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Abstract. In this paper, using a fixed point theorem on a convex cone, we consider
the existence of positive solutions to the multipoint one-dimensional p-Laplacian boundary
value problem with impulsive effects, and obtain multiplicity results for positive solutions.
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1. Introduction

In this paper we study the multiplicity of positive solutions to the multipoint

one-dimensional p-Laplacian boundary value problem with impulsive effects

(1.1)































(ϕp(u
′(t)))′ + q(t)f(t, u(t), u′(t)) = 0, t 6= ti, 0 < t < 1,

∆u(ti) = Ii(u(ti)), i = 1, 2, . . . , n,

∆ϕp(u
′(ti)) = −Ii(u(ti), u

′(ti)), i = 1, 2, . . . , n,

u(0) =
m−2
∑

j=1

αju(ξj), ϕp(u
′(1)) =

m−2
∑

j=1

βjϕp(u
′(ηj)),

where ϕp(s) = |s|p−2s, p > 1, (ϕp)
−1 = ϕq, 1/p+1/q = 1 and∆u(ti) = u(t+i )−u(t−i ),

∆ϕp(u
′(ti)) = ϕp(u

′(t+i )) − ϕp(u
′(t−i )), u(t+i ) and u(t−i ) represent the right-hand
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limit and the left-hand limit of the function u(t) at t = ti. The sequences {ti},

{ξi} and {ηi} satisfy 0 < t1 < t2 < . . . < tn < 1, n ∈ N, 0 < ξ1 < ξ2 < . . . <

ξm−2 < 1, 0 < η1 < η2 < . . . < ηm−2 < 1, and ξj , ηj 6= ti, i = 1, 2, . . . , n, j =

1, 2, . . . ,m − 2. The constants αj , βj ∈ R
+ satisfy 0 6

m−2
∑

j=1

αj ,
m−2
∑

j=1

βj < 1, where

R
+ = [0,∞).

In this paper we assume that

(C1) f ∈ C([0, 1] × R
+ × R

+,R+),

(C2) q ∈ C[0, 1] is nonnegative and there exists an integer k > 3 such that
∫ 1−1/k

1/k
q(t) dt > 0,

(C3) Ii ∈ C(R+,R+) is a bounded function, Ii ∈ C(R+ × R
+,R+), i = 1, 2, . . . , n.

We set Gi = sup
u∈[0,+∞)

Ii(u), D1 = 1/
(

1 −
m−2
∑

j=1

αj

)

, D2 = 1/
(

1 −
m−2
∑

j=1

βj

)

, h =

D1

(

1 −
m−2
∑

j=1

αj(1 − ξj)
2
)

, b1 > 0 is a constant which is given by Theorem 4.1.

(C4) max{G1, G2, . . . , Gn} 6 (kb1(h− 1))/n.

Differential equations involving impulsive effects have been applied in many fields,

for example, in population dynamics, biological systems, industrial robotics, op-

timal control and so on. The boundary value problems for impulsive differential

equations have been studied extensively in literature (see [2]–[9], [11], [12], [14] and

the references therein). Most of those papers have studied the two-point or periodic

boundary value problems for impulsive differential equations. The literature devoted

to the multipoint one-dimensional p-Laplacian boundary value problem with impul-

sive effects is not too extensive. Recently there are papers studying some special

cases of the problem (1.1). For example, when Ii = 0 and βj = 0 (i = 1, 2, . . . , n,

j = 1, 2, . . . ,m − 2), Zhang et al. [14] have considered the special case of the prob-

lem (1.1) when the nonlinear term f does not involve the first-order derivative, and

have obtained the existence of multiple positive solutions to the following multi-

point one-dimensional p-Laplacian boundary value problem with impulsive effects,

by using the classical fixed-point index theorem for compact maps:



















−(ϕp(u
′(t)))′ = f(t, u(t)), t 6= ti, 0 < t < 1,

∆u(ti) = Ii(u(ti)), i = 1, 2, . . . , n,

u(0) =
m−2
∑

j=1

αju(ξj), u′(1) = 0.
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For the case of Ii = 0 and Ii = 0 (i = 1, 2, . . . , n), Wang et al. [13] have researched

the multipoint boundary value problem with a one-dimensional p-Laplacian







(ϕp(u
′(t)))′ + f(t, u(t)) = 0, 0 < t < 1,

ϕp(u
′(0)) =

m−2
∑

j=1

αjϕp(u
′(ξj)), u(1) =

m−2
∑

j=1

βju(ξj).

In the paper we consider the more general situation (1.1), we get over some new

difficulties such as the construction of the cone and the operator used. We prove that

under some conditions the problem (1.1) possesses multiple positive solutions. The

detailed statement and proof of our main result are given in Section 4. In Section 5

we give an example to support our main result.

2. Preliminaries

In this section we give a brief introduction to the theory of cones in Banach spaces,

and to the so called Bai-Ge’s fixed point theorem.

Definition 2.1. Let E be a Banach space over R. A nonempty closed set P ⊂ E

is called a cone provided that

(1) au+ bv ∈ P for all u, v ∈ P and a > 0, b > 0,

(2) u,−u ∈ P implies u = 0.

Every cone P ⊂ E induces an ordering in E given by x 6 y if and only if y− x ∈ P .

Definition 2.2. A map ψ is called a nonnegative continuous concave functional

on a cone P of a real Banach space E provided that ψ : P → [0,∞) is continuous

and

ψ(tx+ (1 − t)y) > tψ(x) + (1 − t)ψ(y)

for all x, y ∈ P and 0 6 t 6 1. Similarly, we say a map ϕ is a nonnegative continuous

convex functional on a cone P of a real Banach space E provided that ϕ : P → [0,∞)

is continuous and

ϕ(tx + (1 − t)y) 6 tϕ(x) + (1 − t)ϕ(y)

for all x, y ∈ P and 0 6 t 6 1.

Let r > a > 0 and L > 0 be constants, ψ is a nonnegative continuous concave

functional and ϕ and ω are nonnegative continuous convex functionals on the cone P .
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Define the following convex sets:

P (ϕ, r;ω,L) = {y ∈ P : ϕ(y) < r, ω(y) < L},

P (ϕ, r;ω,L) = {y ∈ P : ϕ(y) 6 r, ω(y) 6 L},

P (ϕ, r;ω,L;ψ, a) = {y ∈ P : ϕ(y) < r, ω(y) < L, ψ(y) > a},

P (ϕ, r;ω,L;ψ, a) = {y ∈ P : ϕ(y) 6 r, ω(y) 6 L, ψ(y) > a}.

The following assumptions as regards the nonnegative continuous convex func-

tions ϕ, ω are used:

(H1) there exists M > 0 such that ‖x‖ 6 M max{ϕ(x), ω(x)} for all x ∈ P ;

(H2) P (ϕ, r;ω,L) 6= ∅ for any r > 0 and L > 0.

To prove our result in Section 4, we need the following fixed point theorem due to

Bai and Ge in [1].

Lemma 2.1. Let P be a cone in a real Banach space E and let r2 > d > b > r1 >

0, L2 > L1 > 0. Assume that ϕ and ω are nonnegative continuous convex functions

satisfying (H1) and (H2), ψ is a nonnegative continuous concave function on P such

that ψ(y) 6 ϕ(y) for all y ∈ P (ϕ, r2;ω,L2) and T : P (ϕ, r2;ω,L2) → P (ϕ, r2;ω,L2)

is a completely continuous operator. Suppose that

(A1) {y ∈ P (ϕ, d;ω,L2;ψ, b) : ψ(y) > b} 6= ∅, ψ(Ty) > b for y ∈ P (ϕ, d;ω,L2;ψ, b),

(A2) ϕ(Ty) < r1, ω(Ty) < L1 for all y ∈ P (ϕ, r1;ω,L1),

(A3) ψ(Ty) > b for all y ∈ P (ϕ, r2;ω,L2;ψ, b) with ϕ(Ty) > d.

Then T has at least three fixed points y1, y2 and y3 ∈ P (ϕ, r2;ω,L2) with

y1 ∈ P (ϕ, r1;ω,L1),

y2 ∈ {P (ϕ, r2;ω,L2;ψ, b) : ψ(y) > b},

y3 ∈ P (ϕ, r2;ω,L2) \ (P (ϕ, r2;ω,L2;ψ, b) ∪ P (ϕ, r1;ω,L1)).

3. Some lemmas

In order to get the solutions of problem (1.1), we introduce the following notation.

Let J = [0, 1], J0 = [0, t1], J1 = (t1, t2],. . . ,Jn−1 = (tn−1, tn], Jn = (tn, 1], J ′ =

J \ {t1, t2, . . . , tn}.

Set PC(J) = {u : [0, 1] → R : u ∈ C(J ′), u(t+i ) and u(t−i ) exist, and u(t−i ) =

u(ti), 1 6 i 6 n},

PC1(J) = {u ∈ PC(J) : u ∈ C1(J ′), u′(t−i ) and u′(t+i ) exist, and u′(t−i ) =

u′(ti), 1 6 i 6 n}.

130



Obviously, PC(J) and PC1(J) are Banach spaces with the norms

‖u‖PC = max
06t61

|u(t)|, ‖u‖PC1 = max{‖u‖PC, ‖u
′‖PC},

respectively. A function u ∈ PC1(J)∩C2(J ′) is called a solution to (1.1) if it satisfies

all equations of (1.1).

Define the cone P ⊂ PC1(J) by P =
{

u ∈ PC1(J) : u(t) > 0, u is concave on Ji

(1 6 i 6 n) and u′(t) > 0, u′(t) is non-increasing on [0, 1], u(0) =
m−2
∑

j=1

αju(ξj)
}

.

Define nonnegative continuous functionals ϕ, ω and ψ by

ϕ(u) = max
06t61

|u(t)|, ω(u) = max
06t61

|u′(t)|, ψ(u) = min
1/k6t6(k−1)/k

|u(t)|, u ∈ P.

Then on the cone P , ψ is a concave functional, ϕ and ω are convex functionals

satisfying (H1) and (H2).

Lemma 3.1. If u ∈ P , then

max
06t61

|u′(t)| = u′(0), max
06t61

|u(t)| = u(1), min
1/k6t61−1/k

|u(t)| = u
(1

k

)

.

P r o o f. By the definition of the cone P , the proof is very easy, so we omit it

here. �

Lemma 3.2. If u ∈ P , k > 3, then

min
1/k6t61−1/k

|u(t)| >
1

k
max
06t61

|u(t)| −
1

k

n
∑

i=1

|∆u(ti)|.

P r o o f. Let

v(t) =















































u(t), t ∈ J0,

u(t) − |∆u(t1)|, t ∈ J1,

...

u(t) −
n−1
∑

i=1

|∆u(ti)|, t ∈ Jn−1,

u(t) −
n
∑

i=1

|∆u(ti)|, t ∈ Jn.

Note that u′(t) is non-increasing on [0,1], hence v ∈ C[0, 1] and v is concave on [0,1].

By Lemma 2.2 in [10] we have

min
1/k6t61−1/k

|v(t)| >
1

k
max
06t61

|v(t)|.

131



Moreover, u(t) is non-decreasing on [0,1], and we have

max
06t61

|v(t)| = v(1) = u(1) −
n

∑

i=1

|∆u(ti)| = max
06t61

|u(t)| −
n

∑

i=1

|∆u(ti)|,

min
1/k6t61−1/k

|v(t)| = v
(1

k

)

= u
(1

k

)

−
∑

0<ti<1/k

|∆u(ti)|

= min
1/k6t61−1/k

|u(t)| −
∑

0<ti<1/k

|∆u(ti)|.

Hence,

min
1/k6t61−1/k

|u(t)| = min
1/k6t61−1/k

|v(t)| +
∑

0<ti<1/k

|∆u(ti)|

>
1

k
max
06t61

|v(t)| >
1

k
max
06t61

|u(t)| −
1

k

n
∑

i=1

|∆u(ti)|.

�

Lemma 3.3. Assume that (C1)–(C3) hold. Then u ∈ PC1(J) ∩ C2(J ′) is a

solution to problem (1.1) if and only if u ∈ PC1(J) is a solution to the integral

equation

u(t) =

∫ t

0

ϕq

(
∫ 1

s

q(τ)f(τ, u(τ), u′(τ)) dτ +
∑

s<ti<1

Ii(u(ti), u
′(ti)) + Y

)

ds(3.1)

+D1

m−2
∑

j=1

αj

∫ ξj

0

ϕq

(
∫ 1

s

q(τ)f(τ, u(τ), u′(τ)) dτ +
∑

s<ti<1

Ii(u(ti), u
′(ti)) + Y

)

ds

+D1

m−2
∑

j=1

αj

∑

0<ti<ξj

Ii(u(ti)) +
∑

0<ti<t

Ii(u(ti)),

where

Y = D2

m−2
∑

j=1

βj

∫ 1

ηj

q(s)f(s, u(s), u′(s)) ds+D2

m−2
∑

j=1

βj

∑

ηj<ti<1

Ii(u(ti), u
′(ti)).

P r o o f. First, suppose that u ∈ PC1(J)∩C2(J ′) is a solution to problem (1.1).

Then

(ϕp(u
′(t)))′ + q(t)f(t, u(t), u′(t)) = 0, t 6= ti, i = 1, 2, . . . , n.
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So,

ϕp(u
′(t+n )) − ϕp(u

′(1)) =

∫ 1

tn

q(s)f(s, u(s), u′(s)) ds,

ϕp(u
′(t)) − ϕp(u

′(t−n )) =

∫ tn

t

q(s)f(s, u(s), u′(s)) ds, t ∈ Jn−1.

Thus,

ϕp(u
′(t)) = ϕp(u

′(1)) +

∫ 1

t

q(s)f(s, u(s), u′(s)) ds+ In(u(tn), u′(tn)), t ∈ Jn−1.

Repeating the above process, for t ∈ [0, 1] we have

(3.2) ϕp(u
′(t)) = ϕp(u

′(1)) +

∫ 1

t

q(s)f(s, u(s), u′(s)) ds+
∑

t<ti<1

Ii(u(ti), u
′(ti)),

and taking t = ηj in (3.2), we obtain

ϕp(u
′(ηj)) = ϕp(u

′(1)) +

∫ 1

ηj

q(s)f(s, u(s), u′(s)) ds+
∑

ηj<ti<1

Ii(u(ti), u
′(ti)).

So, we have

m−2
∑

j=1

βjϕp(u
′(ηj)) = ϕp(u

′(1))

m−2
∑

j=1

βj +

m−2
∑

j=1

βj

∫ 1

ηj

q(s)f(s, u(s), u′(s)) ds

+

m−2
∑

j=1

βj

∑

ηj<ti<1

Ii(u(ti), u
′(ti)).

Since ϕp(u
′(1)) =

m−2
∑

j=1

βjϕp(u
′(ηj)), we have

ϕp(u
′(1)) = D2

m−2
∑

j=1

βj

∫ 1

ηj

q(s)f(s, u(s), u′(s)) ds(3.3)

+D2

m−2
∑

j=1

βj

∑

ηj<ti<1

Ii(u(ti), u
′(ti)) := Y.

Substituting (3.3) into (3.2), we get

ϕp(u
′(t)) =

∫ 1

t

q(s)f(s, u(s), u′(s)) ds+
∑

t<ti<1

Ii(u(ti), u
′(ti)) + Y,
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which implies that

(3.4) u′(t) = ϕq

(
∫ 1

t

q(s)f(s, u(s), u′(s)) ds+
∑

t<ti<1

Ii(u(ti), u
′(ti)) + Y

)

.

On the other hand, note that

u(t−1 ) − u(0) =

∫ t1

0

u′(s) ds,

u(t) − u(t+1 ) =

∫ t

t1

u′(s)) ds, t ∈ J1,

so that we have

u(t) = u(0) +

∫ t

0

u′(s) ds+ I1(u(t1)), t ∈ J1.

Repeating the above process again for t ∈ [0, 1], we obtain

(3.5) u(t) = u(0) +

∫ t

0

u′(s) ds+
∑

0<ti<t

Ii(u(ti)).

Substituting (3.4) into (3.5), we get

u(t) = u(0) +
∑

0<ti<t

Ii(u(ti))(3.6)

+

∫ t

0

ϕq

(
∫ 1

s

q(τ)f(τ, u(τ), u′(τ)) dτ +
∑

s<ti<1

Ii(u(ti), u
′(ti)) + Y

)

ds,

and taking t = ξj in (3.6), we get

u(ξj) = u(0) +
∑

0<ti<ξj

Ii(u(ti))

+

∫ ξj

0

ϕq

(
∫ 1

s

q(τ)f(τ, u(τ), u′(τ)) dτ +
∑

s<ti<1

Ii(u(ti), u
′(ti)) + Y

)

ds.

So,

m−2
∑

j=1

αju(ξj)

= u(0)

m−2
∑

j=1

αj +

m−2
∑

j=1

αj

∑

0<ti<ξj

Ii(u(ti))

+

m−2
∑

j=1

αj

∫ ξj

0

ϕq

(
∫ 1

s

q(τ)f(τ, u(τ), u′(τ)) dτ +
∑

s<ti<1

Ii(u(ti), u
′(ti)) + Y

)

ds.
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Since u(0) =
m−2
∑

j=1

αju(ξj), we have

u(0) = D1

m−2
∑

j=1

αj

∑

0<ti<ξj

Ii(u(ti))(3.7)

+D1

m−2
∑

j=1

αj

∫ ξj

0

ϕq

(
∫ 1

s

q(τ)f(τ, u(τ), u′(τ)) dτ

+
∑

s<ti<1

Ii(u(ti), u
′(ti)) + Y

)

ds.

Substituting (3.7) into (3.6), we get (3.1), which completes the proof of sufficiency.

Conversely, if u(t) ∈ PC1(J) is a solution to (3.1), apparently

∆u(ti) = Ii(u(ti)), i = 1, 2, . . . , n.

The differentiation of (3.1) implies that for t 6= ti

u′(t) = ϕq

(
∫ 1

t

q(s)f(s, u(s), u′(s)) ds+
∑

t<ti<1

Ii(u(ti), u
′(ti)) + Y

)

,

(ϕp(u
′(t)))′ = −q(t)f(t, u(t), u′(t)).

Hence u ∈ C2(J ′), and

∆ϕp(u
′(ti)) = −Ii(u(ti), u

′(ti)), i = 1, 2, . . . , n,

u(0) =

m−2
∑

j=1

αju(ξj), ϕp(u
′(1)) =

m−2
∑

j=1

βjϕp(u
′(ηj)).

The proof is complete. �

Now, define an operator T : P −→ PC1(J) by

Tu(t) =

∫ t

0

ϕq

(
∫ 1

s

q(τ)f(τ, u(τ), u′(τ)) dτ +
∑

s<ti<1

Ii(u(ti), u
′(ti)) + Y

)

ds(3.8)

+D1

m−2
∑

j=1

αj

∫ ξj

0

ϕq

(
∫ 1

s

q(τ)f(τ, u(τ), u′(τ)) dτ

+
∑

s<ti<1

Ii(u(ti), u
′(ti)) + Y

)

ds

+D1

m−2
∑

j=1

αj

∑

0<ti<ξj

Ii(u(ti)) +
∑

0<ti<t

Ii(u(ti)).

Lemma 3.4. Assume that (C1)–(C3) hold. Then T : P → P is a completely

continuous operator.
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P r o o f. From the definition of T we deduce that for each u(t) ∈ P , Tu is

nonnegative and

(3.9) ∆(Tu)(ti) = Ii(u(ti)), i = 1, 2, . . . , n.

By the differentiation of (3.8), for t 6= ti we have

(Tu)′(t) = ϕq

(
∫ 1

t

q(s)f(s, u(s), u′(s)) ds+
∑

t<ti<1

Ii(u(ti), u
′(ti)) + Y

)

> 0,

(ϕp((Tu)
′(t)))′ = −q(t)f(t, u(t), u′(t)) 6 0,

and

∆ϕp((Tu)
′(ti)) = −Ii(u(ti), u

′(ti)), i = 1, 2, . . . , n.

So, Tu ∈ PC1(J), Tu is concave on Ji for 0 6 i 6 n and (Tu)′(t) > 0, (Tu)′(t) is

non-increasing on [0,1], (Tu)(0) =
m−2
∑

j=1

αj(Tu)(ξj). Thus T (P ) ⊂ P .

On the other hand, by the conditions (C1)–(C3), from the definition of Tu(t), it

is clear that T : P → P is continuous. Let Ω ⊂ P be bounded, i.e., there exists a

positive constant R such that Ω ⊂ {u ∈ P : ‖u‖PC1 6 R}. Let

B1 = max
(t,u,v)∈[0,1]×[0,R]×[0,R]

f(t, u, v) + 1,

B2 = max
16i6n

{

max
u∈[0,R]

Ii(u)
}

,

B3 = max
16i6n

{

max
(u,v)∈[0,R]×[0,R]

Ii(u, v)
}

,

R1 = max
06t61

q(t).

For all u ∈ Ω we have

Y 6 D2

m−2
∑

j=1

βj

∫ 1

0

q(s)f(s, u(s), u′(s)) ds+D2

m−2
∑

j=1

βj

∑

0<ti<1

Ii(u(ti), u
′(ti))

6 D2(B1R1 + nB3)

m−2
∑

j=1

βj .
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Hence,

|Tu(t)| 6

∫ 1

0

ϕq

(
∫ 1

s

q(τ)f(τ, u(τ), u′(τ)) dτ +
∑

s<ti<1

Ii(u(ti), u
′(ti)) + Y

)

ds

+D1

m−2
∑

j=1

αj

∫ 1

0

ϕq

(
∫ 1

s

q(τ)f(τ, u(τ), u′(τ)) dτ

+
∑

s<ti<1

Ii(u(ti), u
′(ti)) + Y

)

ds

+D1

m−2
∑

j=1

αj

∑

0<ti<1

Ii(u(ti)) +
∑

0<ti<1

Ii(u(ti))

6 D1

{

ϕq

(

B1R1 + nB3 +D2(B1R1 + nB3)

m−2
∑

j=1

βj

)

+ nB2

}

,

|(Tu)′(t)| 6 ϕq

(
∫ 1

0

q(s)f(s, u(s), u′(s)) ds+
∑

0<ti<1

Ii(u(ti), u
′(ti)) + Y

)

6 ϕq

(

B1R1 + nB3 +D2(B1R1 + nB3)

m−2
∑

j=1

βj

)

,

|(ϕp((Tu)
′(t)))′| 6 R1B1, t 6= ti, i = 1, 2, . . . , n.

So, Tu and (Tu)′ are bounded on J and equi-continuous on each Ji (i = 0, 1, 2, . . . , n).

This implies that TΩ is relatively compact. Therefore, the operator T : P → P is

completely continuous. �

4. Main results

We are now ready to apply the fixed point theorem due to Bai and Ge to the

operator T in order to get sufficient conditions for the existence of multiple positive

solutions to the problem (1.1).

For the sake of convenience, we introduce the following notation:

H = D1ϕq

(

R1 + n+D2(R1 + n)

m−2
∑

j=1

βj

)

+ nD1,

N = ϕq

(
∫ 1−1/k

1/k

q(τ) dτ

)

,

L = ϕq

(

R1 + n+D2(R1 + n)

m−2
∑

j=1

βj

)

.
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We recall that the integer k > 3 is given in (C2) and D1 = 1/
(

1 −
m−2
∑

j=1

αj

)

, D2 =

1/
(

1 −
m−2
∑

j=1

βj

)

, h = D1

(

1 −
m−2
∑

j=1

αj(1 − ξj)
2
)

, R1 = max
06t61

q(t).

Theorem 4.1. Assume (C1)–(C4) hold and there exist constants r2 > hkb1 >

b1 > r1 > 0, L2 > L1 > 0 such that L2 > 2kb1, ϕp(kb1/N) 6 min{ϕp(r2/H),

ϕp(L2/L)}. Let the following conditions be satisfied:

(B1) max{f(t, u, v), Ii(u, v)} < min{ϕp(r1/H), ϕp(L1/L)}, Ii(u) 6 r1/H for

(t, u, v) ∈ [0, 1]× [0, r1] × [0, L1], 1 6 i 6 n;

(B2) f(t, u, v) > ϕp(kb1/N) for (t, u, v) ∈ [1/k, 1− 1/k] × [b1, hkb1] × [0, L2];

(B3) max{f(t, u, v), Ii(u, v)} 6 min{ϕp(r2/H), ϕp(L2/L)}, Ii(u) 6 r2/H for

(t, u, v) ∈ [0, 1]× [0, r2] × [0, L2], 1 6 i 6 n.

Then the problem (1.1) possesses at least three positive solutions u1, u2 and u3 such

that

max
06t61

u1(t) < r1, max
06t61

|u′1(t)| < L1;(4.1)

b1 < min
1/k6t6(k−1)/k

u2(t) 6 max
06t61

u2(t) 6 r2, max
06t61

|u′2(t)| 6 L2;(4.2)

r1 < max
06t61

u3(t) 6 r2, min
1/k6t6(k−1)/k

u3(t) < b1, max
06t61

|u′3(t)| 6 L2.(4.3)

P r o o f. The problem (1.1) has a solution u = u(t) if and only if u satisfies the

operator equation u = Tu. Thus we set out to verify that the operator T satisfies

all conditions of Lemma 2.1. The proof is divided into four steps.

Step 1. First we show that

(4.4) T : P (ϕ, r2;ω,L2) → P (ϕ, r2;ω,L2).

In fact, for u ∈ P (ϕ, r2;ω,L2) we have ϕ(u) 6 r2, ω(u) 6 L2, by the condition (B3)

we get

Y 6 D2

m−2
∑

j=1

βj

∫ 1

0

q(s)f(s, u(s), u′(s)) ds+D2

m−2
∑

j=1

βj

∑

0<ti<1

Ii(u(ti), u
′(ti))

6 min{ϕp(r2/H), ϕp(L2/L)} ×D2(R1 + n)

m−2
∑

j=1

βj .
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Hence,

ϕ(Tu) = max
06t61

|(Tu)(t)| = |(Tu)(1)|

=

∫ 1

0

ϕq

(
∫ 1

s

q(τ)f(τ, u(τ), u′(τ)) dτ +
∑

s<ti<1

Ii(u(ti), u
′(ti)) + Y

)

ds

+D1

m−2
∑

j=1

αj

∫ ξj

0

ϕq

(
∫ 1

s

q(τ)f(τ, u(τ), u′(τ)) dτ

+
∑

s<ti<1

Ii(u(ti), u
′(ti)) + Y

)

ds

+D1

m−2
∑

j=1

αj

∑

0<ti<ξj

Ii(u(ti)) +
∑

0<ti<1

Ii(u(ti))

6

∫ 1

0

ϕq

(
∫ 1

s

q(τ)f(τ, u(τ), u′(τ)) dτ +
∑

0<ti<1

I i(u(ti), u
′(ti)) + Y

)

ds

+D1

m−2
∑

j=1

αj

∫ 1

0

ϕq

(
∫ 1

s

q(τ)f(τ, u(τ), u′(τ)) dτ

+
∑

0<ti<1

Ii(u(ti), u
′(ti)) + Y

)

ds

+D1

m−2
∑

j=1

αj

∑

0<ti<1

Ii(u(ti)) +
∑

0<ti<1

Ii(u(ti))

6 D1

∫ 1

0

ϕq

(
∫ 1

0

q(τ)f(τ, u(τ), u′(τ)) dτ +
∑

0<ti<1

Ii(u(ti), u
′(ti)) + Y

)

ds

+D1

∑

0<ti<1

Ii(u(ti))

6
r2
H

{

D1ϕq

(

R1 + n+D2(R1 + n)
m−2
∑

j=1

βj

)

+ nD1

}

= r2.

On the other hand, for u ∈ P we have Tu ∈ P . Thus (Tu)′(t) > 0, (Tu)′(t) is

non-increasing on [0,1], and max
06t61

|(Tu)′(t)| = (Tu)′(0). Therefore,

ω(Tu) = max
06t61

|(Tu)′(t)| = (Tu)′(0)

= ϕq

(
∫ 1

0

q(s)f(s, u(s), u′(s)) ds+
∑

0<ti<1

I i(u(ti), u
′(ti)) + Y

)

6
L2

L
ϕq

(

R1 + n+D2(R1 + n)
m−2
∑

j=1

βj

)

= L2.

So, (4.4) holds.
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Step 2. We show that condition (A1) in Lemma 2.1 holds.

We take u(t) = kb1[h − (1 − t)2] for t ∈ [0, 1]. Obviously, h > 1. It is easy

to see that u(t) ∈ P (ϕ, hkb1;ω,L2;ψ, b1), ψ(u) = u(1/k) > b1 and consequently

{u ∈ P (ϕ, hkb1;ω,L2;ψ, b1) : ψ(u) > b1} 6= ∅. Thus for u ∈ P (ϕ, hkb1;ω,L2;ψ, b1)

there is b1 6 u(t) 6 hkb1 for t ∈ [1/k, (k − 1)/k]. By condition (B2) we have

ψ(Tu) = min
1/k6t6(k−1)/k

|(Tu)(t)| = (Tu)
(1

k

)

=

∫ 1/k

0

ϕq

(
∫ 1

s

q(τ)f(τ, u(τ), u′(τ)) dτ +
∑

s<ti<1

Ii(u(ti), u
′(ti)) + Y

)

ds

+D1

m−2
∑

j=1

αj

∫ ξj

0

ϕq

(
∫ 1

s

q(τ)f(τ, u(τ), u′(τ)) dτ

+
∑

s<ti<1

Ii(u(ti), u
′(ti)) + Y

)

ds

+D1

m−2
∑

j=1

αj

∑

0<ti<ξj

Ii(u(ti)) +
∑

0<ti<1/k

Ii(u(ti))

>

∫ 1/k

0

ϕq

(
∫ 1−1/k

1/k

q(τ)f(τ, u(τ), u′(τ)) dτ

)

ds

>
b1
N
ϕq

(
∫ 1−1/k

1/k

q(τ) dτ

)

= b1.

Therefore,

ψ(Tu) > b1, ∀u ∈ P (ϕ, hkb1;ω,L2;ψ, b1).

Consequently, condition (A1) in Lemma 2.1 is satisfied.

Step 3. We now show (A2) in Lemma 2.1 is satisfied. If u ∈ P (ϕ, r1;ω,L1), by

condition (B1), in the same way as in Step 1, we can obtain that T : P (ϕ, r1;ω,L1) →

P (ϕ, r1;ω,L1). Hence, condition (A2) in Lemma 2.1 is satisfied.

Step 4. Finally, we show (A3) in Lemma 2.1 is also satisfied. Suppose that u ∈

P (ϕ, r2;ω,L2;ψ, b1) with ϕ(Tu) > hkb1. Then, by Lemma 3.2 and condition (C4),

we have (see (3.9))

ψ(Tu) = min
1

k
6t61− 1

k

|(Tu)(t)| >
1

k
max
06t61

|Tu(t)| −
1

k

n
∑

i=1

|∆(Tu)(ti)|

>
1

k
max
06t61

|Tu(t)| −
1

k

n
∑

i=1

Ii(u(ti)) > hb1 − (h− 1)b1 = b1.

Thus, condition (A3) in Lemma 2.1 is satisfied.
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Consequently, by Lemma 2.1, the problem (1.1) has at least three positive solu-

tions u1, u2, u3 ∈ P (ϕ, r2;ω,L2) with

u1 ∈ P (ϕ, r1;ω,L1),

u2 ∈ {P (ϕ, r2;ω,L2;ψ, b1) : ψ(u) > b1}

u3 ∈ P (ϕ, r2;ω,L2) \ (P (ϕ, r2;ω,L2;ψ, b1) ∪ P (ϕ, r1;ω,L1)).

The proof is complete. �

From the proof of Theorem 4.1 it is easy to see that, if conditions like (B1)–(B3)

are appropriately combined, we can obtain an arbitrary number of positive solutions

of problem (1.1).

Corollary 4.1. Assume (C1)–(C4) hold and there exist constants 0 < r1 < b1 <

hkb1 6 r2 < b2 < hkb2 6 . . . 6 rl, 0 < L1 6 L2 6 . . . 6 Ll, l ∈ N such that

Li+1 > 2kbi, ϕp(kbi/N) 6 min{ϕp(ri+1/H), ϕp(Li+1/L)} for 1 6 i 6 l − 1. Let the

following conditions be satisfied:

(D1) max{f(t, u, v), Ij(u, v)} < min{ϕp(ri/H), ϕp(Li/L)}, Ij(u) 6 ri/H

for (t, u, v) ∈ [0, 1]× [0, ri] × [0, Li], 1 6 i 6 l, 1 6 j 6 n;

(D2) f(t, u, v) > ϕp(kbi/N)

for (t, u, v) ∈ [1/k, 1 − 1/k]× [bi, hkbi] × [0, Li+1], 1 6 i 6 l − 1.

Then the problem (1.1) possesses at least 2l− 1 positive solutions.

P r o o f. When l = 1, it follows from condition (D1) that

T : P (ϕ, r1;ω,L1) → P (ϕ, r1;ω,L1) ⊂ P (ϕ, r1;ω,L1),

thus T has at least one fixed point u1 ∈ P (ϕ, r1;ω,L1) by Schauder’s fixed point

theorem.

When l = 2, it is clear that Theorem 4.1 can be applied to get at least three

positive solutions ui (i = 1, 2, 3) such that (4.1)–(4.3) hold.

Suppose that for l = m the statement holds, i.e., the problem (1.1) possesses at

least 2m − 1 positive solutions u1, u2, . . . , u2m−1 such that max
06t61

|ui(t)| 6 rm, i =

1, 2, . . . , 2m−1. When l = m+1, by induction hypothesis, in addition to the 2m−1

positive solutions u1, u2, . . . , u2m−1 such that max
06t61

|ui(t)| 6 rm, i = 1, 2, . . . , 2m−1,

we can apply Theorem 4.1 to the case

(1) max{f(t, u, v), Ij(u, v)} < min{ϕp(rm/H), ϕp(Lm/L)}, Ij(u) 6 rm/H for

(t, u, v) ∈ [0, 1] × [0, rm] × [0, Lm], 1 6 j 6 n;

(2) f(t, u, v) > ϕp(kbm/N) for (t, u, v) ∈ [1/k, 1 − 1/k]× [bm, hkbm] × [0, Lm+1];
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(3) max{f(t, u, v), Ij(u, v)} 6 min{ϕp(rm+1/H), ϕp(Lm+1/L)}, Ij(u) 6 rm+1/H

for (t, u, v) ∈ [0, 1] × [0, rm+1] × [0, Lm+1], 1 6 j 6 n

to get at least three positive solutions u0, u2m and u2m+1 with

max
06t61

u0(t) < rm, max
06t61

|u′0(t)| < Lm;

bm < min
1/k6t6(k−1)/k

u2m(t) 6 max
06t61

u2(t) 6 rm+1, max
06t61

|u′2m(t)| 6 Lm+1;

rm < max
06t61

u2m+1(t) 6 rm+1, min
1/k6t6(k−1)/k

u2m+1(t) < bm,

max
06t61

|u′2m+1(t)| 6 Lm+1.

Obviously u2m, u2m+1 are different from u1, u2, . . . , u2m−1. Thus in this way we get

at least 2m+ 1 positive solutions to the problem (1.1). �

5. Example

Let q(t) ≡ 1, p = 3
2 , n = 1. We consider the boundary value problem

(5.1)































































(|u′(t))|−1/2u′(t))′ + f(t, u(t), u′(t)) = 0, t 6= 1
2 , 0 < t < 1,

∆u
(1

2

)

= I
(

u
(1

2

))

,

∆ϕ3/2

(

u′
(1

2

))

= −I
(

u
(1

2

)

, u′
(1

2

))

,

u(0) =
1

4
u
(1

3

)

+
1

8
u
(2

3

)

,

ϕ3/2(u
′(1)) =

1

4
ϕ3/2

(

u′
(1

3

))

+
1

8
ϕ3/2

(

u′
(2

3

))

,

where

f(t, u, v) =















1

18
t2 + 4u6 +

1

2
×

( v

275

)4

, u < 1,

1

18
t2 + 4 +

1

2
×

( v

275

)4

, u > 1,

I(u) =















1

18
u, 0 6 u 6

1

2
,

1

36
, u >

1

2
,

I(u, v) =
1

150
u+

1

140
v, u > 0, v > 0.
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Choose k = 4, r1 = 1
2 , b1 = 1, r2 = 450, L1 = 1, L2 = 275. Then we have

D1 = D2 =
8

5
= 1.6, h =

7

5
= 1.4, H = 17.984, N =

1

4
= 0.25, L = 10.24.

It is easy to verify that (C1)–(C4) hold and ϕ3/2(kb/N) 6 min{ϕ3/2(r2/H),

ϕ3/2(L2/L)}, L2 > 2kb and the following conditions are satisfied:

(B′

1) max{f(t, u, v), I(u, v)} < 0.1181 < min{ϕ3/2(r1/H), ϕ3/2(L1/L)} ≈ 0.1667,

I(u) 6 1
36 < r1/H for (t, u, v) ∈ [0, 1] × [0, 1

2 ] × [0, 1];

(B′

2) f(t, u, v) > ϕ3/2(kb/N) = 4 for (t, u, v) ∈ [ 14 ,
3
4 ] × [1, 5.6]× [0, 275];

(B′

3) max{f(t, u, v), I(u, v)} < 5 < min{ϕ3/2(r2/H), ϕ3/2(L2/L)} ≈ 5.002, I(u) 6
1
36 < r2/H for (t, u, v) ∈ [0, 1] × [0, 450]× [0, 275].

Thus, all conditions of Theorem 4.1 hold. By Theorem 4.1, the problem (5.1) has

at least three positive solutions u1, u2 and u3 such that

max
06t61

u1(t) <
1

2
, max

06t61
|u′1(t)| < 1;

1 < min
1/46t63/4

u2(t) 6 max
06t61

u2(t) 6 450, max
06t61

|u′2(t)| 6 275;

1

2
< max

06t61
u3(t) 6 450, min

1/46t63/4
u3(t) < 1, max

06t61
|u′3(t)| 6 275.
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