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Abstract. If X is a convex surface in a Euclidean space, then the squared intrinsic
distance function dist2(x, y) is DC (d.c., delta-convex) on X×X in the only natural extrinsic
sense. An analogous result holds for the squared distance function dist2(x,F ) from a closed
set F ⊂ X. Applications concerning r-boundaries (distance spheres) and ambiguous loci
(exoskeletons) of closed subsets of a convex surface are given.
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1. Introduction

The geometry of 2-dimensional convex surfaces in R
3 was thoroughly studied by

A.D. Alexandrov [1]. Important generalizations for n-dimensional convex surfaces

in Rn+1 are due to A.D. Milka (see, e.g., [12]). Many (but not all) results on geometry

of convex surfaces are special cases of results of the theory of Alexandrov spaces with

curvature bounded from below.

Let X ⊂ R
n+1 be an n-dimensional (closed bounded) convex surface and ∅ 6= F ⊂

X a closed set. We will prove (Theorem 3.8) that

(A) the intrinsic distance dF (x) := dist(x, F ) is locally DC on X \F in the natural
extrinsic sense (with respect to natural local charts).

The research was supported by the grant MSM 0021620839 from the Czech Ministry of
Education. The second author was also supported by the grants GAČR 201/06/0198
and 201/09/0067.
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It is well known that, in a Euclidean space, dF is not only locally DC but even

locally semiconcave on the complement of F . This was generalized to smooth Rie-

mannian manifolds in [11].

The result (A) can be applied to some problems from the geometry of convex

surfaces that are formulated in the language of intrinsic distance functions. The

reason of this is that DC functions (i.e., functions which are differences of two convex

functions) have many nice properties which are close to those of C2 functions. We

present two applications.

The first (Theorem 4.1) concerns r-boundaries (distance spheres) of a closed set

F ⊂ X in the cases dimX = 2, 3. It implies that, for almost all r, the r-boundary is

a Lipschitz manifold, and so provides an analogue of well-known results proved (in

Euclidean spaces) by Ferry [6] and Fu [7].

The second application (Theorem 4.4) concerns the ambiguous locus (exoskeleton)

of a closed subset of an n-dimensional (n ∈ N) convex surface. This result is essen-

tially stronger than the corresponding result of T. Zamfirescu in Alexandrov spaces

with curvature bounded from below.

It is not clear whether the results of these applications can be obtained as conse-

quences of results in Alexandrov spaces (possibly with some additional properties).

In any case, there are serious obstacles when trying to obtain such generalizations

by our methods (see Remark 4.2).

To explain briefly what is the “natural extrinsic sense” from (A), consider for

a while an unbounded convex surface X ⊂ R
n+1 which is the graph of a convex

function f : R
n → R, and denote x∗ := (x, f(x)) for x ∈ R

n. Then (A) also holds

(see Remark 3.9) and is equivalent to the statement

(B) the function h(x) := dist(x∗, F ) is locally DC on {x ∈ R
n : x∗ /∈ F}.

Moreover, it is true that

(C) h2(x) := dist2(x∗, F ) is DC on the whole Rn, and

(D) the function g(x, y) := dist2(x∗, y∗) is DC on R
2n = R

n × R
n.

For a natural formulation of the corresponding results (Theorems 3.8 and 3.4) for

a closed bounded convex surface X , we will define in a canonical way the structure

of a DC manifold on X and X ×X .

A weaker version of the result (C) (in the case n = 2) has been known for a long

time to the second author, who used a method similar to that of Alexandrov’s proof

(for two-dimensional convex surfaces) of Alexandrov-Toponogov theorem, namely

approximating a general convex surface by polyhedral convex surfaces and consider-

ing a developing of those polyhedral convex surfaces “along geodesics”. However, he

was not able to formalize the geometrically transparent method of developings in a

rigorous way.

248



In the present article we use another method suggested by the first author. Namely,

we use the well-known semiconcavity properties of distance functions onX andX×X
in an intrinsic sense (i.e., in the sense of the theory of length spaces). When applying

this method, it was not necessary to use developings. However, our proof still needs

approximation by polyhedral surfaces.

Note that, in the case n = 1, the above statements (A)–(D) have straigthfor-

ward proofs. Moreover, the functions h, h2 from (B) and (C) (even in the case

n = 1) can happen to be neither locally semiconcave nor locally semiconvex on

{x ∈ R
n : x∗ /∈ F}. (To show this, it is sufficient to set f(x) = max(|x|, 1)

and F = {(−2, 2)}. Then h is clearly positive and continuous on (−2,∞) and

affine with the slopes
√

2, 1,
√

2 on the intervals [−2,−1], [−1, 1], [1,∞), respec-

tively. Consequently, h is not semiconvex (resp. semiconcave) on any neighbour-

hood of −1 (resp. 1). The same is true also for the function g := h2, since clearly

g′−(−1) > g′+(−1) and g′−(+1) < g′+(+1).)

The organization of the paper is as follows. In Section 2 (Preliminaries) we recall

some facts concerning length spaces, semiconcave functions, DC functions, DC man-

ifolds, and DC surfaces. Further we prove (by standard methods) two needful techni-

cal lemmas on approximation of convex surfaces by polyhedral surfaces. In Section 3

we prove our main results on distance functions on closed bounded convex surfaces.

Section 4 is devoted to applications which we already briefly described above. In the

last short Section 5 we present several remarks and questions concerning DC struc-

tures on length spaces.

2. Preliminaries

In a metric space, B(c, r) denotes the open ball with center c and radius r. The

symbol H k stands for the k-dimensional Hausdorff measure. If a, b ∈ R
n, then [a, b]

denotes the segment joining a and b. If F is a Lipschitz mapping, then LipF stands

for the least Lipschitz constant of F .

If W is a unitary space and V is a subspace of W , then we denote by V ⊥
W the

orthogonal complement of V in W .

If f is a mapping from a normed space X to a normed space Y , then the sym-

bol df(a) stands for the (Fréchet) differential of f at a ∈ X . If df(a) exists and

lim
x,y→a, x 6=y

f(y) − f(x) − df(a)(y − x)

‖y − x‖ = 0,

then we say that f is strictly differentiable at a (cf. [13, p. 19]).

For the sake of brevity, we introduce the following notation (we use the symbol ∆2,

though ∆2f(x, y) is one half of a second difference).
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Definition 2.1. If f is a real function defined on a subset U of a vector space

and x, y, 1
2 (x + y) ∈ U , we denote

(1) ∆2f(x, y) :=
f(x) + f(y)

2
− f

(x+ y

2

)

.

Note that, if f(y) = ‖y‖2, y ∈ R
n, then

(2) ∆2f(x+ h, x− h) =
‖x+ h‖2 + ‖x− h‖2

2
− ‖x‖2 = ‖h‖2.

We shall need the following easy lemma. Its first part is an obvious consequence

of [22, Lemma 1.16] (which works with convex functions). The second part clearly

follows from the first.

Lemma 2.2.

(i) Let f : (a, b) → R be a continuous function. Suppose that for every t ∈ (a, b)

and δ > 0 there exists 0 < d < δ such that ∆2f(t + d, t − d) 6 0. Then f is

concave on (a, b).

(ii) Let f be a continuous function on an open convex subset C ⊂ R
n. Suppose that

for every x ∈ C there exists δ > 0 such that ∆2f(x + h, x − h) 6 0 whenever

‖h‖ < δ. Then f is concave on C.

2.1. Length spaces and semiconcave functions.

A metric space (X, d) is called a length (or inner or intrinsic) space if, for each

x, y ∈ X , d(x, y) equals the infimum of the lengths of curves joining x and y (see

[3, p. 38] or [17, p. 824]). If X is a length space, then a curve ϕ : [a, b] → X is

called minimal, if it is a shortest curve joining its endpoints x = ϕ(a) and y = ϕ(b)

parametrized by the arc-length. A length space X is called a geodesic (or strictly

intrinsic) space if each pair of points in X can be joined by a minimal curve. Note

that any complete, locally compact length space is geodesic (see [17, Theorem 8]).

Alexandrov spaces with curvature bounded from below are defined as length spaces

which have a lower curvature bound in the sense of Alexandrov. The precise defini-

tion of these spaces can be found in [3] or [17]. (Frequently Alexandrov spaces are

supposed to be complete and/or finite dimensional.)

If X is a length space and ϕ : [a, b] → X a minimal curve, then the point s =

ϕ(1
2 (a + b)) is called the midpoint of the minimal curve ϕ. A point t is called a

midpoint of x, y if it is the midpoint of a minimal curve ϕ joining x and y. If ϕ as

above can be chosen to lie in a set G ⊂ X , we will say that t is a G-midpoint of x, y.

One of several natural equivalent definitions (see [5, Definition 1.1.1 and Proposi-

tion 1.1.3]) of semiconcavity in R
n reads as follows.
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Definition 2.3. A function u on an open set A ⊂ R
n is called semiconcave with

a semiconcavity constant c > 0 if u is continuous on A and

(3) ∆2u(x+ h, x− h) 6
c

2
‖h‖2

whenever x, h ∈ R
n and [x− h, x+ h] ⊂ A.

Remark 2.4. It is well known and easy to see (cf. [5, Proposition 1.1.3]) that

u is semiconcave on A with semiconcavity constant c if and only if the function

g(x) = u(x) − 1
2c‖x‖2 is locally concave on A.

The notion of semiconcavity extends naturally to length spaces X . The authors

working in the theory of length spaces use mostly the following terminology (cf. [16,

p. 5] or [17, p. 862]).

Definition 2.5. Let X be a geodesic space. Let G ⊂ X be open, c > 0, and let

f : G→ R be a locally Lipschitz function.

(i) We say that f is c-concave if for each minimal curve γ : [a, b] → G, the function

g(t) = f ◦ γ(t) − 1
2ct

2 is concave on [a, b].

(ii) We say that f is semiconcave on G if for each x ∈ G there exists c > 0 such

that f is c-concave on an open neighbourhood of x.

Remark 2.6. If X = R
n, then c-concavity coincides with semiconcavity with

constant c.

We will need the following simple well-known characterization of c-concavity. Be-

cause of lack of the reference, we give the proof.

Lemma 2.7. Let Y be a geodesic space. Let M ⊂ Y be open, c > 0, and

let f : M → R be a locally Lipschitz function. Then the following statements are

equivalent.

(i) f is c-concave on M .

(ii) If x, y ∈M , and s is an M -midpoint of x, y, then

(4)
f(x) + f(y)

2
− f(s) 6

c

2
d2,

where d := 1
2 dist(x, y).

P r o o f. Suppose that (i) holds. To prove (ii), let x, y, s, d be as in (ii). Choose

a minimal curve γ : [a, b] → M with γ(a) = x, γ(b) = y and γ(1
2 (a + b)) = s.

By (i), the function g(t) = f ◦ γ(t) − 1
2ct

2 is concave on [a, b]. So f̃ := f ◦ γ is
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semiconcave with semiconcavity constant c on (a, b) by Remark 2.4. Consequently,

∆2f̃(b− h, a+ h) 6 1
2c|12 (b− a) − h|2 for each 0 < h < 1

2 (b− a). By continuity of f̃

we clearly obtain (4), since d = 1
2 (b− a).

To prove (ii) ⇒ (i), consider a minimal curve γ : [a, b] → M and suppose that

f satisfies (ii). It is easy to see that then f̃ := f ◦γ is semiconcave with semiconcavity
constant c on (a, b). By Remark 2.4, g(t) = f ◦ γ(t)− 1

2ct
2 is concave on (a, b), and

therefore (by continuity of g), also on [a, b]. �

2.2. DC manifolds and DC surfaces.

Definition 2.8. Let C be a nonempty open convex set in a real normed linear

space X . A function f : C → R is called DC (or d.c., or delta-convex) if it can be

represented as a difference of two continuous convex functions on C.

If Y is a finite-dimensional normed linear space, then a mapping F : C → Y is

called DC, if y∗ ◦ F is a DC function on C for each linear functional y∗ ∈ Y ∗.

Remark 2.9.

(i) To prove that F is DC, it is clearly sufficient to show that y∗ ◦ F is DC for
each y∗ from a basis of Y ∗.

(ii) Each DC mapping is clearly locally Lipschitz.

(iii) There are many works on optimization that deal with DC functions. A theory

of DC (delta-convex) mappings in the case when Y is a general normed linear

space was built in [22].

Some basic properties of DC functions and mappings are established in the fol-

lowing lemma.

Lemma 2.10. Let X , Y , Z be finite-dimensional normed linear spaces, let C ⊂ X

be a nonempty open convex set, and U ⊂ X and V ⊂ Y open sets.

(a) ([2]) If the derivative of a function f on C is Lipchitz, then f is DC. In particular,

each affine mapping is DC.

(b) ([8]) If a mapping F : C → Y is locally DC on C, then it is DC on C.

(c) ([8]) Let a mapping F : U → Y be locally DC, F (U) ⊂ V , and let G : V → Z

be locally DC. Then G ◦ F is locally DC on U .
(d) ([22]) Let F : U → V be a bilipschitz bijection which is locally DC on U . Then

F−1 is locally DC on V .

Since locally DC mappings are stable with respect to compositions (Lem-

ma 2.10 (c)), the notion of an n-dimensional DC manifold can be defined in an

obvious way, see [10, § 2.6, § 2.7]. The importance of this notion was shown in

Perelman’s preprint [15], cf. Section 5.
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Definition 2.11. Let X be a paracompact Hausdorff topological space and

n ∈ N.

(i) We say that (U,ϕ) is an n-dimensional chart on X if U is a nonempty open

subset of X and ϕ : U → R
n is a homeomorphism of U onto an open set

ϕ(U) ⊂ R
n.

(ii) We say that two n-dimensional charts (U1, ϕ1) and (U2, ϕ2) on X are DC-

compatible if U1∩U2 = ∅ or U1∩U2 6= ∅ and the transition maps ϕ2 ◦ (ϕ1)
−1

and ϕ1◦(ϕ2)
−1 are locally DC (on their domains ϕ1(U1∩U2) and ϕ2(U1∩U2) ,

respectively).

(iii) We say that a system A of n-dimensional charts on X is an n-dimensional

DC atlas on X , if the domains of the charts from A cover X and any two

charts from A are DC-compatible.

Obviously, each n-dimensional DC atlas A on X can be extended to a uniquely

determined maximal n-dimensional DC atlas (which consists of all n-dimensional

charts on X that are DC-compatible with all charts from A). We will say that

X is equipped with an (n-dimensional) DC structure (or with a structure of an n-

dimensional DC manifold), if a maximal n-dimensional DC atlas on X is determined

(e.g., by a choice of an n-dimensional DC atlas).

Let X be equipped with a DC structure and let f be a function defined on an

open set G ⊂ X . Then we say that f is DC if f ◦ϕ−1 is locally DC on ϕ(U ∩G) for

each chart (U,ϕ) from the maximal DC atlas on X such that U ∩G 6= ∅. Clearly, it
is sufficient to check this condition for each chart from an arbitrary fixed DC atlas.

Remark 2.12.

(i) If we consider, in the definition of the chart (U,ϕ), a mapping ϕ from U

to an n-dimensional unitary space Hϕ, the whole Definition 2.11 does not

change sense. (Indeed, we can identify Hϕ with R
n by an isometry because

of Lemma 2.10 (a), (c).) In the sequel, it will be convenient for us to use such

(formally more general) charts with range in an n-dimensional linear subspace

of a Euclidean space.

(ii) If X , Y are nonempty spaces equipped with m,n-dimensional DC structures,

respectively, then the Cartesian product X×Y is canonically equipped with an
(m + n)-dimensional DC structure. Indeed, let AX , AY be m,n-dimensional

DC atlases on X , Y , respectively. Then

A = {(UX × UY , ϕX ⊗ ϕY ) : (UX , ϕX) ∈ AX , (UY , ϕY ) ∈ AY }

is an (m + n)-dimensional DC atlas on X × Y , if we define (ϕX ⊗ ϕY )(x, y) =

(ϕX(x), ϕY (y)).
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(iii) If X , Y are equipped with m,n-dimensional DC structures, respectively, and

f : X × Y → R is DC, then the section x 7→ f(x, y) is DC on X for any y ∈ Y ,

and the section y 7→ f(x, y) is DC on Y for any x ∈ X .

Definition 2.13. Let H be an (n + k)-dimensional unitary space (n, k ∈ N).

We say that a set M ⊂ H is a k-dimensional Lipschitz (or DC) surface, if it is

nonempty and for each x ∈ M there exist a k-dimensional linear space Q ⊂ H , an

open neighbourhood W of x, a set G ⊂ Q open in Q and a Lipschitz (locally DC,

respectively) mapping h : G→ Q⊥ such that

M ∩W = {u+ h(u) : u ∈ G}.

Remark 2.14.

(i) Lipschitz surfaces were considered e.g. by Whitehead [24, p. 165] or Walter [23],

who called them strong Lipschitz submanifolds. Obviously, each DC surface is

a Lipschitz surface. For some properties of DC surfaces see [27].

(ii) If we suppose, in the above definition of a DC surface, that G is convex and h

is DC and Lipschitz, we obtain clearly the same notion.

(iii) Each Lipschitz (or DC) surface admits a natural structure of a Lipschitz (DC,

respectively) manifold that is given by the charts of the form (W ∩M,ψ−1),

where ψ(u) = u+ h(u), u ∈ G (cf. Remark 2.12 (i)).

Lemma 2.15. Let H be an n-dimensional unitary space, V ⊂ H an open convex

set, and f : V → R
m a DC mapping. Then there exists a sequence (Ti) of (n − 1)-

dimensional DC surfaces in H such that f is strictly differentiable at each point of

V \
∞
⋃

i=1

Ti.

P r o o f. Let f = (f1, . . . , fm). By the definition of a DC mapping, fj = αj −βj,

where αj and βj are convex functions. By [25], for each j we can find a sequence T
j
k ,

k ∈ N, of (n − 1)-dimensional DC surfaces in H such that both αj and βj are

differentiable at each point of Dj := H \
∞
⋃

k=1

T j
k . Since each convex function is

strictly differentiable at each point at which it is (Fréchet) differentiable (see, e.g., [22,

Proposition 3.8] for a proof of this well-known fact), we conclude that each fj is

strictly differentiable at each point of Dj . Since strict differentiablity of f clearly

follows from strict differentiability of all fj ’s, the proof is completed after ordering

all sets T j
k , k ∈ N, j = 1, . . . ,m, to a sequence (Ti). �
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2.3. Convex surfaces.

Definition 2.16. A convex body in R
n is a compact convex subset with non-

empty interior. Under a convex surface in Rn we understand the boundary X = ∂C

of a convex body C. A convex surface X is said to be polyhedral if it can be covered

by finitely many hyperplanes.

It is well known that a convex surface in Rn with its intrinsic metric is a complete

geodesic space with nonnegative curvature (see [4] or [3, §10.2]).

Obviously, each convex surface X is a DC surface (cf. Remark 2.18 (iii)), and so

has a canonical DC structure. In the sequel, we will work mainly with “standard”

DC charts on X (which are considered in the generalized sense of Remark 2.12 (i)).

Definition 2.17. Let X ⊂ R
n+1 be a convex surface and U a nonempty, rel-

atively open subset of X . We say that (U,ϕ) is a standard n-dimensional chart

on X , if there exist a unit vector e ∈ R
n+1, a convex, relatively open subset V of

the hyperplane e⊥, and a Lipschitz convex function f : V → R such that, setting

F (x) := x+ f(x)e, x ∈ V , we have U = F (V ) and ϕ = F−1. In this case we will say

that (U,ϕ) is an (e, V )-standard chart on X and f will be called the convex function

associated with the standard chart.

Remark 2.18.

(i) Clearly, if (U,ϕ) is an (e, V )-standard chart on X and π denotes the orthogonal

projection onto e⊥, then ϕ = π↾U .

(ii) Let (U1, ϕ1) and (U2, ϕ2) be standard charts as in the above definition. Then

these charts are DC-compatible. Indeed, ϕ−1
1 is a DC mapping from V1 to R

n+1

and ϕ2 is a restriction of a linear mapping π (see (i)). So ϕ2◦(ϕ1)
−1 = π◦(ϕ1)

−1

is locally DC by Lemma 2.10 (a), (c).

(iii) Let X ⊂ R
n+1 be a convex surface, z ∈ X , and let C be the convex body for

whichX = ∂C. Choose a ∈ intC, set e := (a− z)/‖a− z‖ and V := π(B(a, δ)),

where δ > 0 is sufficiently small and π is the orthogonal projection of Rn+1

onto e⊥. Then it is easy to see that there exists an (e, V )-standard chart (U,ϕ)

on X with z ∈ U .

By (ii) and (iii) above, the following definition is correct.

Definition 2.19. Let X ⊂ R
n+1 be a convex surface. Then the standard

DC structure on X is determined by the atlas of all standard n-dimensional charts

on X .

Lemma 2.20. Let X ⊂ R
n+1 (n > 2) be a convex surface and let (U,ϕ) be an

(e, V )-standard chart on X . Let T ⊂ e⊥ be an (n− 1)-dimensional DC surface in e⊥

with T ∩ V 6= ∅. Then ϕ−1(T ∩ V ) is an (n− 1)-dimensional DC surface in R
n+1.
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P r o o f. Let f be the convex function associated with (U,ϕ). Let z be an

arbitrary point of ϕ−1(T ∩ V ). Denote x := ϕ(z). By Definition 2.13 there exist

an (n − 1)-dimensional linear space Q ⊂ e⊥, a set G ⊂ Q open in Q, an open

neighbourhood W of x in e⊥ and a locally DC mapping h : G → Q⊥
e⊥ such that

T ∩W = {u+ h(u) : u ∈ G}. We can and will suppose that W ⊂ V . Observing that

z ∈ ϕ−1(T ∩W ) and ϕ−1(T ∩W ) is an open set in ϕ−1(T ∩ V ),

ϕ−1(T ∩W ) = {u+ h(u) + f(u+ h(u))e : u ∈ G}

and u 7→ h(u) + f(u+ h(u))e is a locally DC mapping G→ Q⊥
Rn+1 , we complete the

proof. �

We shall need the following known facts. Because of lack of a reference, we supply

proofs of (ii) and (iii).

Lemma 2.21.

(i) Let X be a convex surface in R
m. Then there exists a sequence (Xk) of poly-

hedral convex surfaces in R
m converging to X in the Hausdorff distance.

(ii) Let convex surfaces Xk converge in the Hausdorff distance to the convex sur-

face X in R
m and let distX , distXk

denote the intrinsic distances on X , Xk,

respectively. Assume that a, b ∈ X , ak, bk ∈ Xk, ak → a and bk → b. Then

distXk
(ak, bk) → distX(a, b).

(iii) If Xk, X are as in (ii) then diamXk → diamX , where diamXk, diamX are the

intrinsic diameters of Xk, X , respectively.

P r o o f. (i) is well-known, see e.g. [20, § 1.8.15].

(ii) can be proved as in [3, Lemma 10.2.7], where a slightly different assertion is

shown. We present here the proof for completeness. Let C, Ck be convex bodies

in R
m such that X = ∂C, Xk = ∂Ck, k ∈ N, and assume, without loss of generality,

that the origin lies in the interior of C. It is easy to show that, since the Hausdorff

distances of X and Xk tend to zero, there exist k0 ∈ N and a sequence εk ց 0 such

that

(1 − εk)C ⊂ Ck ⊂ (1 + εk)C, k > k0.

For a convex body D in Rm and the corresponding convex surface Y = ∂D, we shall

denote by ΠY the metric projection of R
m onto Y , defined outside of the interior

ofD. The symbol distY denotes the intrinsic distance on the convex surface Y . Let a,

b, ak, bk from the assumption be given, and (for k > k0) denote ãk = ΠXk
((1+εk)a),

b̃k = ΠXk
((1 + εk)b). Since ΠXk

is a contraction (see e.g. [20, Theorem 1.2.2]), we

have

distXk
(ãk, b̃k) 6 dist(1+εk)X((1 + εk)a, (1 + εk)b) = (1 + εk) distX(a, b).
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Further, clearly ãk → a and b̃k → b, which implies that distXk
(ãk, ak) → 0 and

distXk
(b̃k, bk) → 0. Consequently,

lim sup
k→∞

distXk
(ak, bk) 6 distX(a, b).

The inequality lim inf
k→∞

distXk
(ak, bk) > distX(a, b) is obtained in a similar way, con-

sidering the metric projections of ak and bk onto (1 − εk)X .

(iii) is a straightforward consequence of (ii) and the compactness of X . �

Lemma 2.22. Let X ⊂ R
n+1 be a convex surface, (U,ϕ) an (e, V )-standard chart

on X , and let f be the associated convex function. Let (Xk) be a sequence of convex

surfaces which tends in the Hausdorff metric to X , and let W ⊂ V be an open

convex set such that W ⊂ V . Then there exists k0 ∈ N such that, for each k > k0,

the surface Xk has an (e,W )-standard chart (Uk, ϕk), and the associated convex

functions fk satisfy

(5) fk(x) → f(x), x ∈W and lim sup
k→∞

Lip fk 6 Lip f.

P r o o f. Denote by C and Ck the convex bodies for which X = ∂C and Xk =

∂Ck, respectively. Clearly, the convex function f has the form

f(v) = inf{t ∈ R : v + te ∈ C}, v ∈ V.

Let π be the orthogonal projection onto e⊥ and denote

Wr := {v ∈ e⊥ : dist(v,W ) < r}, r > 0.

Let ε, δ > 0 be such that Wε+δ ⊂ V , and let k0 = k0(δ) ∈ N be such that the

Hausdorff distance of X and Xk (and, hence, also of C and Ck) is less than δ for all

k > k0. Fix a k > k0. It is easy to show that

f∗
k (v) = inf{t ∈ R : v + te ∈ Ck}, v ∈ Wε

is a finite convex function. We shall show that

(6) |f∗
k (v) − f(v)| 6 (1 + Lip f)δ, v ∈Wε.

Take a point v ∈ Wε and denote x = v + f(v)e ∈ X and y = v + f∗
k (v)e ∈ Xk. The

definition of the Hausdorff distance yields that there must be a point c ∈ C with

‖c− y‖ < δ. This implies that for w := π(c) we have f(w) 6 c · e and

f∗
k (v) = y · e > c · e− δ > f(w) − δ > f(v) − δ Lip f − δ.
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For the other inequality, note that, since f∗
k is convex, there exists a unit vector

u ∈ R
n+1 with u · e =: −η < 0 such that (z − y) · u 6 0 for all z ∈ Ck (i.e., u is a

unit outer normal vector to Ck at y). It is easy to see that (z − y) · u 6 δ for all

z ∈ C, since the Hausdorff distance of C and Ck is less than δ. Consider the point

z = w+ f(w)e ∈ C with w = v+ δu∗, where u∗ = π(u)/‖π(u)‖ if π(u) 6= 0 and u∗ is

any unit vector in e⊥ if π(u) = 0. Then

δ > (z − y) · u = (w + f(w)e− v − f∗
k (v)e) · u

= (w − v) · u+ (f(w) − f∗
k (v))(e · u)

= δ
√

1 − η2 + (f(w) − f∗
k (v))(−η)

> δ(1 − η) + (f∗
k (v) − f(w))η,

which implies that

f∗
k (v) 6 f(w) + δ 6 f(v) + δ Lip f + δ

by the Lipschitz property of f , and (6) is verified.

We shall show now that for k > k0, Xk has an (e,W )-standard chart with an

associated convex function fk := f∗
k ↾W (i.e., that fk is Lipschitz) and that (5) holds.

Given two different points u, v ∈ W , we define points u∗, v∗ ∈ Wε as follows: we

set u∗ = u − ε(v − u)/‖v − u‖, v∗ = v if fk(u) > fk(v), and u∗ = u, v∗ = v +

ε(v − u)/‖v − u‖ if fk(u) 6 fk(v). Then, using (6) and convexity of f∗
k , we obtain

|fk(u) − fk(v)|
‖u− v‖ 6

|f∗
k (u∗) − f∗

k (v∗)|
‖u∗ − v∗‖ 6 Lip f +

(2 + 2 Lip f)δ

ε

whenever k > k0(δ). Therefore, Lip fk 6 Lip f + 1
ε (2 + 2 Lip f)δ. Using this inequal-

ity, (6), and the fact that δ > 0 can be arbitrarily small, we obtain (5). �

3. Extrinsic properties of distance functions on convex surfaces

We will prove our results via the following result concerning intrinsic properties of

distance functions on Alexandrov spaces, which is an easy consequence of well-known

results.

Proposition 3.1. Let X be a complete geodesic (Alexandrov) space with non-

negative curvature. Then the Cartesian product X2 with the product metric

distX×X((x1, x2), (y1, y2)) =

√

dist2(x1, y1) + dist2(x2, y2)

is a complete geodesic space with nonnegative curvature as well, and the squared

distance g(x1, x2) := dist2(x1, x2) is 4-concave on X2.
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P r o o f. The assertion on the properties of X2 is well known, see e.g. [3, § 3.6.1,

§ 10.2.1]. In order to show the 4-concavity of g, we shall use the fact that

(7) g(x1, x2) = 2 dist2X×X((x1, x2), D), x1, x2 ∈ X,

where D is the diagonal in X ×X . To see that (7) holds, note that

dist2X×X((x1, x2), D) = inf
y∈X

dist2X×X((x1, x2), (y, y))

= inf
y∈X

(dist2(x1, y) + dist2(x2, y)).

Choosing a midpoint of x1 and x2 for y in the last expression, we see that

dist2X×X((x1, x2), D) 6 1
2 dist2(x1, x2). On the other hand, if y is an arbitrary

point of X , we get by the triangle inequality

dist2(x1, x2) 6 2(dist2(x1, y) + dist2(x2, y)) = 2 dist2X×X((x1, x2), (y, y)),

and thus we get the other inequality proving (7).

To finish the proof, we use the following fact: If Y is a length space of nonnegative

curvature and ∅ 6= F ⊂ Y a closed subset, then the squared distance function d2
F (·) =

dist2Y (·, F ) is 2-concave on Y . This is well known if F is a singleton (see e.g. [17,

Proposition 116]) and follows easily for a general nonempty closed set F by the facts

that d2
F (y) = inf

x∈F
d2
{x}(y) and that the infimum of concave functions is concave. If

we apply this for Y = X ×X and F = D, (7) completes the proof. �

Lemma 3.2. Let X be a polyhedral convex surface in R
n+1, T ∈ X , and (U,ϕ)

be an (e, V )-standard chart on X such that T ∈ U . Let f be the associated convex

function and t := ϕ(T ). Then there exists a δ > 0 such that for all x, y ∈ V with

t = 1
2 (x+ y) and ‖x− t‖ = ‖y − t‖ < δ we have

dist(S, T ) 6 2∆2f(x, y),

whenever S is a midpoint of ϕ−1(x), ϕ−1(y).

P r o o f. Denoting F := ϕ−1, we have F (u) = u+ f(u)e. Let L be the Lipschitz

constant of f . It is easy to see that we can choose δ0 > 0 such that for any x ∈ V with

‖x− t‖ < δ0, the function f is affine on the segment [x, t]. Then we take δ 6 δ0/L,

such that for any two points x, y ∈ B(t, δ), any minimal curve connecting F (x)

and F (y) (and, hence, also any midpoint of F (x), F (y)) lies in U . Let two points

x, y ∈ B(t, δ) with t = 1
2 (x+ y) be given and denote ∆ = ∆2f(x, y). Let S be a

midpoint of F (x), F (y) (lying necessarily in U) and set s = ϕ(S). Note that ∆ 6 Lδ.
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From the parallelogram law, we obtain

2‖F (x) − T ‖2 + 2‖F (y) − T ‖2 = ‖F (y) − F (x)‖2 + 4∆2,

since

(8) ∆ =
∥

∥

∥

F (x) + F (y)

2
− T

∥

∥

∥
.

Taking the square root and using the inequality a+ b 6
√

2a2 + 2b2, we obtain

‖F (x) − T ‖ + ‖F (y) − T ‖ 6
√

‖F (y) − F (x)‖2 + 4∆2.

It is clear that the geodesic distance of F (x) and F (y) is at most ‖F (x) − T ‖ +

‖F (y) − T ‖ (which is the length of a curve in X connecting F (x) and F (y)). Thus,

‖S − F (x)‖ 6 dist(S, F (x)) =
1

2
dist(F (x), F (y)) 6

√

(‖F (y) − F (x)‖
2

)2

+ ∆2

and the same upper bound applies to ‖S−F (y)‖. Summing the squares of both the
distances, we obtain

‖S − F (x)‖2 + ‖S − F (y)‖2 6
1

2
‖F (y) − F (x)‖2 + 2∆2

and, since the left-hand side equals, again by the parallelogram law,

1

2
(‖F (y) − F (x)‖2 + ‖2S − (F (x) + F (y)‖2),

we arrive at

(9)
∥

∥

∥
S − F (x) + F (y)

2

∥

∥

∥
6 ∆.

Considering the orthogonal projections of S and 1
2 (F (x) + F (y)) onto e⊥, we obtain

‖s− t‖ 6 ∆ 6 Lδ 6 δ0

and, hence, we have

dist(S, T ) = ‖S − T ‖,

since f is affine on [s, t]. On the other hand, equations (8) and (9) imply ‖S − T ‖ 6

2∆, which completes the proof. �
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Proposition 3.3. Let X ⊂ R
n+1 be a convex surface and let (Ui, ϕi) be (ei, Vi)

standard charts, i = 1, 2. Let f1, f2 be the corresponding convex functions. Set

g(x1, x2) = dist2(ϕ−1
1 (x1), ϕ

−1
2 (x2)), x1 ∈ V1, x2 ∈ V2,

where dist is the intrinsic distance on X . Then the function g − c − d is concave

on V1 × V2, where

c(x1, x2) = 4(1 + L2)(‖x1‖2 + ‖x2‖2),

d(x1, x2) = 4M(f1(x1) + f2(x2)),

L = max{Lip f1,Lip f2} and M is the intrinsic diameter of X .

P r o o f. Assume first that the convex surface X is polyhedral. We shall show

that for any t ∈ V1 × V2 there exists δ > 0 such that

(10) ∆2g(x, y) 6 ∆2c(x, y) + ∆2d(x, y)

for all x, y ∈ B(t, δ) ⊂ V1 × V2 with t = 1
2 (x + y), which implies the assertion, see

Lemma 2.2. We have

∆2g(x, y) =
g(x) + g(y)

2
− g(t)

=
(g(x) + g(y)

2
− g(s)

)

+ (g(s) − g(t))

whenever s = (s1, s2) ∈ V1 × V2 is such that (ϕ−1
1 (s1), ϕ

−1
2 (s2)) is a midpoint

of (ϕ−1
1 (x1), ϕ

−1
2 (x2)) and (ϕ−1

1 (y1), ϕ
−1
2 (y2)) in X

2, where x = (x1, x2) and y =

(y1, y2). By Proposition 3.1 and Lemma 2.7 (ii), the first summand is bounded from

above by

2
dist2(ϕ−1

1 (x1), ϕ
−1
1 (y1)) + dist2(ϕ−1

2 (x2), ϕ
−1
2 (y2))

4
.

Since clearly

dist(ϕ−1
i (xi), ϕ

−1
i (yi)) 6

√

1 + (Lip fi)2‖xi − yi‖, i = 1, 2,

we get

g(x) + g(y)

2
− g(s) 6 (2 + (Lip f1)

2 + (Lip f2)
2)
‖x1 − y1‖2 + ‖x2 − y2‖2

2

6 ∆2c(x, y)
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(we use the fact that ∆2c(x, y) = 4(1 + L2)(‖x − y‖/2)2, see (2)). In order to

verify (10), it remains thus to show that

(11) |g(s) − g(t)| 6 ∆2d(x, y).

Denote t = (t1, t2), s = (s1, s2), Ti = ϕ−1
i (ti) and Si = ϕ−1

i (si), i = 1, 2 . We have

|g(s) − g(t)| = |dist2(S1, S2) − dist2(T1, T2)|
6 2M |dist(S1, S2) − dist(T1, T2)|
6 2M(dist(S1, T1) + dist(S2, T2)),

where the last inequality follows from the (iterated) triangle inequality. Applying

Lemma 3.2 and the fact that Si is a midpoint of ϕ
−1
i (xi), ϕ

−1
i (yi) (see [17, § 4.3]),

we get dist(Si, Ti) 6 2∆2fi(xi, yi), i = 1, 2, for δ sufficiently small. Since clearly

∆2d(x, y) = 4M(∆2f1(x1, y1) + ∆2f2(x2, y2)),

(11) follows.

Let now X be an arbitrary convex surface. Let (Xk) be a sequence of polyhedral

convex surfaces which tends in the Hausdorff metric to X . Consider arbitrary open

convex sets Wi ⊂ Vi with Wi ⊂ Vi, i = 1, 2. Applying Lemma 2.22 (and considering

a subsequence of Xk if necessary), we find (ei,Wi)-standard charts (Ui,k, ϕi,k) of Xk

such that the associated convex functions fi,k converge to fi↾Wi
, L∗

i := lim
k→∞

Lip fi,k

exists and L∗
i 6 Lip fi, i = 1, 2.

By the first part of the proof we know that the function

ψk(x1, x2) := gk(x1, x2) − 4(1 + L2
k)(‖x1‖2 + ‖x2‖2) − 4Mk(f1,k(x1) + f2,k(x2)),

whereMk is the intrinsic diameter of Xk and Lk = max(Lip f1,k,Lip f1,k), is concave

on W1×W2. Obviously, Lk → L∗ := max(L∗
1, L

∗
2) 6 L and Lemma 2.21 implies that

gk → g and Mk →M . Consequently,

lim
k→∞

ψk(x1, x2) = g(x1, x2) − 4(1 + L∗2)(‖x1‖2 + ‖x2‖2) − 4M(f1(x1) + f2(x2))

is concave on W1 ×W2. Since L
∗ 6 L, we obtain that g − c − d is concave on

W1 ×W2. Thus g − c− d is locally concave, and so concave, on V1 × V2. �

Proposition 3.3 has the following immediate corollary (recall the definition of a

DC function on a DC manifold, Definition 2.11, and the definition of the DC structure

on X2, Remark 2.12 (ii)).

Theorem 3.4. Let X be a convex surface in R
n+1. Then the squared distance

function (x, y) 7→ dist2(x, y) is DC on X2.
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Using Remark 2.12 (iii), we obtain

Corollary 3.5. Let X be a convex surface in Rn+1 and let x0 ∈ X be fixed. Then

the squared distance from x0, x 7→ dist2(x, x0), is DC on X .

Since the function g(z) =
√
z is DC on (0,∞), Lemma 2.10 (c) easily implies

Corollary 3.6. Let X be a convex surface in Rn+1 and let x0 ∈ X be fixed. Then

the distance from x0, x 7→ dist(x, x0), is DC on X \ {x0}.
Remark 3.7. If n = 1, it is not difficult to show that the function x 7→ dist(x, x0)

is DC on the whole X . On the other hand, we conjecture that this statement is not

true in general for n > 2.

Theorem 3.8. Let X ⊂ R
n+1 be a convex surface and ∅ 6= F ⊂ X a closed set.

Denoting dF := dist(·, F ),

(i) the function (dF )2 is DC on X and

(ii) the function dF is DC on X \ F .

P r o o f. Since X is compact, we can choose a finite system (Ui, ϕi), i ∈ I,

of (ei, Vi)-standard charts which forms a DC atlas on X . Let fi, i ∈ I, be the

corresponding convex functions. Choose L > 0 such that Lip fi 6 L for all i ∈ I and

let M be the intrinsic diameter of X . To prove (i), it is sufficient to show that, for

all i ∈ I, (dF )2 ◦ (ϕi)
−1 is DC on Vi. So fix i ∈ I and consider an arbitrary y ∈ F .

Choose j ∈ I with y ∈ Uj . Set

ω(x) := 4(1 + L2)‖x‖2 + 4Mfi(x), x ∈ Vi.

Proposition 3.3 (used for ϕ1 = ϕi and ϕ2 = ϕj) easily implies that the function

hy(x) = dist2(ϕ−1
i (x), y) − ω(x) is concave on Vi. Consequently, the function

ψ(x) := (dF )2 ◦ (ϕi)
−1(x) − ω(x) = inf

y∈F
hy(x)

is concave on Vi. So (dF )2 ◦ (ϕi)
−1 = ψ + ω = ω − (−ψ) is DC on Vi. Thus

(i) is proved. Since the function g(z) =
√
z is DC on (0,∞), Lemma 2.10 (c) easily

implies (ii). �

Remark 3.9. It is not difficult to show that Theorems 3.8 and 3.4 imply the

corresponding results in n-dimensional closed unbounded convex surfaces X ⊂ R
n+1;

in particular that the statements (B), (C) and (D) from Introduction hold. To this

end, it is sufficient to consider a bounded closed convex surface X̃ which contains a

sufficiently large part of X .
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4. Applications

Our results on distance functions can be applied to a number of problems from

the geometry of convex surfaces that are formulated in the language of distance

functions. We present below applications concerning r-boundaries (distance spheres),

the multijoined locus, and the ambiguous locus (exoskeleton) of a closed subset of

a convex surface. Recall that r-boundaries and ambiguous loci were studied (in

Euclidean, Riemannian and Alexandrov spaces) in a number of articles (see, e.g., [6],

[21], [28], [9]).

The first application (Theorem 4.1 below) concerning r-boundaries provides an

analogue of well-known results proved (in Euclidean spaces) by Ferry [6] and Fu [7].

It is an easy consequence of Theorem 3.8 and the following general result on level

sets of DC functions, which immediately follows from [18, Theorem 3.4]:

Theorem DC ([18]). Let n ∈ {2, 3}, let E be an n-dimensional unitary space,
and let d be a locally DC function on an open set G ⊂ E. Suppose that d has no

stationary point. Then there exists a set N ⊂ R with H (n−1)/2(N) = 0 such that

for every r ∈ d(G) \N , the set d−1(r) is an (n− 1)-dimensional DC surface in E.

Moreover, N can be chosen such that N = d(C), where C is a closed set in G.

(Let us note that C can be chosen to be the set of all critical points of d, but we

will not need this fact.)

Theorem 4.1. Let n ∈ {2, 3} and let X ⊂ R
n+1 be a convex surface and ∅ 6= K ⊂

X a closed set. For r > 0, consider the r-boundary (distance sphere) Kr := {x ∈
X : dist(x,K) = r}. There exists a compact set N ⊂ [0,∞) with H (n−1)/2(N) = 0

such that for every r ∈ (0,∞) \N , the r-boundary Kr is either empty, or an (n− 1)-

dimensional DC surface in R
n+1.

P r o o f. Choose a system (Ui, ϕi), i ∈ N, of (ei, Vi)-standard charts on X such

that G := X \K =
∞
⋃

i=1

Ui. By Theorem 3.8 we know that di := dK ◦ϕ−1
i is locally DC

on Vi, where dK := dist(·,K). Moreover, no t ∈ ϕi(Ui) is a stationary point of di

(i.e., the differential of di at t is nonzero). Indeed, otherwise there would exist δ > 0

such that |di(τ) − di(t)| < ‖τ − t‖ whenever ‖τ − t‖ < δ. Denote x := ϕ−1(t) and

choose a minimal curve γ with endpoints x and u ∈ K and length s = dist(x,K).

Choosing a point x∗ on the image of γ which is sufficiently close to x and putting

τ := ϕi(x
∗), we clearly have ‖τ − t‖ < δ and |di(τ) − di(t)| = dist(x, x∗) > ‖τ − t‖,

which is a contradiction.

Consequently, by Theorem DC we can find for each i a set Si ⊂ Vi closed in Vi such

that, for Ni := di(Si), we know thatH
(n−1)/2(Ni) = 0 and, for each r ∈ (0,∞)\Ni,

the set d−1
i (r) is either empty, or an (n− 1)-dimensional DC surface in e⊥i .
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Define S as the set of all points x ∈ G such that ϕi(x) ∈ Si whenever x ∈ Ui.

Obviously, S is closed in G. Set N := dK(S) ∪ {0}. Since clearly N ⊂
∞
⋃

i=1

Ni ∪ {0},

we have H (n−1)/2(N) = 0. Since K ∪ S is compact, N = dK(K ∪ S) and dK is

continuous, we obtain that N is compact.

Let now r ∈ (0,∞) \ N and x ∈ Kr. Let x ∈ Ui. Then clearly Kr ∩ Ui =

ϕ−1
i (d−1

i (r)). Since d−1
i (r) is an (n− 1)-dimensional DC surface in e⊥i , Lemma 2.20

implies that Kr ∩ Ui is an (n − 1)-dimensional DC surface in R
n+1. Since x ∈ Kr

was arbitrary, we obtain that Kr is an (n− 1)-dimensional DC surface in R
n+1. �

Remark 4.2. Let n = 2. Then the weaker version of Theorem 4.1 in which

H 1(N) = 0 (instead of H 1/2(N) = 0) and Kr are (n − 1)-dimensional Lipschitz

manifolds follows from [21, Theorem B] proved in 2-dimensional Alexandrov spaces

without boundary. In such Alexandrov spaces even the version in whichH 1/2(N) =

0 and Kr are (n−1)-dimensional Lipschitz manifolds holds; it is proved in [18] using

Theorem DC and Perelman’s DC structure (cf. Section 5). However, it seems to be

impossible to deduce by this method Theorem 4.1 in its full strength; any proof that

Kr are DC surfaces probably needs results of the present article.

If X is a 3-dimensional Alexandrov space without boundary, it is still possible that

the version of Theorem 4.1 in which Kr are Lipschitz manifolds holds. Nevertheless,

it cannot be proved using only Theorem DC and Perelman’s DC structure even if

X is a convex surface. The obstacle is that the set X \X∗ of “Perelman’s singular”

points (cf. Section 5) can have positive 1-dimensional Hausdorff measure even if X is

a convex surface in R
4 (see [18, Example 6.5]).

Remark 4.3. Examples due to Ferry [6] show that Theorem 4.1 cannot be gen-

eralized to n > 4. For an arbitrary n-dimensional convex surface X we can, however,

obtain (quite similarly to the way used in [18] for Riemannian manifolds or Alexan-

drov spaces without Perelman singular points) that for all r > 0 except a countable

set, either Kr is empty or Kr contains an (n − 1)-dimensional DC surface Ar ⊂ X

such that Ar is dense and open in Kr, and H
n−1(Kr \Ar) = 0.

If K is a closed subset of a length space X , the multijoined locus M(K) of K is

the set of all points x ∈ X such that the distance from x to K is realized by at least

two different minimal curves in X . If two such minimal curves exist that connect x

with two different points of K, x is said to belong to the ambiguous locus A(K) of K.

The ambiguous locus of K is also called the skeleton of X \ K (or the exoskeleton
of K, [9]).

Zamfirescu [28] studies the multijoined locus in a complete geodesic (Alexandrov)

space of curvature bounded from below and shows that it is σ-porous. An application

of Theorem 3.8 yields a stronger result for convex surfaces:
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Theorem 4.4. Let K be a closed subset of a convex surface X ⊂ R
n+1 (n > 2).

Then M(K) (and, hence, also A(K)) can be covered by countably many (n − 1)-

dimensional DC surfaces lying in X .

P r o o f. Let (U,ϕ) be an (e, V )-standard chart on X . It is clearly sufficient

to prove that M(K) ∩ U can be covered by countably many (n − 1)-dimensional

DC surfaces. Set F := ϕ−1 and denote by dK(z) the intrinsic distance of z ∈ X

from K. Since both the mapping F and the function dK ◦ F are DC on V (see
Theorem 3.8 and Lemma 2.10), they are by Lemma 2.15 strictly differentiable at all

points of V \ N , where N is a countable union of (n − 1)-dimensional DC surfaces

in e⊥. By Lemma 2.20, F (N ∩ V ) is a countable union of (n − 1)-dimensional

DC surfaces in R
n+1. So it is sufficient to prove that M(K) ∩ U ⊂ F (N). To prove

this inclusion, suppose to the contrary that there exists a point x ∈M(K)∩U such
that both F and dK ◦ F are strictly differentiable at x.
We can assume without loss of generality that x = 0. Let T := (dF (0))(e⊥) be

the vector tangent space to X at 0. Let P be the projection of Rn+1 onto T in the

direction of e and define Q := (P ↾U )−1. It is easy to see that Q = F ◦ (dF (0))−1

and therefore dQ(0) = (dF (0)) ◦ (dF (0))−1 = idT .

Since 0 ∈ M(K), there exist two different minimal curves β, γ : [0, r] → X such

that r = dK(0), β(0) = γ(0) = 0, β(r) ∈ K, and γ(r) ∈ K. As any minimal curves

on a convex surface, β and γ have right semitangents at 0 (see [4, Corollary 2]); let

u, v ∈ R
n+1 be unit vectors from these semitangents. Further, [12, Theorem 2] easily

implies that u 6= v.

Clearly dK ◦ β(t) = r − t, t ∈ [0, r], and (P ◦ β)′+(0) = P (β′
+(0)) = u. Further

observe that dK ◦ Q is differentiable at 0, since dK ◦ F is differentiable at 0 =

(dF (0))−1(0). Using the above facts, we obtain

(d(dK ◦Q)(0))(u) = (d(dK ◦Q)(0))((P ◦ β)′+(0))

= (dK ◦Q ◦ P ◦ β)′+(0)

= (dK ◦ β)′+(0) = −1.

In the same way we obtain (d(dK ◦Q)(0))(v) = −1.

Thus, u+ v 6= 0 and, by linearity of the differential,

(d(dK ◦Q)(0))
( u+ v

‖u+ v‖
)

=
−2

‖u+ v‖ < −1.

Thus there exists ε > 0 such that

(12) ‖d(dK ◦Q)(0)‖ > 1 + ε.
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Since dQ(0) = idT and Q = F ◦ (dF (0))−1 is clearly strictly differentiable at 0, there

exists δ > 0 such that

‖Q(p) −Q(q) − (p− q)‖ 6 ε‖p− q‖, p, q ∈ B(0, δ) ∩ T,

and consequently Q is Lipschitz on B(0, δ) ∩ T with constant 1 + ε. Let p, q ∈
B(0, δ) ∩ T and consider the curve ω : [0, 1] → X , ω(t) = Q(tp + (1 − t)q). Then

clearly

dist(Q(p), Q(q)) 6 length ω 6 (1 + ε)‖p− q‖.

Consequently,

‖dK ◦Q(p) − dK ◦Q(q)‖ 6 dist(Q(p), Q(q)) 6 (1 + ε)‖p− q‖.

Thus the function dK ◦ Q is Lipschitz on B(0, δ) ∩ T with constant 1 + ε, which

contradicts (12). �

Remark 4.5. An analoguous result on ambiguous loci in a Hilbert space was

proved in [26].

5. Remarks and questions

The results of [15] and Corollary 3.6 suggest that the following definition is natural.

Definition 5.1. Let X be a length space and let an open set G ⊂ X be equipped

with an n-dimensional DC structure. We will say that this DC structure is compatible

with the intrinsic metric on X , if the following statements hold.

(i) For each DC chart (U,ϕ), the map ϕ : U → R
n is locally bilipschitz.

(ii) For each x0 ∈ X , the distance function dist(x0, ·) is DC (with respect to the
DC structure) on G \ {x0}.

If M is an n-dimensional Alexandrov space with curvature bounded from below

and without boundary, the results of [15] (cf. [10, § 2.7]) give that there exist an open

dense set M∗ ⊂M with dimH(M \M∗) 6 n− 2 and an n-dimensional DC structure

on M∗ compatible with the intrinsic metric on M (cf. [15, p. 6, line 9 from below]).

Since the components of each chart of this DC structure are formed by distance func-

tions, Lemma 2.10 (d) easily implies that no other DC structure on M∗ compatible

with the intrinsic metric exists.

Let X ⊂ R
n+1 be a convex surface. Then Corollary 3.6 gives that the standard

DC structure on X is compatible with the intrinsic metric on X . By the above

267



observations, there is no other compatible DC structure on the (open dense) “Perel-

man’s set” X∗. We conjecture that this uniqueness is true also on the whole X.

Further note that the standard DC structure on X has an atlas such that all the

corresponding transition maps are C∞. Indeed, let C be the convex body for which

X = ∂C. We can suppose 0 ∈ intC and find r > 0 such that B(0, r) ⊂ intC.

Now “identify” X with the C∞ manifold ∂B(0, r) via the radial projection of X on

∂B(0, r). Then, this bijection transfers the C∞ structure of ∂B(0, r) on X .

We conclude with the following problem.

Problem. Let f : R
n → R be a semiconcave (or a DC) function. Consider the

“semiconcave surface” (the DC surface, respectively) X := graph f equipped with

the intrinsic metric. Let x0 ∈ X . Is it true that the distance function dist(x0, ·)
is DC on X \ {x0} with respect to the natural DC structure (given by the projection
onto R

n)? In other words, is the natural DC structure on X compatible with the

intrinsic metric on X?

If f is convex, then the answer is affirmative, see Remark 3.9. If f is semiconcave,

then each minimal curve ϕ on X has bounded turn in R
n+1 by [19]. Thus an

interesting result concerning the intrinsic distance extends from convex surfaces to

the case of semiconcave surfaces. So, there is a chance that the above problem has

the affirmative answer in this case. However, we have not been able to extend our

proof to this case.
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