0,

(C3) sup
n∈Zd

+

E|Xn|
2+δ <∞ for some δ > 0,

(C4) σ2 :=
∑

i∈Zd

r(i) > 0.

Then without changing its distribution we can redefine the random field {Xn ;

n ∈ Z
d
+} on a richer probability space together with a d-parameter Wiener process

{Wt ; t ∈ [0,∞)d} with variance σ2 such that

(1.3) SN −WN = O(|N|1/2−ε) a.s.

for N ∈ Gτ . Here ε is a positive constant depending on the field {Xn ; n ∈ Z
d
+}.

Remark 1.1. The τ in Theorem 1.1 must be fixed. The statement is true for

each fixed τ ∈ (0, 1), but the constructed Wiener process and the constant in (1.3)

strongly depend on it.
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Remark 1.2.

i) A sequence {Xi ; 1 6 i 6 n} is called associated if for every pair of subsets A

and B of {1, 2, . . . , n},

(1.4) Cov(f(Xi ; i ∈ A), g(Xj ; j ∈ B)) > 0

whenever f and g are coordinatewise nondecreasing and the covariance exists. For

weakly stationary associated fields Balan (2005) obtained a strong invariance prin-

ciple under a finite (2 + δ)th moment and a certain restriction on the covariance

function, i.e.,
∑

i∈Zd : ‖i‖>n

r(i) = O(e−λn) for some λ > 0. It is easy to see that the

decay rate of the covariance coefficient u(n) in Theorem 1.1 is slightly weaker than

the above covariance coefficient.

ii) The restriction “N ∈ Gτ” is essential here and a similar fact occurs for mixing

random fields (see Berkes and Morrow 1981) and associated random fields (see Balan

2005, Bulinski and Shashkin 2005, Bulinski and Shashkin 2006).

The non-functional version of LIL obtained in Wichura (1973) for any multi-

parameter process with independent increments (in particular for the Wiener process)

allows us to conclude that

(1.5) lim sup
|N|→∞,N∈Gτ

(2|N| log log |N|)−1/2SN = σ a.s.

The plan of the paper is as follows. In Section 2, we will introduce the main

tools. In Section 3, we will give some useful lemmas which are needed for the proof

of Theorem 1.1. The proof of Theorem 1.1 will be given in Section 4. From now

on, without loss of generality, we assume that 0 < δ 6 1 and C stands for a generic

positive constant, independent of n, it may take different values in each appearance.

2. Blocking technique and quantile transform method

In this section we will introduce the multi-parameter blocking technique of Berkes

and Morrow (1981) and the quantile transform method of Csörgő and Révész (1975)

which are the main tools that are needed for the proof of Theorem 1.1.

To use the blocking technique, for each k = (k1, . . . , kd) ∈ Z
d
+ put

kα = (kα1 , . . . , k
α
d ), Nk = (nk1 , . . . , nkd

) and Bk = {n ∈ Z
d
+ ; Nk−1 < n 6 Nk},
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where nl =
l
∑

i=1

(iα + iβ) ∼ (α + 1)−1l1+α for l ∈ Z+ and some suitable chosen real

numbers α > β > 1. Note that for k ∈ Z
d
+

|Nk| ∼ (1 + α)−d|k|1+α, |Bk| =

d
∏

j=1

(kαj + kβj ) 6 2d|k|α.

Now we define blocks Hk and Ik of consecutive positive integers, leaving no gaps

between the blocks, by

Hk = {n ∈ Bk ; Nk−1 < n 6 Nk−1 + kα}, Ik = Bk \Hk.

Note that

|Hk| = |k|α and |k|β 6 |Ik| 6 (2d − 1)|k|α.

Put

uk =
∑

i∈Hk

Xi, λ2
k = Eu2

k,

vk =
∑

i∈Ik

Xi, τ2
k = Ev2

k, k ∈ Z
d
+,

where uk and vk are called the long blocks and the short blocks, respectively.

By (C4) and the NA property Cov(X,Y ) 6 0 we get for any finite subset V ⊆ Z
d
+

(2.1)
σ2(V )

|V |
=

1

|V |

∑

j∈V

Cov(Xj, S(V )) > σ2 > 0

and thus

(2.2) C|k|α 6 λ2
k 6 C|k|α, C|k|β 6 τ2

k 6 C|k|α.

Let τ ∈ (0, 1) and put ̺ = τ/8. Define further

L = {i ∈ Z
d
+ ; Bi ⊆ G̺} and H =

⋃

i∈L

Bi.

Also, for each N ∈ H and s = 1, . . . , d, define

Ns = (Ns
1 , . . . , N

s
d)

by Ns
s′ = Ns′ , s

′ 6= s and Ns
s = min

n∈H ; ns′=Ns′ ,s
′ 6=s

ns. Let

Rk = (Mk, Nk] ⊆ H,
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where Mk = ((N1
k)1, . . . , (N

d
k)d). We note that

Lk = {i ∈ Z
d
+ ; Bi ⊆ Rk} ⊆ L ∩ {i 6 k}.

To use the quantile-transform method, let {ωk ; k ∈ Z
d
+} be a field of independent

N(0, τ2
k)-distributed random variables which is also independent of {uk ; k ∈ Z

d
+}.

Put

(2.3) ξk = (uk + ωk)/
√

λ2
k + τ2

k , k ∈ Z
d
+.

Let Fk denote the distribution function of ξk. Note that Fk is continuous since the

smooth random variable ωk is used.

Define

(2.4) ηk = Φ−1(Fk(ξk)), k ∈ Z
d
+,

where Φ−1 is the inverse of the standard Gaussian distribution function Φ. It is

easy to see that ηk is a standard Gaussian random variable (see Yu 1996). Using

the fact that {ξk ; k ∈ Z
d
+} constructed from (2.3) is NA by applying (P6) and (P7)

of Joag-Dev and Proschan (1983) and the fact that Φ−1(Fk(·)) is a nondecreasing

function, we conclude that {ηk ; k ∈ Z
d
+} is a new NA random field. Thus, by

the quantile transform method, we have constructed a new NA random field with

Gaussian marginals.

3. Useful lemmas

For k satisfying Nk < N 6 Nk+1 we can write

SN = (SN − SNk
) + S(Rk) + S((0, Nk] \Rk),(3.1)

WN = (WN −WNk
) +W (Rk) +W ((0, Nk] \Rk),(3.2)

where W is a d-parameter Wiener process. Further, we have

W (Rk) =
∑

i∈Lk

W (Bi),(3.3)

S(Rk) =
∑

i∈Lk

√

λ2
i + τ2

i (ξi − ηi) +
∑

i∈Lk

√

|Bi|

(

√

λ2
i + τ2

i

|Bi|
− σ

)

ηi(3.4)

+
∑

i∈Lk

σ
√

|Bi|ηi −
∑

i∈Lk

ωi +
∑

i∈Lk

νi.
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In this section we will give some lemmas to show that the sums in the above

decomposition, except
∑

i∈Lk

σ
√

|Bi|ηi and W (Rk), can be made sufficiently small.

We first need an estimate for the difference of the characteristic function of Sn/σn

and that of the standard Gaussian distribution N(0, 1). This is essential for us to

use the quantile transform method successfully.

Proposition 3.1. Suppose that (C1), (C3), (C4) and

(C2′) u(n) = O(n−2dµ(1+δ)(2+δ)/δ2 ) for some µ > 1

hold. We have

|E exp (itSn/σn) − e−t
2/2|

6 C
[

(|n|−
µ+µδ+1−δ
2(1+µ)(1+δ) logd−1 |n|t3 + |n|−

µδ
2(1+µ) log(d−1)(1+δ)/2 |n|t2+δ)e−t

2/4

+ |n|−
2µ+2µδ+2−δ
2(1+µ)(1+δ) log

d−1
2 |n|t+ |n|−

3µ−1
2(1+µ) t

]

for all 0 6 t 6 C|n|
1
2−

δ
(1+µ)(1+δ) log1−d |n|.

The proof of this proposition can be found in Cai and Wang (2009).

Lemma 3.1. Under the assumptions of Proposition 3.1, if 2(1 + µ)/µ(2 + δ) <

α/β < 2(1 + µ)(1 + δ)/(1 + µ+ µδ + 3δ) and µ > (3 − δ)/(1 + δ), then

sup
x

|Fk(x) − Φ(x)| 6 C|k|−
δβ
2+δ and sup

x
|fk(x) − ϕ(x)| 6 C,

where fk(x) is the density function of ξk and ϕ(x) is the density function of Φ(x).

P r o o f. By the smoothing lemma of Berry (see Feller 1971) and the indepen-

dence between {uk} and {ωk}, for any T > 0 we have

sup
x

|Fk(x) − Φ(x)| 6
1

π

∫ T

−T

∣

∣

∣

E exp(itξk) − exp(−t2/2)

t

∣

∣

∣
dt+

24

πT

6 C

∫ T

−T

∣

∣

∣

E exp(ituk/λk) − exp(−t2/2)

t

∣

∣

∣
exp

(

−
τ2
kt

2

2λ2
k

)

dt+
C

T
.

Then replacing Sn/σn by uk/λk in Proposition 3.1, for |n| = |k|α and T =

C|n|1/2−δ/(1+µ)(1+δ) log1−d |n| we have

sup
x

|Fk(x) − Φ(x)| 6 C|k|−µδα/2(1+µ) log(1+δ)(d−1)/2 |k| 6 C|k|−δβ/(2+δ).
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For the second inequality we use a technique similar to that used to prove relationship

(3.3) of Yu (1996). For any T > 0,

sup
x

|fk(x) − ϕ(x)|

6
C

2π

∫ T

−T

|E exp(itξk) − exp(−t2/2)| dt+
C(λ2

k + τ2
k)

Tτ2
k

exp
(

−
T 2τ2

k

2(λ2
k + τ2

k)

)

.

Similarly, by Proposition 3.1 and (2.2) the conclusion follows by choosing T = |k|α−β

(such a choice is possible since α/β < 2(1 + µ)(1 + δ)/(1 + µ+ µδ + 3δ) and µ >

(3 − δ)/(1 + δ)).

The next result follows exactly as Theorem 2.1 of Yu (1996), using Lemma 3.1.

Lemma 3.2. Under the assumptions of Lemma 3.1, for any 0 < θ < 1/2 we have

−Eηiηj 6 C[(|i||j|)−α/2(−Euiuj)]
θ/(1+θ), ∀ i 6= j.

Lemma 3.3. Under the assumptions of Lemma 3.1, we have

|ηk − ξk| 6 C|k|−(δβ/(2+δ)−K2/2)

provided that |ξk| 6 K(log |k|)1/2 and 0 < K < (2δβ/(2 + δ))1/2.

P r o o f. By Lemma 3.1, the proof is basically the same as that of Lemma 2.5.1

of Csörgő and Révész (1981).

Using (2.2), Lemma 3.1, Lemma 3.3 and Lemma A.1 of Zhang and Wen (2001),

and employing the same techniques which were used in the proofs of Lemma 3.10 of

Yu (1996) and Lemma 3.6 of Balan (2005), we get the following result.

Lemma 3.4. Under the assumptions of Lemma 3.1 and β > (1 + 2/δ)(3 + 4/δ),

there exist ε0 = 2βδ2/(2 + δ)(4 + 3δ) and ε1 > 0 such that for every k ∈ Z
d
+

E(λ2
k + τ2

k)(ξk − ηk)2 6 C|k|α−ε0

and
∑

i∈Lk

∣

∣

∣

√

λ2
i + τ2

i (ξi − ηi)
∣

∣

∣
6 C|Nk|

1/2−ε1 a.s.
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Lemma 3.5. If (C1) and

(C2′′) u(n) = O(n−τ1), for some τ1 > 1

hold, then

(3.5) 0 6
σ2(V )

|V |
− σ2 6 C|V |−1/d.

P r o o f. The left inequality of (3.5) follows from (2.1). Let V = (m,n] be a

square, i.e., ns −ms = k for s = 1, . . . , d. Note that |V | = kd. By stationarity and

the NA property we have Cov(X,Y ) 6 0,

σ2(V ) = |V |r(0) +
∑

‖i‖6k−1,i6=0

d
∏

s=1

(k − |is|)r(i)

6 |V |(r(0) +
∑

‖i‖6k−1,i6=0

r(i)) − Ckd−1
∑

‖i‖6k−1,i6=0

‖i‖r(i).

Thus, by (C2′′) we have

σ2(V )

|V |
− σ2

6
∑

‖i‖>k

{−r(i)} + Ck−1
∑

‖i‖6k−1,i6=0

‖i‖{−r(i)}

6 u(k) + Ck−1
∞
∑

j=1

u(j)

6 Ck−1 = C|V |−1/d.(3.6)

Let V = (m,n] be not a square. It is well known that each rectangle V can be

written as a finite union of disjoint squares: V =
N
⋃

j=1

Vj . By the NA property, we

have

σ2(V ) 6

N
∑

j=1

σ2(Vj).

Thus

σ2(V )

|V |
− σ2 6

1

|V |

N
∑

j=1

|Vj |
(σ2(Vj)

|Vj |
− σ2

)

6
C

|V |

N
∑

j=1

|Vj |
1−1/d = C|V |−1/d.

�

Using Lemma 3.5 and employing the same method that was used in the proof of

Lemma 3.8 of Balan (2005), we get the following result.
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Lemma 3.6. Suppose that (C1) and (C2′′) hold and β > 3d. Then for every

k ∈ Z
d
+,

∑

i∈Lk

√

|Bi|

(

√

λ2
i + τ2

i

|Bi|
− σ

)

|ηi| 6 C|Nk|
1/2−ε2 a.s.,

where ε2 = 1
2 (1 + α)−1.

Using the condition “i ∈ G̺”, and employing the same method that was used in

the proof of Lemma 3.9 of Balan (2005), we get

Lemma 3.7. If α− β > 2 + 4/̺, then for every k ∈ Z
d
+ we have

∑

i∈Lk

|νi| 6 C|Nk|
1/2−ε2 a.s. and

∑

i∈Lk

|ωi| 6 C|Nk|
1/2−ε2 a.s.

Lemma 3.8. If (C2) holds, then

−Euiuj 6 Ce−λM
εβ

i,j |j|α,

where Mi,j = max
s : is 6=js

(Ms(i, j) − 1) and Ms(i, j) = max(is, js), s = 1, . . . , d.

P r o o f. We follow the lines of the proof of Lemma 4.2 of Balan (2005). Let D =

min
k∈Hj

d(k, Hi) be the distance between Hi and Hj, where d(k, Hi) = min
k′∈Hi

‖k − k′‖.

Then by (C2)

−Euiuj =
∑

k∈Hj

{

−E

(

Xk ·
∑

k′∈Hi

Xk

)}

6
∑

k∈Hj

u(d(k, Hi)) 6 Ce−λD
ε

|j|α

and D = max
s=1,...,d

min
k∈Hj,k′∈Hi

|ks − k′s| > Mβ
i,j. �

Lemma 3.9. Suppose that the conditions of Lemma 3.1 hold and put

S(m,n) =
∑

j6n

Xm+j, M(m,n) = max
j6n

|S(m, j)|

for m,n ∈ Z
d
+. Then we have

P (M(m,n) > x|n|1/2) 6 Cx−(2+δ), x > 0.

Further, there exists γ > 0 such that

P (M(m,n) > |n|1/2 logd+1 |n|) 6 C|n|−γ .
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P r o o f. Using the Markov inequality and Lemma 3.4 of Zhang (2000) we get

P (M(m,n) > x|n|1/2) 6 x−(2+δ)|n|−(2+δ)/2EM2+δ(m,n)

6 Cx−(2+δ).

The second inequality follows exactly as the second inequality of Lemma 7 of Berkes

and Morrow (1981), using the moment inequality given by Lemma A.1 of Zhang and

Wen (2001) and the rate of convergence in the CLT given by Proposition 3.1 and

Berry’s lemma. �

Define

Ds(N) = max
n6Ns

|Sn|, D′
s(N) = max

n6Ns
|Wn|

for each s = 1, . . . , d and N ∈ H . We have

S((0, Nk] \Rk) 6

d
∑

s=1

2d−sDs(Nk), W ((0, Nk] \Rk) 6

d
∑

s=1

2d−sD′
s(Nk).

On the other hand, for any nonempty subset J of {1, 2, . . . , d} and any k ∈ Z
d
+,

define

(3.7) MJ
k = max

nks<Ns6nks+1,s∈J

∣

∣

∣

∣

∑

16vs6nks ,s∈J
c;nks<vs6Ns,s∈J

Xv

∣

∣

∣

∣

.

Define by M ′
k
J
the analogous quantity for the Wiener process, i.e., the quantity we

get if we replace the sum in (3.7) by the increment of W over the given rectangle.

Then we have

max
Nk<N6Nk+1

|SN − SNk
| 6

∑

J

MJ
k , max

Nk<N6Nk+1

|WN −WNk
| 6

∑

J

M ′
k
J
.

The next two lemmas follow exactly as Lemma 6 and Lemma 9 of Berkes and

Morrow (1981), using Lemma 3.9.

Lemma 3.10. Under the assumptions of Lemma 3.1, if α > 16
3 τ

−1 − 1, then for

every Nk ∈ Gτ and 0 < ε3 < τ/32, we have

max
s=1,...,d

max(Ds(Nk), D′
s(Nk)) 6 C|Nk|

1/2−ε3 a.s.
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Lemma 3.11. Under the assumptions of Lemma 3.1, if α > 2/γ (γ is the constant

given by Lemma 3.9), then for every Nk ∈ G̺ and 0 < ε4 < ̺/(8α) we have

max
J

max(MJ
k ,M

′
k
J
) 6 C|Nk|

1/2−ε4 a.s.

Lemma 3.12 (Balan 2005). There exists a bijection ψ : Z+ → L such that

l < m⇒ ∃s∗ = s∗(l,m) such that ψ(l)s∗ 6 ψ(m)s∗(3.8)

∃m0 ∈ Z+ such that m 6 C|ψ(m)|γ0 ∀m > m0(3.9)

for any γ0 > (1 + 1/̺)(1 − 1/d).

4. Proof of Theorem 1.1

By virtue of (3.1) ∼ (3.4), Lemma 3.4, Lemma 3.6 ∼ 3.7 and Lemma 3.10 ∼ 3.11,

in order to prove Theorem 1.1 it suffices to show that for every k ∈ Z
d
+

(4.1)
∑

i∈Lk

σ
√

|Bi||ηi −
W (Bi)

σ
√

|Bi|
| 6 C|Nk|

1/2−ε2 a.s.

We follow the lines of the proof of Theorem 4.4 in Balan (2005). Let ψ : Z+ → L be

the bijection given by Lemma 3.12. Define

Ym = ηψ(m), for m ∈ Z+.

Observing that Y1, . . . , Ym are NA random variables, we have by Lemma 2.1 of Zhang

(2001)

∣

∣

∣

∣

E exp

(

i

m
∑

j=1

tjYj

)

− E exp

(

i

m−1
∑

j=1

tjYj

)

E exp(itmYm)

∣

∣

∣

∣

(4.2)

6

∣

∣

∣

∣

Cov

(

cos
m−1
∑

j=1

tjYj , cos(tmYm)

)∣

∣

∣

∣

+

∣

∣

∣

∣

Cov

(

cos
m−1
∑

j=1

tjYj , sin(tmYm)

)∣

∣

∣

∣

+

∣

∣

∣

∣

Cov

(

sin

m−1
∑

j=1

tjYj , cos(tmYm)

)
∣

∣

∣

∣

+

∣

∣

∣

∣

Cov

(

sin

m−1
∑

j=1

tjYj , sin(tmYm)

)
∣

∣

∣

∣

6 4

m−1
∑

j=1

|tjtm|{−EYjYm}

for all t1, . . . , tm ∈ R with
m
∑

j=1

t2j 6 U2
m, where Um > 1010.
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By Lemma 3.2 and Lemma 3.8, for 0 < θ < 1/2 and suitable constants α, β

satisfying the Lemmas in Section 3 we have

−EYjYm 6 C(|ψ(j)||ψ(m)|)−
αθ

2+2θ exp
(

−
λθ

1 + θ
Mβε
ψ(j),ψ(m)

)

|ψ(m)|
αθ
1+θ(4.3)

6 C|ψ(j)|−
αθ

2+2θ |ψ(m)|
αθ

2+2θ exp
(

−
λθ

1 + θ
|ψ(m)|βε̺/2

)

,

where in the second inequality above we used (3.8) to obtain an s∗ for which

Ms∗(ψ(j), ψ(m)) = ψ(m)s∗ ; since ψ(m) ∈ L, we have Mψ(j),ψ(m) > ψ(m)s∗ − 1 >

C|ψ(m)|̺/2.

Thus, by (4.2) and (4.3), by the Cauchy inequality and (3.9) we get

∣

∣

∣

∣

E exp

(

i

m
∑

j=1

tjYj

)

− E exp

(

i

m−1
∑

j=1

tjYj

)

E exp(itmYm)

∣

∣

∣

∣

(4.4)

6 C exp
(

−
λθ

1 + θ
|ψ(m)|βε̺/2

)

m−1
∑

j=1

|tjtm||ψ(j)|−
αθ

2+2θ |ψ(m)|
αθ

2+2θ

6 C exp
(

−
λθ

1 + θ
|ψ(m)|βε̺/2

)

[m−1
∑

j=1

t2j |ψ(j)|−
αθ
1+θ + (m− 1)t2m|ψ(m)|

αθ
1+θ

]

6 C exp
(

−
λ∗θ

1 + θ
|ψ(m)|βε̺/2

)

U2
m := ̺m

for m large enough and 0 < λ∗ < λ.

Hence by Theorem 5 of Berkes and Philipp (1979), without changing its distribu-

tion we can redefine the sequence {Ym ; m ∈ Z+} on a rich enough probability space

together with a sequence {Zm ; m ∈ Z+} of independent N(0, 1)-distributed random

variables such that

P (|Ym − Zm| > am) 6 am, ∀m ∈ Z+,

where am 6 C[U
−1/4
m logUm + exp(−3U

1/2
m /16)m1/2U

1/4
m + ̺

1/2
m U

m+1/4
m ]. Then we

select Um = mq with q > 8. Clearly

U−1/4
m logUm 6 Cm−2,

and

exp(−3U1/2
m /16)m1/2U1/4

m 6 exp(−U1/2
m /8) 6 Cm2

for m large enough. Let β > 4γ0/̺ε, then by (3.9) we have

̺1/2
m Um+1/4

m = exp
(

−
λ∗θ

2 + 2θ
|ψ(m)|βε̺/2

)

mq(m+5/4)
6 Cm−2
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since [2 + q(m+ 5/4)] logm 6 Cm1+ε 6 C|ψ(m)|(1+ε)γ0 6 C|ψ(m)|βε̺/2 for m large

enough and any small 0 < ε < 1. Thus

(4.5) am 6 Cm−2 for m large enough.

Then, by the Borel-Cantelli lemma, we have

(4.6) |Ym − Zm| 6 am a.s.

Since {Zm ; m ∈ Z+} is an independent Gaussian sequence, we assume without loss

of generality that there exists a Wiener process with variance σ2 satisfying

Zm = W (Bψ(m))/(σ
√

|Bψ(m)|), ∀m ∈ Z+.

Hence

(4.7)
∣

∣

∣
ηi −

W (Bi)

σ
√

|Bi|

∣

∣

∣
6 Caψ−1(i) a.s.

for ∀ i ∈ L. because
∑

l∈Z+

al <∞ and |Bi| 6 |Bk| 6 C|k|α for ∀ i ∈ Lk. Thus we have

∑

i∈Lk

σ
√

|Bi|
∣

∣

∣
ηi −

W (Bi)

σ
√

|Bi|

∣

∣

∣
6 C|k|α/2

∑

i∈Lk

aψ−1(i)

6 C|k|α/2
∑

l∈Z+

al 6 C|k|α/2 6 C|Nk|
1/2−ε2 .
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