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Abstract. In this paper we establish new nonlinear Liouville theorems for parabolic
problems on half spaces. Based on the Liouville theorems, we derive estimates for the
blow-up of positive solutions of indefinite parabolic problems and investigate the complete
blow-up of these solutions. We also discuss a priori estimates for indefinite elliptic problems.
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1. Introduction

In this paper we consider the problem

(1.1)
ut = ∆u+ a(x)|u|p−1u, (x, t) ∈ Ω × (0, T ),

u = 0, (x, t) ∈ ∂Ω × (0, T ),

which, if needed, is completed with an initial condition

(1.2) u(·, 0) = u0(·) ∈ L∞(Ω).

We assume that Ω is a smooth domain in R
N and p > 1. Furthermore, we suppose

that a : Ω̄ → R belongs to C2(Ω̄) and

(1.3) if lim
k→∞

a(xk) = 0, then lim sup
k→∞

|∇a(xk)| > 0.
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Here Ck(D) denotes the space of k-times differentiable, bounded functions on

D ⊂ R
N , with bounded, continuous derivatives up to the kth order.

If Ω is bounded and if we denote

Γ := {x ∈ Ω̄ : a(x) = 0},(1.4)

Ω+ := {x ∈ Ω: a(x) > 0},(1.5)

Ω− := {x ∈ Ω: a(x) < 0},(1.6)

then (1.3) is equivalent to

(1.7) |∇a(x)| 6= 0 (x ∈ Γ),

that is, a has nondegenerate zeros in Ω̄. Since u0 and a are bounded, standard

results [21] yield the unique, strong solution of the problem (1.1), (1.2), with the

maximal existence time Tmax ∈ (0,∞]. Moreover, by regularity results, if Tmax <∞,

then ‖u(·, t)‖L∞(Ω) → ∞ as t → Tmax. We do not indicate the dependence of Tmax

on u0 if no confusion seems possible. Here and in the rest of the paper we assume

T ∈ (0, Tmax].

As the main result of this paper, we derive an upper bound for the blow-up rate

of nonnegative solutions of (1.1). The blow-up rates and related a priori estimates

were studied under various assumptions on a, Ω and u in [1], [10], [11], [17], [13], [14],

[15], [22], [26], [27], [28], [36], [34], [35], see also references therein. We just briefly

describe the results directly connected to our results. First, Friedman and McLeod

[11] studied blowing up solutions (Tmax <∞) of the problem

(1.8)
ut = ∆u+ |u|p−1u, (x, t) ∈ Ω × (0, T ),

u = 0, (x, t) ∈ ∂Ω × (0, T ),

with T = Tmax, and the initial condition (1.2). They proved

(1.9) |u(x, t)| 6 C
(

1 + (Tmax − t)−1/(p−1)
)

(x ∈ Ω),

where Ω is a bounded convex domain, p > 1, and u is a positive, increasing (in

time) solution of (1.8). These results were generalized by Giga and Kohn [13] and

later by Giga et al. [14], [15]. With help of localized energy estimates and iterative

arguments, they proved that (1.9) holds true if Ω is a bounded convex domain or

Ω = R
N , u is, a not necessarily positive, solution of (1.8), (1.2), and 1 < p < pS ,

where

pS = pS(N) :=







∞, N 6 2,

N + 2

N − 2
, N > 3.
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In [9] Fila and Souplet employed scaling and Fujita type results to remove the as-

sumption on convexity of Ω and established (1.9) for all positive solutions of (1.8),

(1.2), and 1 < p 6 1 + 2/(N + 1).

Finally, Poláčik et al. [26] investigated positive solutions of (1.8) with a sufficiently

smooth domain Ω ⊂ R
N and 1 < p < pB, where

(1.10) pB = pB(N) :=







∞, N 6 1,

N(N + 2)

(N − 1)2
, N > 2.

Using scaling, doubling lemma and Liouville theorems they obtained

(1.11) u(x, t) 6 C(1 + t−1/(p−1) + (T − t)−1/(p−1)) ((x, t) ∈ Ω × (0, T )),

where C is a universal constant depending only on p, N and Ω. We remark that

the estimates for the initial blow-up rate had been previously established by Bidaut-

Véron [5] (see also [3]) for 1 < p < pB and Ω = R
N . Some estimates on the initial

blow-up rates for bounded Ω were proved by Quittner et al. [29].

The first a priori estimates for positive solutions of (1.1), (1.2) with sign-changing

a were derived in the form (see [27] and references therein)

‖u(·, t)‖L∞(Ω) 6 C(‖u0‖L∞(Ω), δ,N, p,Ω, a)(1.12)

(t ∈ [0, Tmax − δ], δ > 0, Tmax <∞).

Later, Xing [36] obtained an upper estimate for the blow-up rate of positive solutions

of (1.1), (1.2)

u(x, t) 6 C
(

1 + (Tmax − t)−3/(2(p−1))
)

((x, t) ∈ Ω × (0, Tmax), Tmax <∞)

when Ω is bounded, 1 < p < pB and Γ ⊂ Ω, that is, when a does not vanish on ∂Ω.

Here C depends on ‖u0‖L∞(Ω), N , p, Ω, a.

The next theorem refines the results in [36] in various directions. It includes

unbounded domains and it allows for a very general behavior of a on ∂Ω. In addition,

it also yields an estimate for the initial blow-up rate. Denote by νΩ(x) the unit

outward normal vector to ∂Ω at x.

Theorem 1.1. Let Ω be a uniformly regular domain of class C2 in R
N (cf. [2])

and let 1 < p < pB. Suppose that a ∈ C2(Ω̄) satisfies (1.3) and

(1.13)

∣

∣

∣

∣

∇a(x0)

|∇a(x0)|
− νΩ(x0)

∣

∣

∣

∣

> c̃ > 0 (x0 ∈ Γ ∩ ∂Ω).
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Then every nonnegative solution u of (1.1) satisfies

(1.14) u(x, t) 6 C
(

1 + t−3/(2(p−1)) + (T − t)−3/(2(p−1))
)

((x, t) ∈ Ω × (0, T )),

where C depends on N , p, Ω and a.

Remark 1.2. (a) The nonlinearity |u|p−1u in (1.1) can be replaced by f(u) with

lim
v→∞

f(v)

vp
= l > 0.

Then (1.14) holds with C depending on N , f , Ω and a. Also, we can add lower order

terms to the right hand side, that is, we can add a function g : Ω × (0, T ) × R → R

such that

lim
u→∞

sup
(x,t)∈Ω×(0,T )

g(x, t, u)

up
= 0.

Then (1.14) holds with C depending on N , p, Ω, a and g.

(b) For the blowing-up solutions (Tmax < ∞) of (1.8) one has (cf. [28, Proposi-

tion 23.1]) sup
x∈RN

u(x, t) > C(Tmax− t)−1/(p−1). This shows the optimality of the final

blow up estimate in (1.11) for a ≡ 1. However, it is not known whether or not the

weaker estimate (1.14) is optimal for sign changing a. Below, we show that under

additional assumptions the stronger estimate (1.11) holds true even if a changes sign.

(c) If a also depends on t and p > (N + 2)/N , the initial blow-up estimate in

(1.14) does not hold even if 0 6 a 6 1 (see e.g. [32], [33]). If Ω is bounded, then

(1.13) is equivalent to ∇a(x0)/|∇a(x0)| 6= νΩ(x0) for any x0 ∈ Γ ∩ ∂Ω. It is not

known if this assumption is technical or not.

(d) Universal estimates of the form (1.11) or (1.14) are not true for p > pS, N > 3,

Ω = R
N , due to the existence of arbitrarily large stationary radial solutions of (1.1).

We require p < pB < pS mainly because the Liouville theorem for the problem

(1.15) ut = ∆u + up, (x, t) ∈ R
N × R,

with pB 6 p < pS is not known. If one proved such a Liouville theorem for some

p ∈ [pB, pS), then the conclusion of Theorem 1.1 would hold for the same p as well.

(e) If we restrict ourselves to the class of radial solutions (of course now Ω and a

are radially symmetric), then similarly to [26], one can prove Theorem 1.1 for each

1 < p < pS . This is possible, since the Liouville theorem is known for nonnegative

radial solutions of (1.15) for any 1 < p < pS (see [24]).

(f) If a nonnegative solution u of (1.1) is global (Tmax = ∞), then after letting

T → ∞ in (1.14) we obtain

(1.16) u(x, t) 6 C
(

1 + t−3/(2(p−1))
)

((x, t) ∈ Ω × (0,∞)).

In particular, u is bounded on Ω × (1,∞). For previous results, see [5], [26].
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Remark 1.3. Observe that (1.14) is equivalent to

(1.17) M(x, t) 6 C(1 + d−1(t)) ((x, t) ∈ Ω × (0, T )),

where

M := u(p−1)/3 and d(t) := min{t, T − t}1/2.

Also, for each x ∈ Ω, one has d(t) = dP [(x, t),Θ], where Θ := Ω × {0, T } and dP

denotes the parabolic distance:

(1.18) dP [(x, t), (y, s)] = |x− y| + |t− s|
1

2 ((x, t), (y, s) ∈ Ω × (0, T )).

In this notation we obtain yet another form of (1.14):

u(x, t) 6 C
(

1 + d
−3/(p−1)
P [(x, t),Θ]

)

((x, t) ∈ Ω × (0, T )).

If u is a stationary solution of (1.1), that is, if u solves

(1.19)
0 = ∆u+ a(x)|u|p−1u, x ∈ Ω,

u = 0, x ∈ ∂Ω,

we obtain the following corollary.

Corollary 1.4. Let Ω ⊂ R
N be a uniformly regular domain of class C2 (cf. [2]),

1 < p < pS , and let a ∈ C2(Ω̄) satisfy (1.3) and (1.13). If u is a nonnegative solution

of (1.19), then u 6 C(p,N,Ω, a).

This corollary extends the results of Du and Li [7] (see also references therein), as

it allows a to vanish on ∂Ω. If 1 < p < pB(N), then since Tmax = ∞, Corollary 1.4

follows from (1.16). If we merely assume 1 < p < pS(N), then one has to reprove

Theorem 1.1 for solutions of (1.19). The only difference is the application of elliptic

Liouville theorems [12], instead of parabolic ones, whenever p < pB is required.

The next propositions shows that final blow-up rates in Theorem 1.1 (and the

main results in [36]) can be improved if a > 0 and Ω is a convex bounded set. Notice

that a is allowed to vanish on ∂Ω. In this case, the universal bounds (1.12) were

already obtained in [27].

Proposition 1.5. Let Ω ⊂ R
N be a bounded, smooth, convex set and let 1 < p <

pB. Assume a ∈ C2(Ω̄) satisfies (1.7) and a(x) > 0 for x ∈ Ω. Then a nonnegative

solution u of (1.1), (1.2) satisfies

(1.20) u(x, t) 6 C
(

1 + (T − t)−1/(p−1)
)

((x, t) ∈ Ω × (0, T )),

where C depends on N , p, Ω, a, T and ‖u0‖L∞(Ω).
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If a changes sign in Ω, we formulate sufficient conditions for (1.20) only in the

one-dimensional case. However, one can generalize the following propositions to the

higher dimensional case if Ω is convex and certain monotonicity of a and u0 near ∂Ω

is assumed.

Proposition 1.6. Let N = 1 and Ω = (0, 1). Suppose that a ∈ C2([0, 1]) and has

exactly one nondegenerate zero µ ∈ [0, 1], that is, a(µ) = 0 and a′(µ) 6= 0. If

sign[a(x)](u0(2µ− x) − u0(x)) 6 0 (x ∈ (max{0, 2µ− 1}, µ)),

then a nonnegative classical solution u of (1.1), (1.2) satisfies (1.20) with C depending

on N , p, Ω, a, T and ‖u0‖L∞(Ω).

Proposition 1.7. Let N = 1 and Ω = (0, 1). Suppose that a ∈ C2([0, 1]) and has

exactly two nondegenerate zero µ1 < µ2 in [0, 1], that is, a(µi) = 0 and a′(µi) 6= 0

for i = 1, 2. If max{µ1, 1 − µ2} < µ2 − µ1 and

a(x) < 0, u0(2µ1 − x) > u0(x) (x ∈ (0, µ1)),

u0(2µ2 − x) > u0(x) (x ∈ (µ2, 1)),

then a nonnegative classical solution u of (1.1), (1.2) satisfies (1.20) with C depending

on N , p, Ω, a, T and ‖u0‖L∞(Ω).

One can also employ Liouville theorems and universal estimates in the investiga-

tion of the complete blow-up and the continuity of the blow-up time. Let us recall

these notions and explain the results.

Let u be a nonnegative solution of (1.1), (1.2) with Tmax <∞. Let uk (k ∈ N) be

the solution of the approximation problem

(uk)t − ∆uk = fk(x, uk), (x, t) ∈ Ω × (0,∞),

uk = 0, (x, t) ∈ ∂Ω × (0,∞),

uk(x, 0) = u0(x) > 0, x ∈ Ω,

where

fk(x, v) :=

{

a(x)min{vp, k} if a(x) > 0, v ∈ R,

a(x)vp if a(x) < 0, v ∈ R.

Since fk is bounded from above, the nonnegative solution uk exists globally (for all

positive times). Since fk 6 fk+1, the maximum principle implies uk+1(x, t) > uk(x, t)

for any (x, t) ∈ Ω × (0,∞). Thus

ū(x, t) := lim
k→∞

uk(x, t) ∈ [0,∞] ((x, t) ∈ Ω × [0,∞))
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is well defined. Moreover, ū(x, t) = u(x, t) for any (x, t) ∈ Ω̄× [0, Tmax). We say that

u blows-up completely in D ⊂ Ω at T , if ū(x, t) = ∞ for any x ∈ D and t > T .

Theorem 1.8. Let Ω be a bounded smooth domain in R
N and 1 < p < pB.

Suppose that a ∈ C2(Ω̄) satisfies (1.7) and (1.13). If Tmax < ∞ for a nonnegative

solution u of (1.1), (1.2), then u blows-up completely in Ω+ at Tmax. In addition,

the function

T : {u0 ∈ L∞(Ω): u0 > 0} → (0,∞], T : u0 7→ Tmax(u0)

is continuous.

If a ≡ 1, Baras and Cohen [4] proved complete blow-up of nonnegative solutions

of (1.8), (1.2) in Ω at Tmax < ∞ for each 1 < p < pS (see also [28]). However, for

p > pS , N 6 10, and Ω being a ball, there exist radial solutions of (1.8) that do

not blow-up completely in Ω at Tmax. For further discussion see [28] and references

therein.

If a changes sign, then one cannot expect the complete blow-up in the whole Ω,

since ū stays bounded in Ω− for any t > 0 (see [20]). Quittner and Simondon [27]

proved the complete blow-up of u in Ω+ at Tmax < ∞ for 1 < p 6 1 + 3/(N + 1)

and Γ ⊂ Ω. Later Poláčik and Quittner [23] replaced the former assumption by

1 < p < pB and proved Theorem 1.8 under an additional assumption Γ ⊂ Ω.

The rest of the paper is organized as follows. In Section 2 we state and prove

parabolic Liouville theorems. In Section 3 we formulate the doubling lemma and

prove our main results.

2. Liouville theorems

Since some results in this section can be of independent interest, we formulate

them in a more general setting than that required for the proofs of the main results.

Let us define

R
N
λ := {x = (x1, x

′) ∈ R
N : x1 > λ} (λ ∈ R),(2.1)

Hλ := ∂RN
λ = {x = (x1, x

′) ∈ R
N : x1 = λ} (λ ∈ R) .(2.2)

The following two lemmas were proved in [36] for increasing functions f . Here

we propose simpler proofs that remove this unnecessary assumption. The elliptic

counterparts can be found in [8], [30], [31], see also references therein.
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Lemma 2.1. Let f be a continuous function with f(v) > 0 for any v > 0. If

u : R
N × R → R is a nonnegative bounded solution of

ut − ∆u = −f(u), (x, t) ∈ R
N × R,

then u ≡ 0.

P r o o f. We proceed by way of contradiction, that is, we assume u 6≡ 0. Fix

(x∗, t∗) ∈ R
N × R such that

u(x∗, t∗) > C∗ :=
1

2
sup

(x,t)∈RN×R

u(x, t) > 0.

For each ε > 0 denote

vε(x, t) := u(x, t) − ε|x− x∗|2 − ε
(
√

(t− t∗)2 + 1 − 1
)

((x, t) ∈ R
N × R).

Since vε(x, t) → −∞ whenever |t| → ∞ or |x| → ∞, there exists (xε, tε) ∈ R
N × R

with

vε(xε, tε) = sup
(x,t)∈RN×R

vε(x, t).

Then for each ε > 0

2C∗ > u(xε, tε) > vε(xε, tε) > vε(x
∗, t∗) = u(x∗, t∗) > C∗ > 0,

and

(vε)t(xε, tε) = 0, ∆vε(xε, tε) 6 0.

Consequently,

0 6 (vε)t(xε, tε) − ∆vε(xε, tε)

= ut(xε, tε) − ∆u(xε, tε) − ε
tε − t∗

√

(tε − t∗)2 + 1
+ 2εN

= −f(u(xε, tε)) − ε
tε − t∗

√

(tε − t∗)2 + 1
+ 2εN

6 − inf
2C∗>v>C∗

f(v) + ε+ 2εN (ε > 0).

Since the first term on the right hand side is negative and independent of ε, we obtain

a contradiction for sufficiently small ε > 0. �
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Lemma 2.2. Suppose f ∈ C1 satisfies f(0) = 0 and f(v) > 0 for any v > 0. Let

h be a continuous function with h(x1) < 0 for each x1 > 0, and let lim sup
x1→∞

h(x1) < 0.

If u is a nonnegative bounded solution of the problem

ut − ∆u = h(x1)f(u), (x, t) ∈ R
N
0 × R,

u = 0, (x, t) ∈ H0 × R,

then u ≡ 0.

P r o o f. The proof is similar to that of Lemma 2.1. We again proceed by a

contradiction, that is, we assume u 6≡ 0. Fix (x∗, t∗) ∈ R
N
0 × R such that

u(x∗, t∗) > C∗ :=
1

2
sup

(x,t)∈RN

0
×R

u(x, t) > 0.

It is easy to see that there exists a function ϕ ∈ C2(RN × R) with

ϕ(x, t) > 0, |∇ϕ(x, t)| 6 1, |ϕt − ∆ϕ| 6 1 ((x, t) ∈ R
N × R),

ϕ(0, 0) = 0, ϕ(x, t) → ∞ if |x| → ∞ or t→ ±∞.

For each ε ∈ (0, 1) denote

vε(x, t) := u(x, t) − εϕ(x− x∗, t− t∗) ((x, t) ∈ R
N
0 × R).

Since u is bounded, vε(x, t) → −∞ whenever |t| → ∞ or |x| → ∞. Moreover,

vε(x, t) 6 0 < vε(x
∗, t∗) for any (x, t) ∈ H0 × R, and therefore there exists (xε, tε) ∈

R
N
0 × R such that

vε(xε, tε) = sup
(x,t)∈RN

0
×R

vε(x, t).

Consequently,

2C∗
> u(xε, tε) > vε(xε, tε) > vε(x

∗, t∗) = u(x∗, t∗) > C∗ > 0,

and

(vε)t(xε, tε) = 0, (∆vε)(xε, tε) 6 0.

Observe that u satisfies

ut = ∆u+ h(x1)
f(u)

u
u = ∆u + c(x, t)u.
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Since f ∈ C1, f(0) = 0, and u is bounded, c is a bounded function in {(x, t) ∈ R
N
0 ×R :

x1 < 2}. Hence, standard parabolic regularity (see for example [19, Theorem 1.15])

implies

|∇u(x, t)| 6 C ((x, t) ∈ R̄
N
0 × R, x1 < 1),

and consequently,

|∇vε(x, t)| 6 C + 1 ((x, t) ∈ R̄
N
0 × R, x1 < 1),

where C is independent of ε ∈ (0, 1). Furthermore, vε(xε, tε) > C∗ > 0 and

vε(x, t) 6 0 for all (x, t) ∈ H0 × R yield dist(xε, H0) = (xε)1 > c0, where c0 is

a constant independent of ε. Finally,

0 6 (vε)t(xε, tε) − ∆vε(xε, tε)

= ut(xε, tε) − ∆u(xε, tε) − ε[ϕt(xε, tε) − ∆ϕ(xε, tε)]

6 h((xε)1)f(u(xε, tε)) + ε

6 sup
y>c0

h(y) inf
2C∗>v>C∗

f(v) + ε.

Since the first term on the right hand side is negative and independent of ε, we obtain

a contradiction for sufficiently small ε > 0. �

Next, consider the problem

(2.3)
ut − ∆u = h(x · v)f(u), (x, t) ∈ Ω × R,

u = 0, (x, t) ∈ ∂Ω × R,

where

(v1) v = (v1, v2, . . . , vN ) ∈ R
N is a unit vector with v1 > 0 and vi = 0 for i > 3.

About Ω, we assume that

(d1) Ω is a subset of RN , convex and unbounded in x1, that is, x+ ξe1 ∈ Ω for any

x ∈ Ω and ξ > 0;

(d2) there is a constant d∗ such that x2v2 6 d∗ for any x = (x1, x2, . . . , xN ) ∈ Ω.

Next, the function h : R → R satisfies the following hypothesis.

(h1) h is continuous, nondecreasing, and strictly increasing on (0,∞);

(h2) h(0) = 0 and lim
y→∞

h(y) = ∞.

About f we assume

(f1) f ∈ C1([0,∞)), with f(0) = f ′(0) = 0, and f(v) > 0, f ′(v) > 0 for each v > 0.
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The following theorem is a generalization of elliptic [7] and parabolic [23] results

proved for v = e1 and Ω = R
N . The general framework of the proof is similar to one

used in [7], [23].

Theorem 2.3. If (v1), (d1), (d2), (h1), (h2), and (f1) hold true, then the only

nonnegative, bounded solution u of (2.3) is u ≡ 0.

As a corollary we obtain the Liouville theorem for indefinite problems on half

spaces.

Corollary 2.4. Given unit vectors b, v ∈ R
N and a constant c∗, let Ω := {x ∈

R
N : x · b > c∗}. Consider functions h and f that satisfy (h1), (h2), and (f1),

respectively. Let u be a nonnegative, bounded solution of (2.3). If v 6= −b, then

u ≡ 0.

Remark 2.5. The statement of Corollary 2.4 still holds true if v = −b, c∗ > 0,

and h in addition to (h1), (h2) satisfies h(y) < 0 for y < 0. This follows after suitable

rotation and translation from Lemma 2.2. However, if v = −b and c∗ < 0, there are

nontrivial, nonnegative solutions of (2.3). This result will be published elsewhere.

P r o o f of Corollary 2.4. We rotate the coordinates so that b = e2, v1 > 0, and

vi = 0 for i > 3. Then Ω = {x ∈ R
N : x2 > c∗} and (d1) holds true. Notice that

(2.3), (h1), (h2), and (f1) are invariant under rotations.

If v1 > 0 and v2 6 0, then (v1) and (d2) are satisfied with d∗ = c∗v2, and the

corollary follows from Theorem 2.3.

If v2 > 0, consider another rotation that maps v to e1 and fixes the space spanned

by {e3, . . . , eN}. Then (v1) and (d2) are clearly satisfied with d∗ = 0. Also, Ω is

transformed to Ω′ := {x ∈ R
N : x · b′ > c∗}, where b′ = (v2, v1, 0, . . . , 0). In particu-

lar, b′1 > 0 and (d1) holds. Now, the corollary follows from Theorem 2.3.

If v1 = 0 and v2 6 0, then v = −e2 = −b, a contradiction to our assumptions. �

Before we proceed, define Lu := ut − ∆u and M := sup
Ω
u. Furthermore, given

λ ∈ R set

(2.4)

Σλ := {x ∈ Ω: x1 < λ},

xλ := (2λ− x1, x2, . . . , xN ) (x = (x1, x2, . . . , xN ) ∈ R
N ),

wλ(x, t) := u(xλ, t) − u(x, t) ((x, t) ∈ Σ̄λ × R),

λ(t) := sup{µ : wλ(x, t) > 0 for all x ∈ Σλ and λ < µ},

λ∗ := inf{λ(t) : t ∈ R}.
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Observe that (d1) implies xλ ∈ Ω̄ for any x ∈ Σ̄λ, and therefore wλ is well defined.

Moreover, since u is nonnegative in Ω and vanishes on ∂Ω,

wλ(x, t) = u(xλ, t) − u(x, t) = u(xλ, t) > 0 ((x, t) ∈ (∂Ω ∩ Σ̄λ) × R).

Clearly wλ(x, t) = 0 if (x, t) ∈ (Ω ∩ ∂Σλ) × R, and therefore

(2.5) wλ(x, t) > 0 ((x, t) ∈ ∂Σλ × R).

We divide the proof of Theorem 2.3 into several lemmas, in which we implicitly

suppose the assumptions of the theorem.

First, notice that v1 > 0 implies

(2.6) xλ · v − x · v = 2(λ− x1)v1 > 0 (x ∈ Σλ),

and consequently by (h1)

(2.7) h(x · v) 6 h(xλ · v) (x ∈ Σλ).

Lemma 2.6. If there are λ ∈ R, x̃ ∈ Σλ and t̃ ∈ R with h(x̃ · v) 6 0 and

wλ(x̃, t̃) 6 0, then Lwλ(x̃, t̃) > 0. Moreover, if x̃1 6 −d∗/v1, then wλ(x̃, t̃) 6 0

implies Lwλ(x̃, t̃) > 0.

P r o o f. The positivity and monotonicity of f , together with (2.7) yields

Lwλ(x̃, t̃) = h(x̃λ · v)f(u(x̃λ, t̃)) − h(x̃ · v)f(u(x̃, t̃))

> h(x̃ · v)[f(u(x̃λ, t̃)) − f(u(x̃, t̃))] > 0,

and the first statement follows. Next, assume x̃1 6 −d∗/v1. Then v1 > 0 and (d2)

imply

x̃ · v = x̃1v1 + x̃2v2 6 x̃1v1 + d∗ 6 0,

and by (h1) and (h2) one has h(x̃ · v) 6 0. Now, the second statement follows from

the first one. �

Lemma 2.7. λ(t) > −d∗/v1 for all t ∈ R.

P r o o f. We proceed by a contradiction, that is, we assume the existence of

λ < −d∗/v1 and (x̃, t̃) ∈ Σλ × R with wλ(x̃, t̃) < 0. Then Lwλ(x̃, t̃) > 0 by the

second statement of Lemma 2.6. One can easily verify that for any sufficiently

smooth function g : (−∞, λ] → (0,∞)

g(x1)Lwλ(x, t) = Lwλ(x, t) + 2(∂x1
wλ(x, t))g′(x1) + wλ(x, t)g′′(x1)(2.8)

((x, t) ∈ Σλ × (0,∞)),
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where wλ(x, t) := wλ(x, t)/g(x1). If we set

g(y) := ln(λ + 1 − y) + 1 (y ∈ (−∞, λ]),

then g > 0 and for already fixed x̃ and t̃ we have

(2.9) Lwλ(x̃, t̃) > 2(∂x1
wλ(x̃, t̃))

g′(x̃1)

g(x̃1)
+ wλ(x̃, t̃)

g′′(x̃1)

g(x̃1)
.

Consider the solution of the problem

(2.10)
zt − zyy = F (y, z, zy), (y, t) ∈ R× (0,∞),

z(y, 0) = −M, y ∈ R,

where

F (y, z, zy) =











2zyg
′/g y < λ− 1,

2zyg
′/g − az y ∈ [λ− 1, λ],

0 y > λ,

and a := −g′′(λ− 1)/g(λ− 1) > 0. Then the maximum principle implies z(y, t) < 0

for all (y, t) ∈ R× (0,∞), and since F (y,−M, 0) > 0, z is increasing in t. Also, for

any T > 0 the function Z : (x, t) 7→ z(x1, t+ T ) satisfies

L[Z] 6 2
g′(x1)

g(x1)
∂x1

Z +
g′′(x1)

g(x1)
Z ((x, t) ∈ R

N × (0,∞), x1 < λ).

Then the maximum principle on the set where wλ 6 0 yields wλ(x̃, t̃) > Z(x̃, t̃) =

z(x̃1, t̃+ T ) for any T > 0.

Since z is increasing in t, z̃(y) := lim
t→∞

z(y, t) is well defined for each y ∈ R and

−z̃yy = F (y, z̃, z̃y), y ∈ R.

An analysis of this problem (for details see [23, Claim 2]) implies z̃ ≡ 0. Thus,

wλ(x̃, t̃) > z(x̃1, t̃+ T ) → 0 as T → ∞, a contradiction. �

Lemma 2.8. The mapping t 7→ λ(t) is nondecreasing. If λ(t1) = ∞, this means

that λ(t2) = ∞ for all t2 > t1.

P r o o f. Fix t0 ∈ R and λ < λ(t0). Then

wλ(x, t0) > 0 (x ∈ Σλ),

and by (2.5)

wλ(x, t) > 0 ((x, t) ∈ ∂Σλ × [t0,∞)).
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Next, (2.7) and the mean value theorem imply

Lwλ(x, t) = h(xλ · v)f(u(xλ, t)) − h(x · v)f(u(x, t))

> h(x · v)[f(u(xλ, t)) − f(u(x, t))]

= h(x · v)f ′(θ(x, t))wλ(x, t), (x, t) ∈ Σλ × [t0,∞),

where θ(x, t) is a number between u(x, t) and u(xλ, t). In particular, θ : (x, t) 7→

[0,∞) is a bounded function. Since by (d2)

x · v = x1v1 + x2v2 6 x1v1 + d∗ 6 λ+ d∗ (x ∈ Σλ),

one has h(x · v) 6 h(λ + d∗) for each x ∈ Σλ. Now, the maximum principle, with

the coefficient c(x, t) := h(x · v)f ′(θ(x, t)) being possibly unbounded from below (see

[6], [18]), gives wλ(x, t) > 0 for all (x, t) ∈ Σλ × [t0,∞). Since λ < λ(t0) was chosen

arbitrary, λ(t) > λ(t0) for each t > t0. �

Lemma 2.9. λ∗ = ∞, or equivalently, u is nondecreasing in x1.

P r o o f. We proceed by contradiction, that is, we suppose λ∗ < ∞. Lemma

2.7 guarantees λ∗ > −d∗/v1. By the definition of λ∗ and by Lemma 2.8, there exist

λk ց λ∗ and tk ց −∞ with

inf
x∈Σλ

k

wλk
(x, tk) < 0.

Since u is bounded there is M > 0 with u 6 M . Consequently, by (f1), there exists

Cf such that f
′ 6 Cf on [0,M ]. Set b2 := h(λ∗v1 + d∗ + 1)Cf > 0 and choose

1 > δ > 0 with

(2.11) 2δ−2 > 33(2b2 + 1).

Since f ′(0) = 0, we can fix η > 0 with

(2.12) f ′(z) 6
δ

h(λ∗ + d∗ + 1)(λ∗ + 1 + d∗/v1)3
(z ∈ [0, η]).

Let ε with 0 < ε < δ be sufficiently small (as specified below), and fix k such that

λk < λ∗ + ε. To simplify the notation set λ := λk and denote

g(y) := 2 −
δ

δ + λ− y
(y ∈ (−∞, λ]),

wλ(x, t) :=
wλ(x, t)

g(x1)
((x, t) ∈ Σλ × R).
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Observe that g′′(y) 6 0 and g(y) > 0 for any y 6 λ. For λ already fixed, define

S := {(x, t) ∈ Σλ × R : wλ(x, t) 6 0}.

Case 1. If (x̃, t̃) ∈ S with x̃1 < λ∗ − δ and Lwλ(x̃, t̃) > 0, then (2.8) and the

concavity of g yield

Lwλ(x̃, t̃) > 2(∂x1
wλ(x̃, t̃))

g′(x̃1)

g(x̃1)
.

Case 2. If (x̃, t̃) ∈ S with x̃1 < λ∗ − δ and Lwλ(x̃, t̃) < 0, then Lemma 2.6 yields

h(x̃ · v) > 0. Consequently, (h1) and (d2) yield

(2.13) 0 6 x̃ · v = x̃1v1 + x̃2v2 6 x̃1v1 + d∗ 6 λ∗ + d∗ + 1.

Also, Lemma 2.6 implies x̃1 > −d∗/v1, and therefore

(2.14) x̃λ · v = (2λ− x̃1)v1 + x̃2v2 6 2λv1 + 2d∗ 6 2λ∗ + 2d∗ + 1.

Now, (2.7) implies h(x̃λ · v) > h(x̃ · v) > 0 and (h1), (2.13), (2.14) yield

h(−1) 6 h(x · v) 6 h(2(λ∗ + d∗) + 2) ((x, t) ∈ R
N+1, dP [(x, t), S∗] < 1),

where dP was defined in (1.18) and S
∗ is the convex hull of S and the set {(xλ, t) :

(x, t) ∈ S}. Next, the boundedness of u and standard local parabolic estimates give

|∇u(x, t)| 6 Cλ ((x, t) ∈ S∗).

Furthermore,

(2.15) u(x̃λ∗

, t̃) > u(x̃, t̃) > u(x̃λ, t̃)

and

|x̃λ∗

− x̃λ| = |x̃λ∗

1 − x̃λ
1 | = 2(λ− λ∗) 6 2ε.

Also, by (f1) and h(x̃ · v) > 0

(2.16)

0 > Lwλ(x̃, t̃) = h(x̃λ · v)f(u(x̃λ, t̃)) − h(x̃ · v)f(u(x̃, t̃))

> h(x̃λ · v)f(u(x̃λ, t̃)) − h(x̃ · v)f(u(x̃λ∗

, t̃))

= h(x̃λ · v)[f(u(x̃λ, t̃)) − f(u(x̃λ∗

, t̃))] + [h(x̃λ · v) − h(x̃ · v)]f(u(x̃λ∗

, t̃)).
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Let us estimate each term separately. Since the segment connecting x̃ and x̃λ∗

belongs

to S∗, one has by (2.14), (2.15) and the definition of Cf and Cλ

h(x̃λ · v)[f(u(x̃λ, t̃)) − f(u(x̃λ∗

, t̃))](2.17)

> h(2(λ∗ + d∗) + 1)Cf (u(x̃λ, t̃) − u(x̃λ∗

, t̃))

> −2h(2(λ∗ + d∗) + 1)CfCλε.

To estimate the second term, notice that x̃1 6 λ∗ − δ implies

x̃λ · v − x̃ · v = 2(λ− x̃1)v1 > 2(λ− λ∗ + δ)v1 > 2δv1.

Thus by the monotonicity of h and (2.13) we have

(2.18) h(x̃λ · v) − h(x̃ · v) > inf
y∈[0,λ∗+d∗+1]

(h(y + 2δv1) − h(y)) > 0 .

A substitution of (2.17) and (2.18) into (2.16) yields

0 > −2h(2(λ∗ + d∗) + 1)CfCλε+
[

inf
y∈[0,λ∗+d∗+1]

(

h(y + 2δv1) − h(y)
)

]

f(u(x̃λ∗

, t̃)),

or equivalently,

f(u(x̃λ∗

, t̃)) <
2h(2(λ∗ + d∗) + 1)CfCλ

inf
y∈[0,λ∗+d∗+1]

(h(y + 2δv1) − h(y))
ε.

Hence, by (f1) it follows that for sufficiently small ε > 0 one has u(x̃λ∗

, t̃) 6 η, and

for such ε, (2.12) holds true for any z ∈ [0, u(x̃λ∗

, t̃)]. Then (2.12), (2.13) and (2.15)

imply

Lwλ(x̃, t̃) > h(x̃ · v)[f(u(x̃λ, t̃)) − f(u(x̃, t̃))]

> h(λ∗ + d∗ + 1)
δ

h(λ∗ + d∗ + 1)(λ∗ + 1 + d∗/v1)3
wλ(x̃, t̃)

=
δ

(λ∗ + 1 + d∗/v1)3
wλ(x̃, t̃).

Easy calculations show that

δ

(λ∗ + 1 + d∗/v1)3
6

δ

(δ + λ− y)3
= −

g′′(y)

2
6 −

g′′(y)

g(y)

(

y ∈
[−d∗

v1
, λ∗

])

,

and since x̃1 > −d∗/v1,

Lwλ(x̃, t̃) >
δ

(λ∗ + 1 + d∗/v1)3
wλ(x̃, t̃) > −

g′′(x̃1)

g(x̃1)
wλ(x̃, t̃) = −g′′(x̃1)wλ(x̃, t̃).
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Consequently, (2.8) implies

Lwλ(x̃, t̃) > 2(∂x1
wλ(x̃, t̃))

g′(x̃1)

g(x̃1)
.

Case 3. Consider (x̃, t̃) ∈ S with x̃1 ∈ [λ∗ − δ, λ]. Then by (d2)

x̃ · v = x̃1v1 + x̃2v2 6 λv1 + d∗ 6 λ∗v1 + d∗ + 1,

and therefore for b2 and Cf already fixed we have

Lwλ(x̃, t̃) > h(x̃ · v)[f(u(x̃λ, t̃)) − f(u(x̃, t̃))] > h(λ∗v1 + d∗ + 1)Cfwλ(x̃, t̃)

= b2wλ(x̃, t̃).

Moreover, (2.11) implies

−g′′(y) =
2δ

(δ + λ− y)3
> 2b2 + 1 > g(y)b2 + 1 (y ∈ [λ∗ − δ, λ]).

After a substitution into the previous estimate and then into (2.8), we obtain

Lwλ(x̃, t̃) > 2(∂x1
wλ(x̃, t̃))

g′(x̃1)

g(x̃1)
−
wλ(x̃, t̃)

g(x̃1)
.

The rest of the proof uses the comparison principle similarly to Lemma 2.7, for more

details see [23, Proof of Claim 4]. �

P r o o f of Theorem 2.3. We proceed by a contradiction, that is, we assume

M := ‖u‖L∞(Ω×R) > 0. Then by the continuity of u, there are t0 ∈ R and a smooth

bounded domain K0 ⊂ Ω with |K0| 6 1 (here |K0| denotes the Lebesgue measure

of K0) such that u(x, t0) > 0 for all x ∈ K0. Define

Kσ := {x+ σe1 : x ∈ K0} (σ > 0) .

Since Ω is convex and unbounded in x1, one has Kσ ⊂ Ω for all σ > 0. Let µ > 0 be

the first eigenvalue of the problem

−∆ϕ0 = µϕ0, x ∈ K0,

ϕ0 = 0, x ∈ ∂K0,

where the eigenfunction ϕ0 is normalized so that max
K0

ϕ0 = 1. Set

ϕσ(x) := ϕ0(x1 − σ, x′) (x = (x1, x
′) ∈ Kσ)
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and

ψσ(t) :=

∫

Kσ

u(x, t)ϕσ(x) dx (t ∈ R).

Since by Lemma 2.9 u is nondecreasing in x1 and u > 0 in K0 × {t0},

ψσ(t0) > ψ0(t0) =: c0 > 0 (σ > 0).

Denote

K∗
σ(t) := {x ∈ Kσ : u(x, t)ϕσ(x) > c0/2} (t > t0).

If ψσ(t∗) > c0 for some t
∗ > t0, then (using |Kσ| 6 1)

c0 6

∫

Kσ

u(x, t∗)ϕσ(x) dx 6 |K∗
σ(t∗)| ·M +

c0
2
|Kσ| 6 |K∗

σ(t∗)| ·M +
c0
2
.

Consequently, |K∗
σ(t∗)| > ξ := c0/(2M) > 0. Next,

∫

K∗

σ
(t∗)

u(x, t∗)ϕσ(x) dx > ξ
c0
2

> ξ

∫

Kσ\K∗

σ
(t∗)

u(x, t∗)ϕσ(x) dx

= ξ

∫

Kσ

u(x, t∗)ϕσ(x) dx− ξ

∫

K∗

σ
(t∗)

u(x, t∗)ϕσ(x) dx.

It follows that
∫

K∗

σ
(t∗)

u(x, t∗)ϕσ(x) dx >
ξ

1 + ξ

∫

Kσ

u(x, t∗)ϕσ(x) dx =
c0

2M + c0
ψσ(t∗).

Since K is bounded, we can choose R such that K is a subset of the ball of radius R

centered at the origin. Then for sufficiently large σ > 0

x · v = x1v1 + x2v2 > −|x1 − σ|v1 + v1σ −R|v2|

> R(−v1 − |v2|) + v1σ >
1

2
v1σ (x ∈ Kσ).

Hence, for sufficiently large σ > 0, using (h2) one has

d

dt
ψσ(t∗) =

∫

Kσ

∆u(x, t∗)ϕσ(x) dx+

∫

Kσ

h(x · v)f(u(x, t∗))ϕσ(x) dx

>

∫

Kσ

u(x, t∗)∆ϕσ(x) dx+ h

(

1

2
v1σ

)
∫

Kσ

f(u(x, t∗))ϕσ(x) dx

>

∫

Kσ

u(x, t∗)∆ϕσ(x) dx+ h

(

1

2
v1σ

)
∫

K∗

σ
(t∗)

f(u(x, t∗))

M
u(x, t∗)ϕσ(x) dx

> −µψσ(t∗) + h

(

1

2
v1σ

)

f
(c0

2

) 1

M

∫

K∗

σ
(t∗)

u(x, t∗)ϕσ(x) dx

> ψσ(t∗)

[

−µ+ h

(

1

2
v1σ

)

f
(c0

2

) 1

M

c0
2M + c0

]

> ψσ(t∗).
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Thus, if ψσ(t∗) > c0, then ψ
′
σ(t∗) > 0, and consequently ψ′

σ(t) > ψσ(t) > c0 for

each t > t∗. Since ψσ(t0) > c0, one has ψ
′
σ(t) > c0 > 0 for each t > t0. Therefore

ψσ(t) → ∞ as t→ ∞, a contradiction to the boundedness of u. �

3. Proofs of main results

In this section we use the notation introduced in the previous sections. Especially,

recall the definitions of RN
λ (see (2.1)), Hλ (see (2.2)), x

λ (see (2.4)), and dp (see

(1.18)).

Our main technical tools are the following doubling lemmas.

Lemma 3.1. Let (X, d) be a compact metric space and let ∅ 6= D ⊂ Σ ⊂ X ,

with Σ closed. Set Θ := Σ \ D. Also, let M : D → (0,∞) be a bounded function

on compact subsets of D, and fix a real k > 0. If y ∈ D is such that

M(y)d(y,Θ) > 2k,

then there exists x ∈ D such that

M(x)d(x,Θ) > 2k, M(x) > M(y),

and

(3.1) M(z) 6 2M(x) (z ∈ D ∩B∗(x, kM−1(x))),

where B∗(y,R) := {x ∈ X : d∗(x, y) 6 R} and d∗(x, y) = |d(x,Θ) − d(y,Θ)|.

Lemma 3.2. The statement of Lemma 3.1 holds true if (X, d) is a complete

metric space and B∗(x, kM−1(x)) in (3.1) is replaced by B(x, kM−1(x)), where

B(x,R) := {x ∈ X : d(x, y) 6 R}.

Lemma 3.2 was proved in [25, Lemma 5.1]. The proof of Lemma 3.1 is analogous to

the proof of [25, Lemma 5.1]. One only replaces every d by d∗ and uses compactness

of X when passing to the limit.

P r o o f of Theorem 1.1. This proof is partly inspired by the proofs of the cor-

responding results in [7], [26], [36]. We use the equivalent formulation introduced in

Remark 1.3. If (1.17) fails, then there exist (Tk)k∈N ⊂ (0,∞), a sequence (uk)k∈N of

nonnegative solutions of (1.1) with T replaced by Tk, and (yk, sk)k∈N ⊂ Ω × (0, Tk)

such that

Mk(yk, sk) := u
(p−1)/3
k (yk, sk) > 2k(1 + d−1

k (sk)) (k ∈ N),
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where dk(s) := min{s, Tk − s}1/2. Now, for each k ∈ N, Lemma 3.2 with Xk = Σk =

Ω̄ × [0, Tk], d = dP , Dk = Ω̄ × (0, Tk) and Θk = Ω × {0, Tk} implies the existence

of (xk, tk) ∈ Ω̄ × (0, Tk) with

(3.2) Mk(xk, tk) > Mk(yk, sk) > 2kd−1
k (tk),

Mk(xk, tk) > Mk(yk, sk) > 2k,

2Mk(xk, tk) > Mk(x, t) ((x, t) ∈ Gk),

where

Gk := {(x, t) ∈ Ω × (0, Tk) : dP ((x, t), (xk , tk)) < kλk},

and

λk := M−1
k (xk, tk) → 0 as k → ∞.

Here we have used that dP ((x, t),Θk) = dk(t) for each (x, t) ∈ Σk. By (3.2)

|t− tk| < k2λ2
k <

d2
k(tk)

4
=

1

4
min{tk, Tk − tk} ((x, t) ∈ Gk),

and therefore

{

x ∈ Ω: |x− xk| <
kλk

2

}

×

(

tk −
k2λ2

k

4
, tk +

k2λ2
k

4

)

⊂ Gk.

Since the function a is bounded, we can, after passing to a subsequence, assume that

A := lim
k→∞

a(xk) exists.

Case (1). First assume A 6= 0. We define a sequence (vk)k∈N of rescaled copies of

u as

vk(x, t) := λ
3/(p−1)
k u

(

xk + λ
3/2
k x, tk + λ3

kt
)

((x, t) ∈ Dk),

where

(3.3) Dk :=

{

x ∈ λ
−3/2
k (Ω − xk) : |x| <

k

2λ
1/2
k

}

×

(

−
k2

4λk
,
k2

4λk

)

.

Then vk(0, 0) = 1 and, by (3.2), 0 6 vk(x, t) 6 2 for each (x, t) ∈ Dk. Moreover, vk

satisfies

(vk)t = ∆vk + a
(

xk + λ
3

2

k x
)

vp
k, (x, t) ∈ Dk,(3.4)

vk = 0, (x, t) ∈

{

y ∈ λ
−3/2
k (∂Ω − xk) : |y| <

k

2λ
1

2

k

}

×

(

−
k2

4λk
,
k2

4λk

)

.(3.5)
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By passing to a suitable subsequence we may assume either

(i)
dist(xk, ∂Ω)

λ
3

2

k

→ ∞ or (ii)
dist(xk, ∂Ω)

λ
3

2

k

→ c∗ > 0.

If (i) holds, then (3.4), the Lp estimates, and Schauder’s estimates yield a subse-

quence of (vk)k∈N converging in C
2+σ,1+σ/2
loc (RN × R), σ ∈ (0, 1) to a function v∞

satisfying

(v∞)t = ∆v∞ + Avp
∞, (x, t) ∈ R

N × R.

Moreover, v∞(0, 0) = 1 and v∞ 6 2. However, if A > 0 and p < pB(N) (for the

definition of pB(N) see (1.10)) this contradicts [5, Remark 2.6]. If A < 0 and p > 1

we have a contradiction to Lemma 2.1.

If (ii) holds, then after an application of a suitable orthogonal change of coor-

dinates, the Lp estimates and Schauder’s estimates yield a subsequence of (vk)k∈N

converging in C
2+σ,1+σ/2
loc (RN

c∗ × R) to a function v∞ satisfying

(v∞)t = ∆v∞ + Avp
∞, (x, t) ∈ R

N
c∗ × R,

v∞ = 0, (x, t) ∈ ∂RN
c∗ × R,

with v∞(0, 0) = 1 and v∞ 6 2. However, if A > 0 and p < pS(N) 6 pB(N −1), then

this contradicts [26, Theorem 2.1]. If A < 0 and p > 1, we have a contradiction to

Lemma 2.2.

Case (2). Assume A = 0. Since a is bounded in C2(Ω̄), we can assume, after pass-

ing to a subsequence, that there exists a vector B := lim
k→∞

∇a(xk) ∈ R
N . Then (1.3)

implies B 6= 0.

If (xk)k∈N has a convergent subsequence, we can, after appropriate restriction,

assume the existence of x∞ := lim
k→∞

xk. Then A = a(x∞) = 0. Set z̃k := x∞ and

Vk := V := Ω for each k ∈ N

If (xk)k∈N has no convergent subsequence, we can assume |xk − xl| > 3 for each

k 6= l. Let Vk be the connected component of B1(xk)∩Ω containing xk, where B1(y)

is the unit ball centered at y. By [16, Lemma 6.37], there exists an extension of

a ∈ C2(V k) to C2(B1(xk)), which we denote again by a. Since Vk ∩Vl = ∅ for k 6= l,

the function a is well defined on V :=
⋃

k∈N

B1(xk).

Denote Γ̃ := {x ∈ V : a(x) = 0}. Since a ∈ C2(V), A = 0, and B 6= 0, there is

(z̃k)k∈N ⊂ Γ̃ with |xk − z̃k| → 0 as k → ∞. Define δk and (zk)k∈N ⊂ Γ̃ such that

δk := |zk − xk| = dist(xk, Γ̃) 6 |xk − z̃k| → 0.
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Then a ∈ C2(V) yields lim
k→∞

∇a(zk) = lim
k→∞

∇a(xk) 6= 0. Thus we may assume

|∇a(zk)| 6= 0, and therefore

δk =
|∇a(zk)(xk − zk)|

|∇a(zk)|
(k ∈ N).

Using that zk ∈ Γ̃, that is, a(zk) = 0, we obtain

(3.6) a(xk + λkx) = ∇a(zk)(xk + λkx− zk) +O(|δk|
2 + λ2

k|x|
2).

We define a sequence (wk)k∈N of rescaled copies of u as

wk(x, t) := λ
3/(p−1)
k u(xk + λkx, tk + λ2

kt) ((x, t) ∈ D̃k),

where

D̃k :=

{

x ∈ λ−1
k (Vk − xk) : |x| <

k

2

}

×

(

−
k2

4
,
k2

4

)

.

Then wk(0, 0) = 1 and 0 6 wk(x, t) 6 2 for each (x, t) ∈ D̃k, and wk satisfies

(wk)t = ∆wk +
1

λk
a(xk + λkx)w

p
k, (x, t) ∈ D̃k,(3.7)

wk = 0, (x, t) ∈

{

y ∈ λ−1
k (∂Ω − xk) : |y| <

k

2

}

×

(

−
k2

4
,
k2

4

)

.(3.8)

Hence, by (3.6),

(wk)t = ∆wk +
1

λk

[

∇a(zk)(xk + λkx− zk) +O(|δk|
2 + λ2

k|x|
2)

]

wp
k,(3.9)

(x, t) ∈ D̃k.

Case (2a). Assume that there is a suitable subsequence of (xk)k∈N such that

lim
k→∞

∇a(zk)(xk − zk)

λk
= ±|B| lim

k→∞

δk
λk

=: d∗ ∈ R.

By passing to a yet another subsequence we may assume that either

(i)
dist(xk, ∂Ω)

λk
→ ∞ or (ii)

dist(xk, ∂Ω)

λk
→ c∗ > 0.

If (i) holds, then (3.9), Lp estimates, and standard imbeddings yield a subsequence

of (wk)k∈N converging in Cloc(R
N ×R) to a function w∞ ∈ C(RN ×R) that is a weak

solution of the problem

(w∞)t = ∆w∞ + (d∗ + B · x)wp
∞, (x, t) ∈ R

N × R,

190



satisfying w∞(0, 0) = 1, 0 6 w∞ 6 2. Standard regularity theory implies that

w∞ is in fact a classical solution. After a suitable orthogonal transformation and

translation, we obtain a nontrivial nonnegative bounded solution of the problem

(w∞)t = ∆w∞ ± |B|xnw
p
∞, (x, t) ∈ R

N × R,

a contradiction to [23, Theorem 1.1] for any p > 1.

If (ii) holds, then dist(xk, ∂Ω) → 0 as k → ∞. After a suitable rotation we have

νΩ(xk) → −e1 as k → ∞. Then (3.9), Lp estimates, and standard imbeddings yield

a subsequence of (wk)k∈N converging in Cloc(R
N
c∗×R) to a function w∞ ∈ C(RN

c∗×R)

that is a weak solution of the problem

(w∞)t = ∆w∞ + (d∗ + B · x)wp
∞, (x, t) ∈ R

N
c∗ × R,

w∞ = 0, (x, t) ∈ ∂RN
c∗ × R,

with w∞(0, 0) = 1 and 0 6 w∞ 6 2. Standard regularity theory yields that w∞ is in

fact a classical solution. Also, a ∈ C2(Ω̄), dist(xk, ∂Ω) → 0 and (1.13) imply

0 <
c̃

2
6 lim inf

k→∞

∣

∣

∣

∣

∇a(xk)

|∇a(xk)|
+ e1

∣

∣

∣

∣

=

∣

∣

∣

∣

B

|B|
+ e1

∣

∣

∣

∣

.

Thus, B is not a multiple of −e1. Now, after a suitable translation, we obtain a

contradiction to Corollary 2.4 for any p > 1.

Case (2b). After passing to a subsequence, we may assume that

lim
k→∞

∇a(zk)(xk − zk)

λk
= ±|B| lim

k→∞

δk
λk

= ±∞.

Setting

y =
x

αk
, s =

t

α2
k

,

where

αk :=

(

λk

δk|∇a(zk)|

)
1

2

=

(

λk

|∇a(zk)(xk − zk)|

)
1

2

→ 0

we transform (3.9) to

(wk)s = ∆ywk +
α2

k

λk
a(xk + λkαky)w

p
k

= ∆ywk +
∇a(zk)(xk − zk + λkx) +O(δ2k + λ2

k|x|
2)

|∇a(zk)(xk − zk)|
wp

k

= ∆ywk + [±1 + α3
k∇a(zk)y +O(δk + α4

kλk|y|
2)]wp

k, (y, s) ∈ D̂k,

191



where

D̂k :=

{

y ∈ (λkαk)−1(Ω − xk) : |y| <
k

2αk

}

×

(

−
k2

4α2
k

,
k2

4α2
k

)

.

Moreover, by (3.8)

wk = 0, (y, s) ∈

{

y ∈ (λkαk)−1(∂Ω − xk) : |y| <
k

2αk

}

×

(

−
k2

4α2
k

,
k2

4α2
k

)

.

By passing to a yet another subsequence, we may assume either

(i)
dist(xk, ∂Ω)

λkαk
→ ∞ or (ii)

dist(xk, ∂Ω)

λkαk
→ c∗ > 0.

If (i) holds, the Lp estimates and standard imbeddings yield a subsequence of (wk)k∈N

converging in Cloc(R
N × R) to a function w∞ ∈ C(RN × R) that is a weak solution

of the problem

(w∞)t = ∆w∞ ± wp
∞, (x, t) ∈ R

N × R,

and w∞(0, 0) = 1, 0 6 w∞ 6 2. Standard regularity theory implies that w∞ is a

classical solution. However, this contradicts [5] (with “+” sign) for any 1 < p <

pB(N) and Lemma 2.1 (with “−” sign) for any p > 1.

If (ii) holds, then after a suitable orthogonal change of coordinates and a trans-

lation, the Lp estimates and standard imbeddings yield a subsequence of (wk)k∈N

converging in Cloc(R
N
c∗ × R) to a function w∞ ∈ C(RN

c∗ × R) that is a weak solution

of the problem
(w∞)t = ∆w∞ ± wp

∞, (x, t) ∈ R
N
c∗ × R,

w∞ = 0, (x, t) ∈ ∂RN
c∗ × R,

and w∞(0, 0) = 1, 0 6 w∞ 6 2. Standard regularity theory implies that w∞ is a

classical solution. However, this contradicts [26, Theorem 2.1] (with “+” sign) for

any 1 < p < pS(N) 6 pB(N − 1) and Lemma 2.2 (with “−” sign) for any p > 1. �

Let us formulate a sufficient condition that guarantees (1.20).

Lemma 3.3. Let Ω be a smooth bounded domain in R
N , 1 < p < pB(N), and

assume that a ∈ C2(Ω̄). For a nonnegative classical solution u of (1.1), (1.2) define

x∗ : (0, T ) → Ω such that

u(x∗(t), t) = sup
x∈Ω

u(x, t) (t ∈ (0, T )).

If there exist ε∗ > 0 and t0 ∈ [0, T ] such that dist(x∗(t),Γ) > ε∗ for each t ∈ [t0, T ],

then (1.20) holds with C depending on N , p, Ω, a, ‖u0‖L∞(Ω), ε
∗ and t0.
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P r o o f. As in the proof of Theorem 1.1, we use the equivalent formulation intro-

duced in Remark 1.3. Assume that (1.20) fails. Then there exist (Tk)k∈N ⊂ (0,∞),

a sequence (uk)k∈N of nonnegative solutions of (1.1), and a sequence (yk, sk)k∈N ⊂

Ω × (0, Tk) such that

M̃k(yk, sk) > 2k(1 + d−1
k (sk)),

where

M̃k := u
(p−1)/2
k , dk(t) = min{t, Tk − t}1/2.

Now, Lemma 3.1 with compact Xk = Σk = Ω̄ × [0, Tk], Dk = Ω̄ × (0, Tk) and

Θk = Ω̄ × {0, Tk} implies the existence of a sequence (x′k, tk) ∈ Ω × (0, Tk) with

(3.10)

M̃k(x′k, tk) > M̃k(yk, sk) > 2kd−1
k (tk),

M̃k(x′k, tk) > M̃k(yk, sk) > 2k,

2M̃k(x′k, tk) > M̃k(x, t) ((x, t) ∈ G′
k),

where

G′
k := {(x, t) ∈ Ω × (0, T ) : d∗k((x, t), (x′k, tk)) < kλ′k},

d∗k((x, t), (y, s)) := |dk(t) − dk(s)| ((x, t), (y, s) ∈ Xk),

and

λ′k := M̃−1(x′k, tk) → 0 as k → ∞.

Observe that d∗k does not depend on x, and therefore (3.10) remains true if we replace

x′k by xk := x∗(tk) and G′
k by

Gk := {(x, t) ∈ Ω × (0, T ) : d∗k((x, t), (xk , tk)) < kλk} ⊂ G′
k,

where

λk := M̃−1(xk, tk) → 0.

By our assumptions lim
k→∞

a(xk) 6= 0. The rest of the proof is now the same as Case (1)

in the proof of Theorem 1.1 (see also [26, Theorem 4.1]) with vk replaced by

vk(x, t) := λ2/(p−1)u(xk + λkx, tk + λ2
kt) ((x, t) ∈ Dk),

and Dk by

Dk :=

{

(x, t) ∈ λ−1
k (Ω − xk) : |x| <

k

2

}

×

(

−
k2

2
,
k2

2

)

.

�

193



P r o o f of Proposition 1.5. In the proof we implicitly assume that all constants

depend on N , p, Ω, a, ‖u0‖L∞(Ω) and T . Fix any ξ ∈ ∂Ω with a(ξ) = 0. Since Ω is

convex, we can, after a suitable rotation, assume

ξ1 = sup
x∈Ω

x1, and therefore νΩ(ξ) = e1.

Since ξ is a local minimizer of a in Ω̄, all tangential derivatives of a vanish at ξ.

Then (1.7) implies ∂x1
a(ξ) < 0. Denote

Ωλ := {x ∈ Ω: x1 > λ}.

Assume u 6≡ 0, otherwise the statement is trivial. Observe that u satisfies

ut = ∆u + α(x, t)u, (x, t) ∈ Ω × (0, T ),

where α(x, t) = a(x)up−1. By Theorem 1.1, α is bounded on Ω × (0, T/2) and the

bound depends only on the constants implicitly assumed. Next, the Hopf boundary

lemma (see [19, Lemma 2.6]) implies ∂e1
u(ξ, T/2) < 0. By the convexity of Ω, we

can choose λ < ξ1, sufficiently close to ξ1 such that

wλ(x, t) := u(xλ, t) − u(x, t) ((x, t) ∈ Ωλ × (0, T ))

is well defined (for the definition of xλ and Ωλ see (2.4)). Since ∂x1
u(ξ, T/2) < 0 and

∂x1
a(ξ) < 0, we can increase λ < ξ1 such that

wλ(x, T/2) > 0, and a(xλ) > a(x) (x ∈ Ωλ).

Observe that ξ1 − λ > c1 > 0, where c1 is independent of ξ. Since a(x
λ) > a(x) for

x ∈ Ωλ, wλ satisfies

(wλ)t > ∆wλ + α∗(x, t)wλ (x, t) ∈ Ωλ × (0, T ),

where

α∗(x, t) := a(x)
up(xλ, t) − up(x, t)

u(xλ, t) − u(x, t)
((x, t) ∈ Ωλ × (0, T ))

is bounded on compact subintervals of (0, T ). Similarly to (2.5)

wλ(x, t) > 0 ((x, t) ∈ ∂Ωλ × (0, T )).

Now, the maximum principle implies wλ > 0 in Ωλ×(T/2, T ). Therefore |x∗(t)−ξ| >

c0 for each t ∈ (T/2, T ). Since c0 is independent of ξ and Γ ⊂ ∂Ω, one has

dist(x∗(t),Γ) > dist(x∗(t), ∂Ω) > c0 > 0 (t ∈ (T/2, T )) ,

and the statement of the proposition follows from Lemma 3.3. �
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Lemma 3.4. Let N = 1, Ω = (0, 1) and fix µ ∈ [0, 1
2 ). Assume a ∈ C2([0, 1]) has

exactly one nondegenerate zero µ ∈ [0, 2µ]. Also assume a(x) < 0 for x ∈ [0, µ) and

(3.11) u0(x) 6 u0(x
µ) (x ∈ (0, µ)).

If u 6≡ 0 is a nonnegative solution of the problem (1.1), (1.2), then |x∗(t)−µ| > c0 > 0

and c0 depends on N , p, a, ‖u0‖L∞((0,1)), T .

P r o o f. For each λ ∈ (0, 1
2 ), define wλ : (0, λ) × (0,∞) → R as wλ(x, t) :=

u(xλ, t) − u(x, t). Since a(xµ) > 0 > a(x) for each x ∈ [0, µ],

a(xµ)up(xµ, t) − a(x)up(x, t) > 0 ((x, t) ∈ [0, µ] × (0, T )).

Thus,

(wµ)t − (wµ)xx > 0 ((x, t) ∈ (0, µ) × (0, T )).

By (3.11)

wµ(x, 0) = u0(x
µ) − u0(x) > 0 (x ∈ (0, µ)).

Since u 6≡ 0, the maximum principle implies u > 0 in (0, 1) × (0, T ). Then similarly

to (2.5)

wµ(0, t) > 0 and wµ(µ, t) = 0 (t ∈ (0, T )).

Then by the maximum principle wµ > 0 in (0, µ) × (0, T ) and ∂xwµ(µ, t) < 0 for

t ∈ (0, T ). Hence, for sufficiently small ε0 > 0 we obtain

wλ(x, T/2) > 0 (x ∈ (0, λ), λ ∈ [µ, µ+ ε0)).

As above one can show

wλ(0, t) > 0 and wλ(λ, t) = 0 (t ∈ (T/2, T )).

Since a′(µ) > 0, we can decrease ε0 > 0 to obtain a(xλ) > a(x) for each x ∈ (0, λ)

and each λ ∈ [µ, µ+ ε0). Then

(wλ)t − ∆wλ > a(x)[up(xλ, t) − up(x, t)] = c(x, t)wλ ((x, t) ∈ (0, λ) × (t0, T )),

where c(x, t) is a continuous function on [0, λ]×[t0, T ) (possibly unbounded as t→ T ).

The maximum principle implies wλ(x, t) > 0 for each (x, t) ∈ (0, λ) × (t0, T ). In

particular, x∗(t) > λ > µ and therefore |x∗(t) − µ| > c0 > 0 for each t ∈ (t0, T ). �

P r o o f of Proposition 1.7. Lemma 3.4 with µ = µ1 implies |x∗(t)−µ1| > ε∗ > 0.

If we replace x by 1 − x and use Lemma 3.4 with µ = 1 − µ2 again, we obtain

|x∗(t) − µ2| > ε∗ > 0. Now, the proposition follows from Lemma 3.3. �
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P r o o f of Proposition 1.6. Without loss of generality assume a(0) 6 0, otherwise

replace x by 1 − x. If µ < 1
2 , then the proposition follows from Lemma 3.4 and

Lemma 3.3. Assume µ ∈ [12 , 1]. Similarly to the proof of Lemma 3.4, we can show

that wµ(x, t) := u(xµ, t) − u(x, t) is well defined on [µ, 1] and satisfies

wµ(x, t) < 0 ((x, t) ∈ (µ, 1) × (0, T )) and w′
µ(µ, t) < 0 (t ∈ (0, T )).

Hence, for λ > µ sufficiently close to µ we have wλ(x, T/2) < 0 for any x ∈ (λ, 1).

Similarly to Lemma 3.4 (using the maximum principle), we prove wλ(x, t) < 0 for any

(x, t) ∈ (λ, 1) × (T/2, T ). Consequently, |x∗(t) − µ| > λ − µ > 0 for all t ∈ (T/2, T )

and the proposition follows from Lemma 3.3. �
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