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Abstract. The nonhomogeneous backward Cauchy problem

ut +Au(t) = f(t), u(T ) = ϕ,

where A is a positive self-adjoint unbounded operator which has continuous spectrum and
f is a given function being given is regularized by the well-posed problem. New error
estimates of the regularized solution are obtained. This work extends earlier results by
N. Boussetila and by M. Denche and S. Djezzar.
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1. Introduction

Let H be a Hilbert space. For a positive number T we shall consider the problem

of finding the function u : [0, T ] → H from the system

ut + Au = f(t), 0 < t < T,(1)

u(T ) = ϕ,(2)

for a prescribed final value ϕ in H and a given f : [0, T ] → H . The operator A is a

positive self-adjoint operator such that 0 ∈ ̺(A). This problem is well known to be

severely ill-posed and regularization methods for it are required.

The case f = 0 andA a self-adjoint operator having the discrete spectrum onH has

been considered by many authors using different approaches. Such authors as Lattès

and Lions [13], Miller [16], Payne [17] have approximated (1)–(2) by perturbing the
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operator A. This method is called the quasi-reversibility method (QR). The main

idea of the method is adding a “corrector” to the main equation. In fact, they

considered the problem

ut + Au − εA∗Au = 0, t ∈ [0, T ], u(T ) = ϕ.

The stability magnitude of the method is of order ecε−1

. In [10], the problem is

approximated

(3) ut + Au + εAut = 0, t ∈ [0, T ], u(T ) = ϕ.

Ames and Hughes [1] gave a survey on the relation between the operator-theoretic

methods and the QR method treating the abstract Cauchy problem

du

dt
= Au, u(T ) = χ, 0 < t < T.

The authors considered the problem both in the Hilbert space and in the Banach

space. They also gave many structural stability results. Very recently, using the

QR method, Yongzhong Huang and Quan Zheng [12] considered the problem in an

abstract setting, i.e., −A is the generator of an analytic semigroup in a Banach space.

In [19], Showalter presented a different method called the quasiboundary value

(QBV) method to regularize the linear homogeneous problem which gave a stability

estimate better than the one of the methods discussed. The main idea of the method

is adding an appropriate “corrector” to the final data. Using the method, Clark-

Oppenheimer in [3], and Denche-Bessila very recently in [4], regularized the backward

problem by replacing the final condition by

u(T ) + εu(0) = ϕ

and

u(T ) − εu′(0) = ϕ,

respectively.

Very recently, an improved version for the homogeneous ill-posed problem has

been also given in [11] by Dinh Nho Hao and his group.

To our knowledge, the case when A has discrete spectrum has been treated in

many recent papers, such as [11], [4]. However, the literature on the homogeneous

case of the problem in the case A has continuous spectrum are quite scarce. For

some related works on this problem, we refer the reader to N. Boussetila and F.

Rebbani [2], Denche and S. Djezzar [5].
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In the present paper we shall use a new truncated method to extend the continuous

dependence results of [2], [5] to more general nonhomogeneous problems. Recently,

the truncated regularization method has been effectively applied to solve the sideways

heat equation [6], [7], a more general sideways parabolic equation [8] and backward

heat [9]. This regularization method is rather simple and convenient for dealing with

some ill-posed problems. However, as far as we know, there have not any results of

the truncated method for treating the problem (1)–(2) until now. Our article is the

first work in the nonhomogeneous backward Cauchy problem when the operator A

has continuous spectrum. Moreover, we establish some new error estimates including

the order of Hölder type. Especially, the convergence of the approximate solution at

t = 0 is also proved.

This paper is organized as follows. In the next section, for easy reading, we

summarize some well-known facts concerning the semigroup of operators. Stability

estimates of the regularized solution will be presented in Section 3.

2. Semigroup of operators

In this section we present the notation and the functional setting which will be

used in this paper and prepare some material which will be used in our analysis.

We denote by {Eλ, λ > 0} the spectral resolution of the identity associated to A.

We also denote by S(t) = e−tA =
∫

∞

0 e−tλ dEλ ∈ L(H), t > 0, the C0-semigroup

generated by −A.

The first main theorem of spectral theory (Hilbert (1906), Neumann (1929)).

Let A : D(A) ⊂ H → H be a self-adjoint operator on the Hilbert space H over K.

Then there exists exactly one spectral family {Eλ} such that

Au =

∫ +∞

0

λdEλu

for all u ∈ D(A).

In this connection, u ∈ D(A) iff the integral (4) exists, i.e.,

∫ +∞

0

λ2 d‖Eλu‖2 < ∞.

Definition. Let A : D(A) ⊂ H → H be a self-adjoint operator on the Hilbert

space H over K and let f, g : R → K be piecewise continuous functions. We set

D(f(A)) =

{

u ∈ H :

∫ +∞

0

|f(λ)|2 d‖Eλu‖2 < ∞
}
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and define the linear operator f(A) : D(A) ⊂ H → H by the formula

f(A)u =

∫ +∞

0

f(λ) dEλu

for all u ∈ D(f(A)).

3. Regularization and error estimates

Now we are ready to state and prove the main results of this paper.

If the problem (1)–(2) admits a solution u then it can be represented by

(4) u(t) =

∫

∞

0

eλ(T−t) dEλϕ −
∫ T

t

∫

∞

0

eλ(s−t) dEλf(s) ds.

Since t < T , we know from (4) that the terms e−(t−T )λ and e−(t−s)λ are the cause

of unstability. So, to regularize problem (1)–(2), we hope to recover the stability of

problem (4) by filtering the high frequencies using a suitable method. The essence of

our regularization method is just to eliminate all high frequencies from the solution,

and instead consider (4) only for λ 6 Aε, where Aε is an appropriate positive con-

stant satisfying lim
ε→0

Aε = ∞. We note that Aε is a constant which will be selected

appropriately as the regularization parameter. Let ϕ and ϕε denote the exact and

the measured data at t = T , respectively, which satisfy

‖ϕ − ϕε‖ 6 ε.

Hence, the ill-posed problem (1)–(2) can be approximated by the problem

(5) uε(t) =

∫

∞

0

eλ(T−t)χ[0,Aε] dEλϕ −
∫ T

t

∫

∞

0

eλ(s−t)χ[0,Aε] dEλf(s) ds

where χ[a,b] is the characteristic function of the interval [a, b] for a < b.

Our first main theorem is

Theorem 1. The solution defined in (5) depends continuously (in C([0, T ]; H))

on ϕ, which means that, if u and v are two solutions of problem (5) corresponding

to the final value ϕ and ω, respectively, then

‖u(t) − v(t)‖ 6 e(T−t)Aε‖ϕ − ω‖.
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P r o o f. It is well known that for all t ∈ [0, T ],

(6) u(t) − v(t) =

∫ Aε

0

eλ(T−t) dEλ(ϕ − ω).

Using (6), we obtain

‖u(t) − v(t)‖2 6 e2(T−t)Aε

∫

∞

0

d‖Eλ(ϕ − ω)‖2

6 e2(T−t)Aε‖ϕ − ω‖2.

This inequality implies that the solution of the problem (5) depends continuously

on ϕ and Theorem 1 is proved. �

Theorem 2. Let u ∈ C([0, T ]; H) be a solution of (1)–(2). Assume that f has

the eigenfunction expansion f(t) =
∫

∞

0
dEλf(t) satisfying

(7)

∫ T

0

e2λs d‖Eλf(s)‖2 ds < ∞.

Then the following estimate is true

(8) ‖u(t) − uε(t)‖ 6 e−tAεN, ∀ t ∈ (0, T ],

where

N =

√

2

(

‖u(0)‖2 + T

∫ T

0

e2λs d‖Eλf(s)‖2 ds

)

,

and uε is the unique solution of problem (5).

P r o o f. The functions u(t), uε(t) have the expansion

u(t) =

∫

∞

0

eλ(T−t) dEλϕ −
∫ T

t

∫

∞

0

eλ(s−t) dEλf(s) ds,(9)

uε(t) =

∫

∞

0

eλ(T−t)χ[0,Aε] dEλϕ −
∫ T

t

∫

∞

0

eλ(s−t)χ[0,Aε] dEλf(s) ds.(10)
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Hence, we get

u(t) − uε(t) =

∫

∞

Aε

eλ(T−t) dEλϕ −
∫ T

t

∫

∞

Aε

eλ(s−t) dEλf(s) ds

=

∫

∞

Aε

e−λteλT dEλϕ −
∫ T

0

∫

∞

Aε

e−λteλs dEλf(s) ds

+

∫ t

0

∫

∞

Aε

e−λteλs dEλf(s) ds

=

∫

∞

0

e−λtχ[Aε,∞]e
λT dEλϕ −

∫ T

0

∫

∞

0

e−λtχ[Aε,∞]e
λs dEλf(s) ds

+

∫ t

0

∫

∞

0

e−λtχ[Aε,∞]e
λs dEλf(s) ds.

Then

‖u(t) − uε(t)‖2 6 2

∫

∞

0

(e−λtχ[Aε,∞])
2

(

eλT dEλϕ −
∫ T

0

eλs dEλf(s) ds

)2

+ 2

∫

∞

0

(e−λtχ[Aε,∞])
2

(
∫ t

0

eλs dEλf(s) ds

)2

.

Using

(e−λtχ[Aε,∞])
2 6 e−2tAε

and

‖u(0)‖2 =

∫

∞

0

(

eλT dEλϕ −
∫ T

0

eλs dEλf(s) ds

)2

we obtain

‖u(t) − uε(t)‖2 6 2e−2tAε

(

‖u(0)‖2 + T

∫ T

0

∫

∞

0

e2λs(dEλf(s) ds)2
)

= 2e−2tAε

(

‖u(0)‖2 + T

∫ T

0

e2λs d‖Eλf(s)‖2 ds

)

.

This completes the proof of Theorem 2. �

Remark 1. If f(t) = 0 and Aε = T−1 ln ε−1, the estimate (8) becomes

(11) ‖u(t) − uε(t)‖ 6
√

2εt/T ‖u(0)‖.

This error is also given by Clark and Oppenheimer [3], Tautenhahn [21].
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Theorem 3. Let u ∈ C([0, T ]; H) be a solution of (1)–(2). Assume that u has

the eigenfunction expansion u(t) =
∫

∞

0 dEλu(t).

a) If there exists a positive β such that

(12)

∫

∞

0

λ2β d‖Eλu(t)‖2 < ∞,

then for every t ∈ [0, T ]

(13) ‖u(t) − uε(t)‖ 6 A−β
ε

√

∫

∞

0

λ2β d‖Eλu(t)‖2.

b) If there exists a positive m such that

(14)

∫

∞

0

e2mλ d‖Eλu(t)‖2 < ∞,

then for every t ∈ [0, T ]

(15) ‖u(t) − uε(t)‖ 6 e−mAε

√

∫

∞

0

e2mλ d‖Eλu(t)‖2

where uε is the unique solution of problem (5).

P r o o f. a) Due to (9) and (10), we have

u(t) − uε(t) =

∫

∞

0

eλ(T−t)χ[Aε,∞] dEλϕ −
∫ T

t

∫

∞

0

eλ(s−t)χ[Aε,∞] dEλf(s) ds

=

∫

∞

0

λ−βeλ(T−t)λβχ[Aε,∞] dEλϕ

−
∫ T

t

∫

∞

0

λβeλ(s−t)λ−βχ[Aε,∞] dEλf(s) ds.

Then

‖u(t) − uε(t)‖2 =

∫

∞

0

(λ−βχ[Aε,∞])
2

(

eλ(T−t)λβ dEλϕ −
∫ T

t

∫

∞

0

λβeλ(s−t)f(s) ds

)2

6 A−2β
ε

∫

∞

0

λ2β d‖Eλu(t)‖2.

b) Due to (9) and (10), we also have

u(t) − uε(t) =

∫

∞

0

eλ(T−t)χ[Aε,∞] dEλϕ −
∫ T

t

∫

∞

0

eλ(s−t)χ[Aε,∞] dEλf(s) ds

=

∫

∞

0

e−mλeλ(T−t)emλχ[Aε,∞] dEλϕ

−
∫ T

t

∫

∞

0

emλeλ(s−t)e−mλχ[Aε,∞] dEλf(s) ds.
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Then

‖u(t) − uε(t)‖2 =

∫

∞

0

(e−mλχ[Aε,∞])
2

×
(

eλ(T−t)emλ dEλϕ −
∫ T

t

∫

∞

0

emλeλ(s−t)f(s) ds

)2

6 e−2mAε

∫

∞

0

e2mλ d‖Eλu(t)‖2.

�

Theorem 4. Let ϕε ∈ H be a measured data such that

‖ϕε − ϕ‖ 6 ε.

Suppose problem (1)–(2) has a unique solution u ∈ C([0, T ]; H) and let wε ∈
C([0, T ]; H) be the unique solution of problem (5) corresponding to ϕε.

a) If (12) holds then for Aε = (p/T ) ln(1/ε), (0 < p < 1) we get

‖wε(t) − u(t)‖ 6 ε(pt/T )+1−p +
(T

p

)β(

ln
(1

ε

))

−β

√

∫

∞

0

λ2β d‖Eλu(t)‖2.

b) If (14) holds then for Aε = (T + m)−1 ln(1/ε) we get

‖wε(t) − u(t)‖ 6 ε(m/(T+m))

(

ε(t/(T+m)) +

√

∫

∞

0

e2mλ d‖Eλu(t)‖2

)

.

P r o o f. Using Theorem 2, we get

‖wε(t) − uε(t)‖ 6 e(T−t)Aε‖ϕε − ϕ‖ 6 εe(T−t)Aε .

If (12) holds then

‖wε(t) − u(t)‖ 6 ‖wε(t) − uε(t)‖ + ‖uε(t) − u(t)‖

6 εe(T−t)Aε + A−β
ε

√

∫

∞

0

λ2β d‖Eλu(t)‖2

= ε(pt/T )+1−p +
(T

p

)β(

ln
(1

ε

))

−β

√

∫

∞

0

λ2β d‖Eλu(t)‖2.
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If (14) holds then

‖wε(t) − u(t)‖ 6 ‖wε(t) − uε(t)‖ + ‖uε(t) − u(t)‖

6 εe(T−t)Aε + e−mAε

√

∫

∞

0

e2mλ d‖Eλu(t)‖2

= εm/(T+m)

(

εt/(T+m) +

√

∫

∞

0

e2mλ d‖Eλu(t)‖2

)

.

�

Remark 2. 1. One superficial advantage of this method is that there is an error

estimation at the original time t = 0, which is not given in [14], [23]. We have the

following estimates at t = 0:

(16) ‖wε(0) − u(0)‖ 6 ε1−p +
(T

p

)β(

ln
(1

ε

))

−β

√

∫

∞

0

λ2β d‖Eλu(t)‖2

and

(17) ‖wε(0) − u(0)‖ 6 εm/(T+m)

(

1 +

√

∫

∞

0

e2mλ d‖Eλu(t)‖2

)

.

2. It follows from (16) that if ε → 0 then the second term on the right-hand side of

the inequality approaches zero with logarithmic speed, and the first as a power. So,

the right-hand side of (16) is logarithmic stability estimate. This logarithmic order

is also given in [2], [9], [14], [11], [21], [22].

It follows from (17) that we obtain the Hölder stability. As we know, the error of

Hölder form is the optimal error. We note again that such order is not considered

in [11].

3. Notice that the error in [5] (see Theorem 2.6, page 5) is

(18) ‖u(0)− uε(0)‖ 6 NT ekT
(

1 + ln
(T

ε

))

−1

.

Comparing (16) and (17) with (18) and the results obtained in [11], [4], [5], [23], we

realize (17) is sharp and the best known estimate. This is a generalization of many

results discussed earlier.
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