Czechoslovak Mathematical Journal

Jan Rataj; Luděk Zajíček
Properties of distance functions on convex surfaces and applications

Czechoslovak Mathematical Journal, Vol. 61 (2011), No. 1, 247-269

Persistent URL: http://dml.cz/dmlcz/141531

Terms of use:

© Institute of Mathematics AS CR, 2011

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

PROPERTIES OF DISTANCE FUNCTIONS ON CONVEX SURFACES AND APPLICATIONS

Jan Rataj, LudĚk Zajíček, Praha

(Received November 25, 2009)

Abstract

If X is a convex surface in a Euclidean space, then the squared intrinsic distance function $\operatorname{dist}^{2}(x, y)$ is DC (d.c., delta-convex) on $X \times X$ in the only natural extrinsic sense. An analogous result holds for the squared distance function $\operatorname{dist}^{2}(x, F)$ from a closed set $F \subset X$. Applications concerning r-boundaries (distance spheres) and ambiguous loci (exoskeletons) of closed subsets of a convex surface are given.

Keywords: distance function, convex surface, Alexandrov space, DC manifold, ambiguous locus, skeleton, r-boundary

MSC 2010: 53C45, 52A20

1. Introduction

The geometry of 2-dimensional convex surfaces in \mathbb{R}^{3} was thoroughly studied by A. D. Alexandrov [1]. Important generalizations for n-dimensional convex surfaces in \mathbb{R}^{n+1} are due to A. D. Milka (see, e.g., [12]). Many (but not all) results on geometry of convex surfaces are special cases of results of the theory of Alexandrov spaces with curvature bounded from below.

Let $X \subset \mathbb{R}^{n+1}$ be an n-dimensional (closed bounded) convex surface and $\emptyset \neq F \subset$ X a closed set. We will prove (Theorem 3.8) that
(A) the intrinsic distance $d_{F}(x):=\operatorname{dist}(x, F)$ is locally $D C$ on $X \backslash F$ in the natural extrinsic sense (with respect to natural local charts).

The research was supported by the grant MSM 0021620839 from the Czech Ministry of Education. The second author was also supported by the grants GAČR 201/06/0198 and 201/09/0067.

It is well known that, in a Euclidean space, d_{F} is not only locally DC but even locally semiconcave on the complement of F. This was generalized to smooth Riemannian manifolds in [11].

The result (A) can be applied to some problems from the geometry of convex surfaces that are formulated in the language of intrinsic distance functions. The reason of this is that DC functions (i.e., functions which are differences of two convex functions) have many nice properties which are close to those of C^{2} functions. We present two applications.

The first (Theorem 4.1) concerns r-boundaries (distance spheres) of a closed set $F \subset X$ in the cases $\operatorname{dim} X=2,3$. It implies that, for almost all r, the r-boundary is a Lipschitz manifold, and so provides an analogue of well-known results proved (in Euclidean spaces) by Ferry [6] and Fu [7].

The second application (Theorem 4.4) concerns the ambiguous locus (exoskeleton) of a closed subset of an n-dimensional $(n \in \mathbb{N})$ convex surface. This result is essentially stronger than the corresponding result of T. Zamfirescu in Alexandrov spaces with curvature bounded from below.

It is not clear whether the results of these applications can be obtained as consequences of results in Alexandrov spaces (possibly with some additional properties). In any case, there are serious obstacles when trying to obtain such generalizations by our methods (see Remark 4.2).

To explain briefly what is the "natural extrinsic sense" from (A), consider for a while an unbounded convex surface $X \subset \mathbb{R}^{n+1}$ which is the graph of a convex function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, and denote $x^{*}:=(x, f(x))$ for $x \in \mathbb{R}^{n}$. Then (A) also holds (see Remark 3.9) and is equivalent to the statement
(B) the function $h(x):=\operatorname{dist}\left(x^{*}, F\right)$ is locally $D C$ on $\left\{x \in \mathbb{R}^{n}: x^{*} \notin F\right\}$.

Moreover, it is true that
(C) $h^{2}(x):=\operatorname{dist}^{2}\left(x^{*}, F\right)$ is DC on the whole \mathbb{R}^{n}, and
(D) the function $g(x, y):=\operatorname{dist}^{2}\left(x^{*}, y^{*}\right)$ is $D C$ on $\mathbb{R}^{2 n}=\mathbb{R}^{n} \times \mathbb{R}^{n}$.

For a natural formulation of the corresponding results (Theorems 3.8 and 3.4) for a closed bounded convex surface X, we will define in a canonical way the structure of a DC manifold on X and $X \times X$.

A weaker version of the result (C) (in the case $n=2$) has been known for a long time to the second author, who used a method similar to that of Alexandrov's proof (for two-dimensional convex surfaces) of Alexandrov-Toponogov theorem, namely approximating a general convex surface by polyhedral convex surfaces and considering a developing of those polyhedral convex surfaces "along geodesics". However, he was not able to formalize the geometrically transparent method of developings in a rigorous way.

In the present article we use another method suggested by the first author. Namely, we use the well-known semiconcavity properties of distance functions on X and $X \times X$ in an intrinsic sense (i.e., in the sense of the theory of length spaces). When applying this method, it was not necessary to use developings. However, our proof still needs approximation by polyhedral surfaces.

Note that, in the case $n=1$, the above statements (A)-(D) have straigthforward proofs. Moreover, the functions h, h^{2} from (B) and (C) (even in the case $n=1$) can happen to be neither locally semiconcave nor locally semiconvex on $\left\{x \in \mathbb{R}^{n}: x^{*} \notin F\right\}$. (To show this, it is sufficient to set $f(x)=\max (|x|, 1)$ and $F=\{(-2,2)\}$. Then h is clearly positive and continuous on $(-2, \infty)$ and affine with the slopes $\sqrt{2}, 1, \sqrt{2}$ on the intervals $[-2,-1],[-1,1],[1, \infty)$, respectively. Consequently, h is not semiconvex (resp. semiconcave) on any neighbourhood of -1 (resp. 1). The same is true also for the function $g:=h^{2}$, since clearly $g_{-}^{\prime}(-1)>g_{+}^{\prime}(-1)$ and $g_{-}^{\prime}(+1)<g_{+}^{\prime}(+1)$.)

The organization of the paper is as follows. In Section 2 (Preliminaries) we recall some facts concerning length spaces, semiconcave functions, DC functions, DC manifolds, and DC surfaces. Further we prove (by standard methods) two needful technical lemmas on approximation of convex surfaces by polyhedral surfaces. In Section 3 we prove our main results on distance functions on closed bounded convex surfaces. Section 4 is devoted to applications which we already briefly described above. In the last short Section 5 we present several remarks and questions concerning DC structures on length spaces.

2. Preliminaries

In a metric space, $B(c, r)$ denotes the open ball with center c and radius r. The symbol \mathscr{H}^{k} stands for the k-dimensional Hausdorff measure. If $a, b \in \mathbb{R}^{n}$, then $[a, b]$ denotes the segment joining a and b. If F is a Lipschitz mapping, then Lip F stands for the least Lipschitz constant of F.

If W is a unitary space and V is a subspace of W, then we denote by V_{W}^{\perp} the orthogonal complement of V in W.

If f is a mapping from a normed space X to a normed space Y, then the symbol $d f(a)$ stands for the (Fréchet) differential of f at $a \in X$. If $d f(a)$ exists and

$$
\lim _{x, y \rightarrow a, x \neq y} \frac{f(y)-f(x)-d f(a)(y-x)}{\|y-x\|}=0,
$$

then we say that f is strictly differentiable at a (cf. [13, p. 19]).
For the sake of brevity, we introduce the following notation (we use the symbol Δ^{2}, though $\Delta^{2} f(x, y)$ is one half of a second difference).

Definition 2.1. If f is a real function defined on a subset U of a vector space and $x, y, \frac{1}{2}(x+y) \in U$, we denote

$$
\begin{equation*}
\Delta^{2} f(x, y):=\frac{f(x)+f(y)}{2}-f\left(\frac{x+y}{2}\right) . \tag{1}
\end{equation*}
$$

Note that, if $f(y)=\|y\|^{2}, y \in \mathbb{R}^{n}$, then

$$
\begin{equation*}
\Delta^{2} f(x+h, x-h)=\frac{\|x+h\|^{2}+\|x-h\|^{2}}{2}-\|x\|^{2}=\|h\|^{2} . \tag{2}
\end{equation*}
$$

We shall need the following easy lemma. Its first part is an obvious consequence of [22, Lemma 1.16] (which works with convex functions). The second part clearly follows from the first.

Lemma 2.2.

(i) Let $f:(a, b) \rightarrow \mathbb{R}$ be a continuous function. Suppose that for every $t \in(a, b)$ and $\delta>0$ there exists $0<d<\delta$ such that $\Delta^{2} f(t+d, t-d) \leqslant 0$. Then f is concave on (a, b).
(ii) Let f be a continuous function on an open convex subset $C \subset \mathbb{R}^{n}$. Suppose that for every $x \in C$ there exists $\delta>0$ such that $\Delta^{2} f(x+h, x-h) \leqslant 0$ whenever $\|h\|<\delta$. Then f is concave on C.

2.1. Length spaces and semiconcave functions.

A metric space (X, d) is called a length (or inner or intrinsic) space if, for each $x, y \in X, d(x, y)$ equals the infimum of the lengths of curves joining x and y (see [3, p. 38] or [17, p. 824]). If X is a length space, then a curve $\varphi:[a, b] \rightarrow X$ is called minimal, if it is a shortest curve joining its endpoints $x=\varphi(a)$ and $y=\varphi(b)$ parametrized by the arc-length. A length space X is called a geodesic (or strictly intrinsic) space if each pair of points in X can be joined by a minimal curve. Note that any complete, locally compact length space is geodesic (see [17, Theorem 8]).

Alexandrov spaces with curvature bounded from below are defined as length spaces which have a lower curvature bound in the sense of Alexandrov. The precise definition of these spaces can be found in [3] or [17]. (Frequently Alexandrov spaces are supposed to be complete and/or finite dimensional.)

If X is a length space and $\varphi:[a, b] \rightarrow X$ a minimal curve, then the point $s=$ $\varphi\left(\frac{1}{2}(a+b)\right)$ is called the midpoint of the minimal curve φ. A point t is called a midpoint of x, y if it is the midpoint of a minimal curve φ joining x and y. If φ as above can be chosen to lie in a set $G \subset X$, we will say that t is $a G$-midpoint of x, y.

One of several natural equivalent definitions (see [5, Definition 1.1.1 and Proposition 1.1.3]) of semiconcavity in \mathbb{R}^{n} reads as follows.

Definition 2.3. A function u on an open set $A \subset \mathbb{R}^{n}$ is called semiconcave with a semiconcavity constant $c \geqslant 0$ if u is continuous on A and

$$
\begin{equation*}
\Delta^{2} u(x+h, x-h) \leqslant \frac{c}{2}\|h\|^{2} \tag{3}
\end{equation*}
$$

whenever $x, h \in \mathbb{R}^{n}$ and $[x-h, x+h] \subset A$.
Remark 2.4. It is well known and easy to see (cf. [5, Proposition 1.1.3]) that u is semiconcave on A with semiconcavity constant c if and only if the function $g(x)=u(x)-\frac{1}{2} c\|x\|^{2}$ is locally concave on A.

The notion of semiconcavity extends naturally to length spaces X. The authors working in the theory of length spaces use mostly the following terminology (cf. [16, p. 5] or [17, p. 862]).

Definition 2.5. Let X be a geodesic space. Let $G \subset X$ be open, $c \geqslant 0$, and let $f: G \rightarrow \mathbb{R}$ be a locally Lipschitz function.
(i) We say that f is c-concave if for each minimal curve $\gamma:[a, b] \rightarrow G$, the function $g(t)=f \circ \gamma(t)-\frac{1}{2} c t^{2}$ is concave on $[a, b]$.
(ii) We say that f is semiconcave on G if for each $x \in G$ there exists $c \geqslant 0$ such that f is c-concave on an open neighbourhood of x.

Remark 2.6. If $X=\mathbb{R}^{n}$, then c-concavity coincides with semiconcavity with constant c.

We will need the following simple well-known characterization of c-concavity. Because of lack of the reference, we give the proof.

Lemma 2.7. Let Y be a geodesic space. Let $M \subset Y$ be open, $c \geqslant 0$, and let $f: M \rightarrow \mathbb{R}$ be a locally Lipschitz function. Then the following statements are equivalent.
(i) f is c-concave on M.
(ii) If $x, y \in M$, and s is an M-midpoint of x, y, then

$$
\begin{equation*}
\frac{f(x)+f(y)}{2}-f(s) \leqslant \frac{c}{2} d^{2} \tag{4}
\end{equation*}
$$

where $d:=\frac{1}{2} \operatorname{dist}(x, y)$.
Proof. Suppose that (i) holds. To prove (ii), let x, y, s, d be as in (ii). Choose a minimal curve $\gamma:[a, b] \rightarrow M$ with $\gamma(a)=x, \gamma(b)=y$ and $\gamma\left(\frac{1}{2}(a+b)\right)=s$. By (i), the function $g(t)=f \circ \gamma(t)-\frac{1}{2} c t^{2}$ is concave on $[a, b]$. So $\tilde{f}:=f \circ \gamma$ is
semiconcave with semiconcavity constant c on (a, b) by Remark 2.4. Consequently, $\Delta^{2} \tilde{f}(b-h, a+h) \leqslant \frac{1}{2} c\left|\frac{1}{2}(b-a)-h\right|^{2}$ for each $0<h<\frac{1}{2}(b-a)$. By continuity of \tilde{f} we clearly obtain (4), since $d=\frac{1}{2}(b-a)$.

To prove (ii) \Rightarrow (i), consider a minimal curve $\gamma:[a, b] \rightarrow M$ and suppose that f satisfies (ii). It is easy to see that then $\tilde{f}:=f \circ \gamma$ is semiconcave with semiconcavity constant c on (a, b). By Remark 2.4, $g(t)=f \circ \gamma(t)-\frac{1}{2} c t^{2}$ is concave on (a, b), and therefore (by continuity of g), also on $[a, b]$.

2.2. DC manifolds and DC surfaces.

Definition 2.8. Let C be a nonempty open convex set in a real normed linear space X. A function $f: C \rightarrow \mathbb{R}$ is called $D C$ (or d.c., or delta-convex) if it can be represented as a difference of two continuous convex functions on C.

If Y is a finite-dimensional normed linear space, then a mapping $F: C \rightarrow Y$ is called $D C$, if $y^{*} \circ F$ is a DC function on C for each linear functional $y^{*} \in Y^{*}$.

Remark 2.9.

(i) To prove that F is DC , it is clearly sufficient to show that $y^{*} \circ F$ is DC for each y^{*} from a basis of Y^{*}.
(ii) Each DC mapping is clearly locally Lipschitz.
(iii) There are many works on optimization that deal with DC functions. A theory of DC (delta-convex) mappings in the case when Y is a general normed linear space was built in [22].

Some basic properties of DC functions and mappings are established in the following lemma.

Lemma 2.10. Let X, Y, Z be finite-dimensional normed linear spaces, let $C \subset X$ be a nonempty open convex set, and $U \subset X$ and $V \subset Y$ open sets.
(a) ([2]) If the derivative of a function f on C is Lipchitz, then f is DC. In particular, each affine mapping is $D C$.
(b) ([8]) If a mapping $F: C \rightarrow Y$ is locally $D C$ on C, then it is $D C$ on C.
(c) ([8]) Let a mapping $F: U \rightarrow Y$ be locally $D C, F(U) \subset V$, and let $G: V \rightarrow Z$ be locally $D C$. Then $G \circ F$ is locally $D C$ on U.
(d) ([22]) Let $F: U \rightarrow V$ be a bilipschitz bijection which is locally $D C$ on U. Then F^{-1} is locally $D C$ on V.

Since locally DC mappings are stable with respect to compositions (Lemma $2.10(\mathrm{c})$), the notion of an n-dimensional DC manifold can be defined in an obvious way, see $[10, \S 2.6, \S 2.7]$. The importance of this notion was shown in Perelman's preprint [15], cf. Section 5.

Definition 2.11. Let X be a paracompact Hausdorff topological space and $n \in \mathbb{N}$.
(i) We say that (U, φ) is an n-dimensional chart on X if U is a nonempty open subset of X and $\varphi: U \rightarrow \mathbb{R}^{n}$ is a homeomorphism of U onto an open set $\varphi(U) \subset \mathbb{R}^{n}$.
(ii) We say that two n-dimensional charts $\left(U_{1}, \varphi_{1}\right)$ and $\left(U_{2}, \varphi_{2}\right)$ on X are $D C$ compatible if $U_{1} \cap U_{2}=\emptyset$ or $U_{1} \cap U_{2} \neq \emptyset$ and the transition maps $\varphi_{2} \circ\left(\varphi_{1}\right)^{-1}$ and $\varphi_{1} \circ\left(\varphi_{2}\right)^{-1}$ are locally DC (on their domains $\varphi_{1}\left(U_{1} \cap U_{2}\right)$ and $\varphi_{2}\left(U_{1} \cap U_{2}\right)$, respectively).
(iii) We say that a system \mathscr{A} of n-dimensional charts on X is an n-dimensional $D C$ atlas on X, if the domains of the charts from \mathscr{A} cover X and any two charts from \mathscr{A} are DC-compatible.

Obviously, each n-dimensional DC atlas \mathscr{A} on X can be extended to a uniquely determined maximal n-dimensional DC atlas (which consists of all n-dimensional charts on X that are DC-compatible with all charts from A). We will say that X is equipped with an (n-dimensional) $D C$ structure (or with a structure of an n dimensional DC manifold), if a maximal n-dimensional DC atlas on X is determined (e.g., by a choice of an n-dimensional DC atlas).

Let X be equipped with a DC structure and let f be a function defined on an open set $G \subset X$. Then we say that f is $D C$ if $f \circ \varphi^{-1}$ is locally DC on $\varphi(U \cap G)$ for each chart (U, φ) from the maximal DC atlas on X such that $U \cap G \neq \emptyset$. Clearly, it is sufficient to check this condition for each chart from an arbitrary fixed DC atlas.

Remark 2.12.

(i) If we consider, in the definition of the chart (U, φ), a mapping φ from U to an n-dimensional unitary space H_{φ}, the whole Definition 2.11 does not change sense. (Indeed, we can identify H_{φ} with \mathbb{R}^{n} by an isometry because of Lemma 2.10 (a), (c).) In the sequel, it will be convenient for us to use such (formally more general) charts with range in an n-dimensional linear subspace of a Euclidean space.
(ii) If X, Y are nonempty spaces equipped with m, n-dimensional DC structures, respectively, then the Cartesian product $X \times Y$ is canonically equipped with an $(m+n)$-dimensional DC structure. Indeed, let $\mathscr{A}_{X}, \mathscr{A}_{Y}$ be m, n-dimensional DC atlases on X, Y, respectively. Then

$$
\mathscr{A}=\left\{\left(U_{X} \times U_{Y}, \varphi_{X} \otimes \varphi_{Y}\right):\left(U_{X}, \varphi_{X}\right) \in \mathscr{A}_{X},\left(U_{Y}, \varphi_{Y}\right) \in \mathscr{A}_{Y}\right\}
$$

is an $(m+n)$-dimensional DC atlas on $X \times Y$, if we define $\left(\varphi_{X} \otimes \varphi_{Y}\right)(x, y)=$ $\left(\varphi_{X}(x), \varphi_{Y}(y)\right)$.
(iii) If X, Y are equipped with m, n-dimensional DC structures, respectively, and $f: X \times Y \rightarrow \mathbb{R}$ is DC , then the section $x \mapsto f(x, y)$ is DC on X for any $y \in Y$, and the section $y \mapsto f(x, y)$ is DC on Y for any $x \in X$.

Definition 2.13. Let H be an $(n+k)$-dimensional unitary space $(n, k \in \mathbb{N})$. We say that a set $M \subset H$ is a k-dimensional Lipschitz (or $D C$) surface, if it is nonempty and for each $x \in M$ there exist a k-dimensional linear space $Q \subset H$, an open neighbourhood W of x, a set $G \subset Q$ open in Q and a Lipschitz (locally DC, respectively) mapping $h: G \rightarrow Q^{\perp}$ such that

$$
M \cap W=\{u+h(u): u \in G\} .
$$

Remark 2.14.

(i) Lipschitz surfaces were considered e.g. by Whitehead [24, p. 165] or Walter [23], who called them strong Lipschitz submanifolds. Obviously, each DC surface is a Lipschitz surface. For some properties of DC surfaces see [27].
(ii) If we suppose, in the above definition of a DC surface, that G is convex and h is DC and Lipschitz, we obtain clearly the same notion.
(iii) Each Lipschitz (or DC) surface admits a natural structure of a Lipschitz (DC, respectively) manifold that is given by the charts of the form ($W \cap M, \psi^{-1}$), where $\psi(u)=u+h(u), u \in G$ (cf. Remark 2.12 (i)).

Lemma 2.15. Let H be an n-dimensional unitary space, $V \subset H$ an open convex set, and $f: V \rightarrow \mathbb{R}^{m}$ a DC mapping. Then there exists a sequence $\left(T_{i}\right)$ of $(n-1)$ dimensional $D C$ surfaces in H such that f is strictly differentiable at each point of $V \backslash \bigcup_{i=1}^{\infty} T_{i}$.

Proof. Let $f=\left(f_{1}, \ldots, f_{m}\right)$. By the definition of a DC mapping, $f_{j}=\alpha_{j}-\beta_{j}$, where α_{j} and β_{j} are convex functions. By [25], for each j we can find a sequence T_{k}^{j}, $k \in \mathbb{N}$, of $(n-1)$-dimensional DC surfaces in H such that both α_{j} and β_{j} are differentiable at each point of $D_{j}:=H \backslash \bigcup_{k=1}^{\infty} T_{k}^{j}$. Since each convex function is strictly differentiable at each point at which it is (Fréchet) differentiable (see, e.g., [22, Proposition 3.8] for a proof of this well-known fact), we conclude that each f_{j} is strictly differentiable at each point of D_{j}. Since strict differentiablity of f clearly follows from strict differentiability of all f_{j} 's, the proof is completed after ordering all sets $T_{k}^{j}, k \in \mathbb{N}, j=1, \ldots, m$, to a sequence $\left(T_{i}\right)$.

2.3. Convex surfaces.

Definition 2.16. A convex body in \mathbb{R}^{n} is a compact convex subset with nonempty interior. Under a convex surface in \mathbb{R}^{n} we understand the boundary $X=\partial C$ of a convex body C. A convex surface X is said to be polyhedral if it can be covered by finitely many hyperplanes.

It is well known that a convex surface in \mathbb{R}^{n} with its intrinsic metric is a complete geodesic space with nonnegative curvature (see [4] or [3, §10.2]).

Obviously, each convex surface X is a DC surface (cf. Remark 2.18 (iii)), and so has a canonical DC structure. In the sequel, we will work mainly with "standard" DC charts on X (which are considered in the generalized sense of Remark 2.12 (i)).

Definition 2.17. Let $X \subset \mathbb{R}^{n+1}$ be a convex surface and U a nonempty, relatively open subset of X. We say that (U, φ) is a standard n-dimensional chart on X, if there exist a unit vector $e \in \mathbb{R}^{n+1}$, a convex, relatively open subset V of the hyperplane e^{\perp}, and a Lipschitz convex function $f: V \rightarrow \mathbb{R}$ such that, setting $F(x):=x+f(x) e, x \in V$, we have $U=F(V)$ and $\varphi=F^{-1}$. In this case we will say that (U, φ) is an (e, V)-standard chart on X and f will be called the convex function associated with the standard chart.

Remark 2.18.

(i) Clearly, if (U, φ) is an (e, V)-standard chart on X and π denotes the orthogonal projection onto e^{\perp}, then $\varphi=\pi \upharpoonright_{U}$.
(ii) Let $\left(U_{1}, \varphi_{1}\right)$ and $\left(U_{2}, \varphi_{2}\right)$ be standard charts as in the above definition. Then these charts are DC-compatible. Indeed, φ_{1}^{-1} is a DC mapping from V_{1} to \mathbb{R}^{n+1} and φ_{2} is a restriction of a linear mapping π (see (i)). So $\varphi_{2} \circ\left(\varphi_{1}\right)^{-1}=\pi \circ\left(\varphi_{1}\right)^{-1}$ is locally DC by Lemma 2.10 (a), (c).
(iii) Let $X \subset \mathbb{R}^{n+1}$ be a convex surface, $z \in X$, and let C be the convex body for which $X=\partial C$. Choose $a \in \operatorname{int} C$, set $e:=(a-z) /\|a-z\|$ and $V:=\pi(B(a, \delta))$, where $\delta>0$ is sufficiently small and π is the orthogonal projection of \mathbb{R}^{n+1} onto e^{\perp}. Then it is easy to see that there exists an (e, V)-standard chart (U, φ) on X with $z \in U$.

By (ii) and (iii) above, the following definition is correct.
Definition 2.19. Let $X \subset \mathbb{R}^{n+1}$ be a convex surface. Then the standard $D C$ structure on X is determined by the atlas of all standard n-dimensional charts on X.

Lemma 2.20. Let $X \subset \mathbb{R}^{n+1}(n \geqslant 2)$ be a convex surface and let (U, φ) be an (e, V)-standard chart on X. Let $T \subset e^{\perp}$ be an $(n-1)$-dimensional $D C$ surface in e^{\perp} with $T \cap V \neq \emptyset$. Then $\varphi^{-1}(T \cap V)$ is an $(n-1)$-dimensional DC surface in \mathbb{R}^{n+1}.

Proof. Let f be the convex function associated with (U, φ). Let z be an arbitrary point of $\varphi^{-1}(T \cap V)$. Denote $x:=\varphi(z)$. By Definition 2.13 there exist an ($n-1$)-dimensional linear space $Q \subset e^{\perp}$, a set $G \subset Q$ open in Q, an open neighbourhood W of x in e^{\perp} and a locally DC mapping $h: G \rightarrow Q_{e^{\perp}}^{\perp}$ such that $T \cap W=\{u+h(u): u \in G\}$. We can and will suppose that $W \subset V$. Observing that $z \in \varphi^{-1}(T \cap W)$ and $\varphi^{-1}(T \cap W)$ is an open set in $\varphi^{-1}(T \cap V)$,

$$
\varphi^{-1}(T \cap W)=\{u+h(u)+f(u+h(u)) e: u \in G\}
$$

and $u \mapsto h(u)+f(u+h(u)) e$ is a locally DC mapping $G \rightarrow Q_{\mathbb{R}^{n+1}}^{\perp}$, we complete the proof.

We shall need the following known facts. Because of lack of a reference, we supply proofs of (ii) and (iii).

Lemma 2.21.

(i) Let X be a convex surface in \mathbb{R}^{m}. Then there exists a sequence $\left(X_{k}\right)$ of polyhedral convex surfaces in \mathbb{R}^{m} converging to X in the Hausdorff distance.
(ii) Let convex surfaces X_{k} converge in the Hausdorff distance to the convex surface X in \mathbb{R}^{m} and let dist $_{X}$, dist X_{k} denote the intrinsic distances on X, X_{k}, respectively. Assume that $a, b \in X, a_{k}, b_{k} \in X_{k}, a_{k} \rightarrow a$ and $b_{k} \rightarrow b$. Then $\operatorname{dist}_{X_{k}}\left(a_{k}, b_{k}\right) \rightarrow \operatorname{dist}_{X}(a, b)$.
(iii) If X_{k}, X are as in (ii) then $\operatorname{diam} X_{k} \rightarrow \operatorname{diam} X$, where $\operatorname{diam} X_{k}, \operatorname{diam} X$ are the intrinsic diameters of X_{k}, X, respectively.

Proof. (i) is well-known, see e.g. [20, §1.8.15].
(ii) can be proved as in [3, Lemma 10.2.7], where a slightly different assertion is shown. We present here the proof for completeness. Let C, C_{k} be convex bodies in \mathbb{R}^{m} such that $X=\partial C, X_{k}=\partial C_{k}, k \in \mathbb{N}$, and assume, without loss of generality, that the origin lies in the interior of C. It is easy to show that, since the Hausdorff distances of X and X_{k} tend to zero, there exist $k_{0} \in \mathbb{N}$ and a sequence $\varepsilon_{k} \searrow 0$ such that

$$
\left(1-\varepsilon_{k}\right) C \subset C_{k} \subset\left(1+\varepsilon_{k}\right) C, \quad k \geqslant k_{0} .
$$

For a convex body D in \mathbb{R}^{m} and the corresponding convex surface $Y=\partial D$, we shall denote by Π_{Y} the metric projection of \mathbb{R}^{m} onto Y, defined outside of the interior of D. The symbol dist_{Y} denotes the intrinsic distance on the convex surface Y. Let a, b, a_{k}, b_{k} from the assumption be given, and (for $k \geqslant k_{0}$) denote $\tilde{a}_{k}=\Pi_{X_{k}}\left(\left(1+\varepsilon_{k}\right) a\right)$, $\tilde{b}_{k}=\Pi_{X_{k}}\left(\left(1+\varepsilon_{k}\right) b\right)$. Since $\Pi_{X_{k}}$ is a contraction (see e.g. [20, Theorem 1.2.2]), we have

$$
\operatorname{dist}_{X_{k}}\left(\tilde{a}_{k}, \tilde{b}_{k}\right) \leqslant \operatorname{dist}_{\left(1+\varepsilon_{k}\right) X}\left(\left(1+\varepsilon_{k}\right) a,\left(1+\varepsilon_{k}\right) b\right)=\left(1+\varepsilon_{k}\right) \operatorname{dist}_{X}(a, b)
$$

Further, clearly $\tilde{a}_{k} \rightarrow a$ and $\tilde{b}_{k} \rightarrow b$, which implies that $\operatorname{dist}_{X_{k}}\left(\tilde{a}_{k}, a_{k}\right) \rightarrow 0$ and $\operatorname{dist}_{X_{k}}\left(\tilde{b}_{k}, b_{k}\right) \rightarrow 0$. Consequently,

$$
\limsup _{k \rightarrow \infty} \operatorname{dist}_{X_{k}}\left(a_{k}, b_{k}\right) \leqslant \operatorname{dist}_{X}(a, b)
$$

The inequality $\liminf _{k \rightarrow \infty} \operatorname{dist}_{X_{k}}\left(a_{k}, b_{k}\right) \geqslant \operatorname{dist}_{X}(a, b)$ is obtained in a similar way, considering the metric projections of a_{k} and b_{k} onto $\left(1-\varepsilon_{k}\right) X$.
(iii) is a straightforward consequence of (ii) and the compactness of X.

Lemma 2.22. Let $X \subset \mathbb{R}^{n+1}$ be a convex surface, (U, φ) an (e, V)-standard chart on X, and let f be the associated convex function. Let $\left(X_{k}\right)$ be a sequence of convex surfaces which tends in the Hausdorff metric to X, and let $W \subset V$ be an open convex set such that $\bar{W} \subset V$. Then there exists $k_{0} \in \mathbb{N}$ such that, for each $k \geqslant k_{0}$, the surface X_{k} has an (e, W)-standard chart $\left(U_{k}, \varphi_{k}\right)$, and the associated convex functions f_{k} satisfy

$$
\begin{equation*}
f_{k}(x) \rightarrow f(x), \quad x \in W \quad \text { and } \quad \limsup _{k \rightarrow \infty} \operatorname{Lip} f_{k} \leqslant \operatorname{Lip} f \tag{5}
\end{equation*}
$$

Proof. Denote by C and C_{k} the convex bodies for which $X=\partial C$ and $X_{k}=$ ∂C_{k}, respectively. Clearly, the convex function f has the form

$$
f(v)=\inf \{t \in \mathbb{R}: v+t e \in C\}, \quad v \in V
$$

Let π be the orthogonal projection onto e^{\perp} and denote

$$
W_{r}:=\left\{v \in e^{\perp}: \operatorname{dist}(v, W)<r\right\}, \quad r>0 .
$$

Let $\varepsilon, \delta>0$ be such that $W_{\varepsilon+\delta} \subset V$, and let $k_{0}=k_{0}(\delta) \in \mathbb{N}$ be such that the Hausdorff distance of X and X_{k} (and, hence, also of C and C_{k}) is less than δ for all $k>k_{0}$. Fix a $k>k_{0}$. It is easy to show that

$$
f_{k}^{*}(v)=\inf \left\{t \in \mathbb{R}: v+t e \in C_{k}\right\}, \quad v \in W_{\varepsilon}
$$

is a finite convex function. We shall show that

$$
\begin{equation*}
\left|f_{k}^{*}(v)-f(v)\right| \leqslant(1+\operatorname{Lip} f) \delta, \quad v \in W_{\varepsilon} \tag{6}
\end{equation*}
$$

Take a point $v \in W_{\varepsilon}$ and denote $x=v+f(v) e \in X$ and $y=v+f_{k}^{*}(v) e \in X_{k}$. The definition of the Hausdorff distance yields that there must be a point $c \in C$ with $\|c-y\|<\delta$. This implies that for $w:=\pi(c)$ we have $f(w) \leqslant c \cdot e$ and

$$
f_{k}^{*}(v)=y \cdot e \geqslant c \cdot e-\delta \geqslant f(w)-\delta \geqslant f(v)-\delta \operatorname{Lip} f-\delta .
$$

For the other inequality, note that, since f_{k}^{*} is convex, there exists a unit vector $u \in \mathbb{R}^{n+1}$ with $u \cdot e=:-\eta<0$ such that $(z-y) \cdot u \leqslant 0$ for all $z \in C_{k}$ (i.e., u is a unit outer normal vector to C_{k} at y). It is easy to see that $(z-y) \cdot u \leqslant \delta$ for all $z \in C$, since the Hausdorff distance of C and C_{k} is less than δ. Consider the point $z=w+f(w) e \in C$ with $w=v+\delta u^{*}$, where $u^{*}=\pi(u) /\|\pi(u)\|$ if $\pi(u) \neq 0$ and u^{*} is any unit vector in e^{\perp} if $\pi(u)=0$. Then

$$
\begin{aligned}
\delta & \geqslant(z-y) \cdot u=\left(w+f(w) e-v-f_{k}^{*}(v) e\right) \cdot u \\
& =(w-v) \cdot u+\left(f(w)-f_{k}^{*}(v)\right)(e \cdot u) \\
& =\delta \sqrt{1-\eta^{2}}+\left(f(w)-f_{k}^{*}(v)\right)(-\eta) \\
& \geqslant \delta(1-\eta)+\left(f_{k}^{*}(v)-f(w)\right) \eta
\end{aligned}
$$

which implies that

$$
f_{k}^{*}(v) \leqslant f(w)+\delta \leqslant f(v)+\delta \operatorname{Lip} f+\delta
$$

by the Lipschitz property of f, and (6) is verified.
We shall show now that for $k>k_{0}, X_{k}$ has an (e, W)-standard chart with an associated convex function $f_{k}:=f_{k}^{*} \mid W$ (i.e., that f_{k} is Lipschitz) and that (5) holds. Given two different points $u, v \in W$, we define points $u^{*}, v^{*} \in W_{\varepsilon}$ as follows: we set $u^{*}=u-\varepsilon(v-u) /\|v-u\|, v^{*}=v$ if $f_{k}(u) \geqslant f_{k}(v)$, and $u^{*}=u, v^{*}=v+$ $\varepsilon(v-u) /\|v-u\|$ if $f_{k}(u) \leqslant f_{k}(v)$. Then, using (6) and convexity of f_{k}^{*}, we obtain

$$
\frac{\left|f_{k}(u)-f_{k}(v)\right|}{\|u-v\|} \leqslant \frac{\left|f_{k}^{*}\left(u^{*}\right)-f_{k}^{*}\left(v^{*}\right)\right|}{\left\|u^{*}-v^{*}\right\|} \leqslant \operatorname{Lip} f+\frac{(2+2 \operatorname{Lip} f) \delta}{\varepsilon}
$$

whenever $k>k_{0}(\delta)$. Therefore, $\operatorname{Lip} f_{k} \leqslant \operatorname{Lip} f+\frac{1}{\varepsilon}(2+2 \operatorname{Lip} f) \delta$. Using this inequality, (6), and the fact that $\delta>0$ can be arbitrarily small, we obtain (5).

3. Extrinsic properties of distance functions on convex surfaces

We will prove our results via the following result concerning intrinsic properties of distance functions on Alexandrov spaces, which is an easy consequence of well-known results.

Proposition 3.1. Let X be a complete geodesic (Alexandrov) space with nonnegative curvature. Then the Cartesian product X^{2} with the product metric

$$
\operatorname{dist}_{X \times X}\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right)=\sqrt{\operatorname{dist}^{2}\left(x_{1}, y_{1}\right)+\operatorname{dist}^{2}\left(x_{2}, y_{2}\right)}
$$

is a complete geodesic space with nonnegative curvature as well, and the squared distance $g\left(x_{1}, x_{2}\right):=\operatorname{dist}^{2}\left(x_{1}, x_{2}\right)$ is 4-concave on X^{2}.

Proof. The assertion on the properties of X^{2} is well known, see e.g. [3, $\S 3.6 .1$, $\S 10.2 .1]$. In order to show the 4 -concavity of g, we shall use the fact that

$$
\begin{equation*}
g\left(x_{1}, x_{2}\right)=2 \operatorname{dist}_{X \times X}^{2}\left(\left(x_{1}, x_{2}\right), D\right), \quad x_{1}, x_{2} \in X \tag{7}
\end{equation*}
$$

where D is the diagonal in $X \times X$. To see that (7) holds, note that

$$
\begin{aligned}
\operatorname{dist}_{X \times X}^{2}\left(\left(x_{1}, x_{2}\right), D\right) & =\inf _{y \in X} \operatorname{dist}_{X \times X}^{2}\left(\left(x_{1}, x_{2}\right),(y, y)\right) \\
& =\inf _{y \in X}\left(\operatorname{dist}^{2}\left(x_{1}, y\right)+\operatorname{dist}^{2}\left(x_{2}, y\right)\right) .
\end{aligned}
$$

Choosing a midpoint of x_{1} and x_{2} for y in the last expression, we see that $\operatorname{dist}_{X \times X}^{2}\left(\left(x_{1}, x_{2}\right), D\right) \leqslant \frac{1}{2} \operatorname{dist}^{2}\left(x_{1}, x_{2}\right)$. On the other hand, if y is an arbitrary point of X, we get by the triangle inequality

$$
\operatorname{dist}^{2}\left(x_{1}, x_{2}\right) \leqslant 2\left(\operatorname{dist}^{2}\left(x_{1}, y\right)+\operatorname{dist}^{2}\left(x_{2}, y\right)\right)=2 \operatorname{dist}_{X \times X}^{2}\left(\left(x_{1}, x_{2}\right),(y, y)\right)
$$

and thus we get the other inequality proving (7).
To finish the proof, we use the following fact: If Y is a length space of nonnegative curvature and $\emptyset \neq F \subset Y$ a closed subset, then the squared distance function $d_{F}^{2}(\cdot)=$ $\operatorname{dist}_{Y}^{2}(\cdot, F)$ is 2 -concave on Y. This is well known if F is a singleton (see e.g. [17, Proposition 116]) and follows easily for a general nonempty closed set F by the facts that $d_{F}^{2}(y)=\inf _{x \in F} d_{\{x\}}^{2}(y)$ and that the infimum of concave functions is concave. If we apply this for $Y=X \times X$ and $F=D,(7)$ completes the proof.

Lemma 3.2. Let X be a polyhedral convex surface in $\mathbb{R}^{n+1}, T \in X$, and (U, φ) be an (e, V)-standard chart on X such that $T \in U$. Let f be the associated convex function and $t:=\varphi(T)$. Then there exists a $\delta>0$ such that for all $x, y \in V$ with $t=\frac{1}{2}(x+y)$ and $\|x-t\|=\|y-t\|<\delta$ we have

$$
\operatorname{dist}(S, T) \leqslant 2 \Delta^{2} f(x, y)
$$

whenever S is a midpoint of $\varphi^{-1}(x), \varphi^{-1}(y)$.
Proof. Denoting $F:=\varphi^{-1}$, we have $F(u)=u+f(u) e$. Let L be the Lipschitz constant of f. It is easy to see that we can choose $\delta_{0}>0$ such that for any $x \in V$ with $\|x-t\|<\delta_{0}$, the function f is affine on the segment $[x, t]$. Then we take $\delta \leqslant \delta_{0} / L$, such that for any two points $x, y \in B(t, \delta)$, any minimal curve connecting $F(x)$ and $F(y)$ (and, hence, also any midpoint of $F(x), F(y))$ lies in U. Let two points $x, y \in B(t, \delta)$ with $t=\frac{1}{2}(x+y)$ be given and denote $\Delta=\Delta^{2} f(x, y)$. Let S be a midpoint of $F(x), F(y)$ (lying necessarily in U) and set $s=\varphi(S)$. Note that $\Delta \leqslant L \delta$.

From the parallelogram law, we obtain

$$
2\|F(x)-T\|^{2}+2\|F(y)-T\|^{2}=\|F(y)-F(x)\|^{2}+4 \Delta^{2}
$$

since

$$
\begin{equation*}
\Delta=\left\|\frac{F(x)+F(y)}{2}-T\right\| \tag{8}
\end{equation*}
$$

Taking the square root and using the inequality $a+b \leqslant \sqrt{2 a^{2}+2 b^{2}}$, we obtain

$$
\|F(x)-T\|+\|F(y)-T\| \leqslant \sqrt{\|F(y)-F(x)\|^{2}+4 \Delta^{2}} .
$$

It is clear that the geodesic distance of $F(x)$ and $F(y)$ is at most $\|F(x)-T\|+$ $\|F(y)-T\|$ (which is the length of a curve in X connecting $F(x)$ and $F(y)$). Thus,

$$
\|S-F(x)\| \leqslant \operatorname{dist}(S, F(x))=\frac{1}{2} \operatorname{dist}(F(x), F(y)) \leqslant \sqrt{\left(\frac{\|F(y)-F(x)\|}{2}\right)^{2}+\Delta^{2}}
$$

and the same upper bound applies to $\|S-F(y)\|$. Summing the squares of both the distances, we obtain

$$
\|S-F(x)\|^{2}+\|S-F(y)\|^{2} \leqslant \frac{1}{2}\|F(y)-F(x)\|^{2}+2 \Delta^{2}
$$

and, since the left-hand side equals, again by the parallelogram law,

$$
\frac{1}{2}\left(\|F(y)-F(x)\|^{2}+\| 2 S-\left(F(x)+F(y) \|^{2}\right)\right.
$$

we arrive at

$$
\begin{equation*}
\left\|S-\frac{F(x)+F(y)}{2}\right\| \leqslant \Delta . \tag{9}
\end{equation*}
$$

Considering the orthogonal projections of S and $\frac{1}{2}(F(x)+F(y))$ onto e^{\perp}, we obtain

$$
\|s-t\| \leqslant \Delta \leqslant L \delta \leqslant \delta_{0}
$$

and, hence, we have

$$
\operatorname{dist}(S, T)=\|S-T\|
$$

since f is affine on $[s, t]$. On the other hand, equations (8) and (9) imply $\|S-T\| \leqslant$ 2Δ, which completes the proof.

Proposition 3.3. Let $X \subset \mathbb{R}^{n+1}$ be a convex surface and let $\left(U_{i}, \varphi_{i}\right)$ be $\left(e_{i}, V_{i}\right)$ standard charts, $i=1,2$. Let f_{1}, f_{2} be the corresponding convex functions. Set

$$
g\left(x_{1}, x_{2}\right)=\operatorname{dist}^{2}\left(\varphi_{1}^{-1}\left(x_{1}\right), \varphi_{2}^{-1}\left(x_{2}\right)\right), \quad x_{1} \in V_{1}, \quad x_{2} \in V_{2}
$$

where dist is the intrinsic distance on X. Then the function $g-c-d$ is concave on $V_{1} \times V_{2}$, where

$$
\begin{aligned}
& c\left(x_{1}, x_{2}\right)=4\left(1+L^{2}\right)\left(\left\|x_{1}\right\|^{2}+\left\|x_{2}\right\|^{2}\right), \\
& d\left(x_{1}, x_{2}\right)=4 M\left(f_{1}\left(x_{1}\right)+f_{2}\left(x_{2}\right)\right),
\end{aligned}
$$

$L=\max \left\{\operatorname{Lip} f_{1}, \operatorname{Lip} f_{2}\right\}$ and M is the intrinsic diameter of X.
Proof. Assume first that the convex surface X is polyhedral. We shall show that for any $t \in V_{1} \times V_{2}$ there exists $\delta>0$ such that

$$
\begin{equation*}
\Delta^{2} g(x, y) \leqslant \Delta^{2} c(x, y)+\Delta^{2} d(x, y) \tag{10}
\end{equation*}
$$

for all $x, y \in B(t, \delta) \subset V_{1} \times V_{2}$ with $t=\frac{1}{2}(x+y)$, which implies the assertion, see Lemma 2.2. We have

$$
\begin{aligned}
\Delta^{2} g(x, y) & =\frac{g(x)+g(y)}{2}-g(t) \\
& =\left(\frac{g(x)+g(y)}{2}-g(s)\right)+(g(s)-g(t))
\end{aligned}
$$

whenever $s=\left(s_{1}, s_{2}\right) \in V_{1} \times V_{2}$ is such that $\left(\varphi_{1}^{-1}\left(s_{1}\right), \varphi_{2}^{-1}\left(s_{2}\right)\right)$ is a midpoint of $\left(\varphi_{1}^{-1}\left(x_{1}\right), \varphi_{2}^{-1}\left(x_{2}\right)\right)$ and $\left(\varphi_{1}^{-1}\left(y_{1}\right), \varphi_{2}^{-1}\left(y_{2}\right)\right)$ in X^{2}, where $x=\left(x_{1}, x_{2}\right)$ and $y=$ (y_{1}, y_{2}). By Proposition 3.1 and Lemma 2.7 (ii), the first summand is bounded from above by

$$
2 \frac{\operatorname{dist}^{2}\left(\varphi_{1}^{-1}\left(x_{1}\right), \varphi_{1}^{-1}\left(y_{1}\right)\right)+\operatorname{dist}^{2}\left(\varphi_{2}^{-1}\left(x_{2}\right), \varphi_{2}^{-1}\left(y_{2}\right)\right)}{4}
$$

Since clearly

$$
\operatorname{dist}\left(\varphi_{i}^{-1}\left(x_{i}\right), \varphi_{i}^{-1}\left(y_{i}\right)\right) \leqslant \sqrt{1+\left(\operatorname{Lip} f_{i}\right)^{2}}\left\|x_{i}-y_{i}\right\|, \quad i=1,2
$$

we get

$$
\begin{aligned}
\frac{g(x)+g(y)}{2}-g(s) & \leqslant\left(2+\left(\operatorname{Lip} f_{1}\right)^{2}+\left(\operatorname{Lip} f_{2}\right)^{2}\right) \frac{\left\|x_{1}-y_{1}\right\|^{2}+\left\|x_{2}-y_{2}\right\|^{2}}{2} \\
& \leqslant \Delta^{2} c(x, y)
\end{aligned}
$$

(we use the fact that $\Delta^{2} c(x, y)=4\left(1+L^{2}\right)(\|x-y\| / 2)^{2}$, see (2)). In order to verify (10), it remains thus to show that

$$
\begin{equation*}
|g(s)-g(t)| \leqslant \Delta^{2} d(x, y) \tag{11}
\end{equation*}
$$

Denote $t=\left(t_{1}, t_{2}\right), s=\left(s_{1}, s_{2}\right), T_{i}=\varphi_{i}^{-1}\left(t_{i}\right)$ and $S_{i}=\varphi_{i}^{-1}\left(s_{i}\right), i=1,2$. We have

$$
\begin{aligned}
|g(s)-g(t)| & =\left|\operatorname{dist}^{2}\left(S_{1}, S_{2}\right)-\operatorname{dist}^{2}\left(T_{1}, T_{2}\right)\right| \\
& \leqslant 2 M\left|\operatorname{dist}\left(S_{1}, S_{2}\right)-\operatorname{dist}\left(T_{1}, T_{2}\right)\right| \\
& \leqslant 2 M\left(\operatorname{dist}\left(S_{1}, T_{1}\right)+\operatorname{dist}\left(S_{2}, T_{2}\right)\right)
\end{aligned}
$$

where the last inequality follows from the (iterated) triangle inequality. Applying Lemma 3.2 and the fact that S_{i} is a midpoint of $\varphi_{i}^{-1}\left(x_{i}\right), \varphi_{i}^{-1}\left(y_{i}\right)$ (see [17, §4.3]), we get $\operatorname{dist}\left(S_{i}, T_{i}\right) \leqslant 2 \Delta^{2} f_{i}\left(x_{i}, y_{i}\right), i=1,2$, for δ sufficiently small. Since clearly

$$
\Delta^{2} d(x, y)=4 M\left(\Delta^{2} f_{1}\left(x_{1}, y_{1}\right)+\Delta^{2} f_{2}\left(x_{2}, y_{2}\right)\right)
$$

(11) follows.

Let now X be an arbitrary convex surface. Let $\left(X_{k}\right)$ be a sequence of polyhedral convex surfaces which tends in the Hausdorff metric to X. Consider arbitrary open convex sets $W_{i} \subset V_{i}$ with $\overline{W_{i}} \subset V_{i}, i=1,2$. Applying Lemma 2.22 (and considering a subsequence of X_{k} if necessary), we find (e_{i}, W_{i})-standard charts $\left(U_{i, k}, \varphi_{i, k}\right)$ of X_{k} such that the associated convex functions $f_{i, k}$ converge to $f_{i} \upharpoonright_{W_{i}}, L_{i}^{*}:=\lim _{k \rightarrow \infty} \operatorname{Lip} f_{i, k}$ exists and $L_{i}^{*} \leqslant \operatorname{Lip} f_{i}, i=1,2$.

By the first part of the proof we know that the function

$$
\psi_{k}\left(x_{1}, x_{2}\right):=g_{k}\left(x_{1}, x_{2}\right)-4\left(1+L_{k}^{2}\right)\left(\left\|x_{1}\right\|^{2}+\left\|x_{2}\right\|^{2}\right)-4 M_{k}\left(f_{1, k}\left(x_{1}\right)+f_{2, k}\left(x_{2}\right)\right)
$$

where M_{k} is the intrinsic diameter of X_{k} and $L_{k}=\max \left(\operatorname{Lip} f_{1, k}, \operatorname{Lip} f_{1, k}\right)$, is concave on $W_{1} \times W_{2}$. Obviously, $L_{k} \rightarrow L^{*}:=\max \left(L_{1}^{*}, L_{2}^{*}\right) \leqslant L$ and Lemma 2.21 implies that $g_{k} \rightarrow g$ and $M_{k} \rightarrow M$. Consequently,

$$
\lim _{k \rightarrow \infty} \psi_{k}\left(x_{1}, x_{2}\right)=g\left(x_{1}, x_{2}\right)-4\left(1+L^{* 2}\right)\left(\left\|x_{1}\right\|^{2}+\left\|x_{2}\right\|^{2}\right)-4 M\left(f_{1}\left(x_{1}\right)+f_{2}\left(x_{2}\right)\right)
$$

is concave on $W_{1} \times W_{2}$. Since $L^{*} \leqslant L$, we obtain that $g-c-d$ is concave on $W_{1} \times W_{2}$. Thus $g-c-d$ is locally concave, and so concave, on $V_{1} \times V_{2}$.

Proposition 3.3 has the following immediate corollary (recall the definition of a DC function on a DC manifold, Definition 2.11, and the definition of the DC structure on X^{2}, Remark 2.12 (ii)).

Theorem 3.4. Let X be a convex surface in \mathbb{R}^{n+1}. Then the squared distance function $(x, y) \mapsto \operatorname{dist}^{2}(x, y)$ is $D C$ on X^{2}.

Using Remark 2.12 (iii), we obtain
Corollary 3.5. Let X be a convex surface in \mathbb{R}^{n+1} and let $x_{0} \in X$ be fixed. Then the squared distance from $x_{0}, x \mapsto \operatorname{dist}^{2}\left(x, x_{0}\right)$, is $D C$ on X.

Since the function $g(z)=\sqrt{z}$ is DC on $(0, \infty)$, Lemma 2.10 (c) easily implies
Corollary 3.6. Let X be a convex surface in \mathbb{R}^{n+1} and let $x_{0} \in X$ be fixed. Then the distance from $x_{0}, x \mapsto \operatorname{dist}\left(x, x_{0}\right)$, is $D C$ on $X \backslash\left\{x_{0}\right\}$.

Remark 3.7. If $n=1$, it is not difficult to show that the function $x \mapsto \operatorname{dist}\left(x, x_{0}\right)$ is DC on the whole X. On the other hand, we conjecture that this statement is not true in general for $n \geqslant 2$.

Theorem 3.8. Let $X \subset \mathbb{R}^{n+1}$ be a convex surface and $\emptyset \neq F \subset X$ a closed set. Denoting $d_{F}:=\operatorname{dist}(\cdot, F)$,
(i) the function $\left(d_{F}\right)^{2}$ is $D C$ on X and
(ii) the function d_{F} is $D C$ on $X \backslash F$.

Proof. Since X is compact, we can choose a finite system $\left(U_{i}, \varphi_{i}\right), i \in I$, of $\left(e_{i}, V_{i}\right)$-standard charts which forms a DC atlas on X. Let $f_{i}, i \in I$, be the corresponding convex functions. Choose $L>0$ such that $\operatorname{Lip} f_{i} \leqslant L$ for all $i \in I$ and let M be the intrinsic diameter of X. To prove (i), it is sufficient to show that, for all $i \in I,\left(d_{F}\right)^{2} \circ\left(\varphi_{i}\right)^{-1}$ is DC on V_{i}. So fix $i \in I$ and consider an arbitrary $y \in F$. Choose $j \in I$ with $y \in U_{j}$. Set

$$
\omega(x):=4\left(1+L^{2}\right)\|x\|^{2}+4 M f_{i}(x), \quad x \in V_{i} .
$$

Proposition 3.3 (used for $\varphi_{1}=\varphi_{i}$ and $\varphi_{2}=\varphi_{j}$) easily implies that the function $h_{y}(x)=\operatorname{dist}^{2}\left(\varphi_{i}^{-1}(x), y\right)-\omega(x)$ is concave on V_{i}. Consequently, the function

$$
\psi(x):=\left(d_{F}\right)^{2} \circ\left(\varphi_{i}\right)^{-1}(x)-\omega(x)=\inf _{y \in F} h_{y}(x)
$$

is concave on V_{i}. So $\left(d_{F}\right)^{2} \circ\left(\varphi_{i}\right)^{-1}=\psi+\omega=\omega-(-\psi)$ is DC on V_{i}. Thus (i) is proved. Since the function $g(z)=\sqrt{z}$ is DC on $(0, \infty)$, Lemma 2.10 (c) easily implies (ii).

Remark 3.9. It is not difficult to show that Theorems 3.8 and 3.4 imply the corresponding results in n-dimensional closed unbounded convex surfaces $X \subset \mathbb{R}^{n+1}$; in particular that the statements (B), (C) and (D) from Introduction hold. To this end, it is sufficient to consider a bounded closed convex surface \tilde{X} which contains a sufficiently large part of X.

4. Applications

Our results on distance functions can be applied to a number of problems from the geometry of convex surfaces that are formulated in the language of distance functions. We present below applications concerning r-boundaries (distance spheres), the multijoined locus, and the ambiguous locus (exoskeleton) of a closed subset of a convex surface. Recall that r-boundaries and ambiguous loci were studied (in Euclidean, Riemannian and Alexandrov spaces) in a number of articles (see, e.g., [6], [21], [28], [9]).

The first application (Theorem 4.1 below) concerning r-boundaries provides an analogue of well-known results proved (in Euclidean spaces) by Ferry [6] and Fu [7]. It is an easy consequence of Theorem 3.8 and the following general result on level sets of DC functions, which immediately follows from [18, Theorem 3.4]:

Theorem DC ([18]). Let $n \in\{2,3\}$, let E be an n-dimensional unitary space, and let d be a locally $D C$ function on an open set $G \subset E$. Suppose that d has no stationary point. Then there exists a set $N \subset \mathbb{R}$ with $\mathscr{H}^{(n-1) / 2}(N)=0$ such that for every $r \in d(G) \backslash N$, the set $d^{-1}(r)$ is an $(n-1)$-dimensional $D C$ surface in E.

Moreover, N can be chosen such that $N=d(C)$, where C is a closed set in G.
(Let us note that C can be chosen to be the set of all critical points of d, but we will not need this fact.)

Theorem 4.1. Let $n \in\{2,3\}$ and let $X \subset \mathbb{R}^{n+1}$ be a convex surface and $\emptyset \neq K \subset$ X a closed set. For $r>0$, consider the r-boundary (distance sphere) $K_{r}:=\{x \in$ $X: \operatorname{dist}(x, K)=r\}$. There exists a compact set $N \subset[0, \infty)$ with $\mathscr{H}^{(n-1) / 2}(N)=0$ such that for every $r \in(0, \infty) \backslash N$, the r-boundary K_{r} is either empty, or an ($n-1$)dimensional DC surface in \mathbb{R}^{n+1}.

Proof. Choose a system $\left(U_{i}, \varphi_{i}\right), i \in \mathbb{N}$, of $\left(e_{i}, V_{i}\right)$-standard charts on X such that $G:=X \backslash K=\bigcup_{i=1}^{\infty} U_{i}$. By Theorem 3.8 we know that $d_{i}:=d_{K} \circ \varphi_{i}^{-1}$ is locally DC on V_{i}, where $d_{K}:=\operatorname{dist}(\cdot, K)$. Moreover, no $t \in \varphi_{i}\left(U_{i}\right)$ is a stationary point of d_{i} (i.e., the differential of d_{i} at t is nonzero). Indeed, otherwise there would exist $\delta>0$ such that $\left|d_{i}(\tau)-d_{i}(t)\right|<\|\tau-t\|$ whenever $\|\tau-t\|<\delta$. Denote $x:=\varphi^{-1}(t)$ and choose a minimal curve γ with endpoints x and $u \in K$ and length $s=\operatorname{dist}(x, K)$. Choosing a point x^{*} on the image of γ which is sufficiently close to x and putting $\tau:=\varphi_{i}\left(x^{*}\right)$, we clearly have $\|\tau-t\|<\delta$ and $\left|d_{i}(\tau)-d_{i}(t)\right|=\operatorname{dist}\left(x, x^{*}\right) \geqslant\|\tau-t\|$, which is a contradiction.

Consequently, by Theorem DC we can find for each i a set $S_{i} \subset V_{i}$ closed in V_{i} such that, for $N_{i}:=d_{i}\left(S_{i}\right)$, we know that $\mathscr{H}^{(n-1) / 2}\left(N_{i}\right)=0$ and, for each $r \in(0, \infty) \backslash N_{i}$, the set $d_{i}^{-1}(r)$ is either empty, or an $(n-1)$-dimensional DC surface in e_{i}^{\perp}.

Define S as the set of all points $x \in G$ such that $\varphi_{i}(x) \in S_{i}$ whenever $x \in U_{i}$. Obviously, S is closed in G. Set $N:=d_{K}(S) \cup\{0\}$. Since clearly $N \subset \bigcup_{i=1}^{\infty} N_{i} \cup\{0\}$, we have $\mathscr{H}^{(n-1) / 2}(N)=0$. Since $K \cup S$ is compact, $N=d_{K}(K \cup S)$ and d_{K} is continuous, we obtain that N is compact.

Let now $r \in(0, \infty) \backslash N$ and $x \in K_{r}$. Let $x \in U_{i}$. Then clearly $K_{r} \cap U_{i}=$ $\varphi_{i}^{-1}\left(d_{i}^{-1}(r)\right)$. Since $d_{i}^{-1}(r)$ is an $(n-1)$-dimensional DC surface in e_{i}^{\perp}, Lemma 2.20 implies that $K_{r} \cap U_{i}$ is an $(n-1)$-dimensional DC surface in \mathbb{R}^{n+1}. Since $x \in K_{r}$ was arbitrary, we obtain that K_{r} is an $(n-1)$-dimensional DC surface in \mathbb{R}^{n+1}.

Remark 4.2. Let $n=2$. Then the weaker version of Theorem 4.1 in which $\mathscr{H}^{1}(N)=0\left(\right.$ instead of $\left.\mathscr{H}^{1 / 2}(N)=0\right)$ and K_{r} are $(n-1)$-dimensional Lipschitz manifolds follows from [21, Theorem B] proved in 2-dimensional Alexandrov spaces without boundary. In such Alexandrov spaces even the version in which $\mathscr{H}^{1 / 2}(N)=$ 0 and K_{r} are ($n-1$)-dimensional Lipschitz manifolds holds; it is proved in [18] using Theorem DC and Perelman's DC structure (cf. Section 5). However, it seems to be impossible to deduce by this method Theorem 4.1 in its full strength; any proof that K_{r} are DC surfaces probably needs results of the present article.

If X is a 3 -dimensional Alexandrov space without boundary, it is still possible that the version of Theorem 4.1 in which K_{r} are Lipschitz manifolds holds. Nevertheless, it cannot be proved using only Theorem DC and Perelman's DC structure even if X is a convex surface. The obstacle is that the set $X \backslash X^{*}$ of "Perelman's singular" points (cf. Section 5) can have positive 1-dimensional Hausdorff measure even if X is a convex surface in \mathbb{R}^{4} (see [18, Example 6.5]).

Remark 4.3. Examples due to Ferry [6] show that Theorem 4.1 cannot be generalized to $n \geqslant 4$. For an arbitrary n-dimensional convex surface X we can, however, obtain (quite similarly to the way used in [18] for Riemannian manifolds or Alexandrov spaces without Perelman singular points) that for all $r>0$ except a countable set, either K_{r} is empty or K_{r} contains an $(n-1)$-dimensional DC surface $A_{r} \subset X$ such that A_{r} is dense and open in K_{r}, and $\mathscr{H}^{n-1}\left(K_{r} \backslash A_{r}\right)=0$.

If K is a closed subset of a length space X, the multijoined locus $M(K)$ of K is the set of all points $x \in X$ such that the distance from x to K is realized by at least two different minimal curves in X. If two such minimal curves exist that connect x with two different points of K, x is said to belong to the ambiguous locus $A(K)$ of K. The ambiguous locus of K is also called the skeleton of $X \backslash K$ (or the exoskeleton of $K,[9])$.

Zamfirescu [28] studies the multijoined locus in a complete geodesic (Alexandrov) space of curvature bounded from below and shows that it is σ-porous. An application of Theorem 3.8 yields a stronger result for convex surfaces:

Theorem 4.4. Let K be a closed subset of a convex surface $X \subset \mathbb{R}^{n+1}(n \geqslant 2)$. Then $M(K)$ (and, hence, also $A(K)$) can be covered by countably many ($n-1$)dimensional $D C$ surfaces lying in X.

Proof. Let (U, φ) be an (e, V)-standard chart on X. It is clearly sufficient to prove that $M(K) \cap U$ can be covered by countably many ($n-1$)-dimensional DC surfaces. Set $F:=\varphi^{-1}$ and denote by $d_{K}(z)$ the intrinsic distance of $z \in X$ from K. Since both the mapping F and the function $d_{K} \circ F$ are DC on V (see Theorem 3.8 and Lemma 2.10), they are by Lemma 2.15 strictly differentiable at all points of $V \backslash N$, where N is a countable union of ($n-1$)-dimensional DC surfaces in e^{\perp}. By Lemma 2.20, $F(N \cap V)$ is a countable union of $(n-1)$-dimensional DC surfaces in \mathbb{R}^{n+1}. So it is sufficient to prove that $M(K) \cap U \subset F(N)$. To prove this inclusion, suppose to the contrary that there exists a point $x \in M(K) \cap U$ such that both F and $d_{K} \circ F$ are strictly differentiable at x.

We can assume without loss of generality that $x=0$. Let $T:=(d F(0))\left(e^{\perp}\right)$ be the vector tangent space to X at 0 . Let P be the projection of \mathbb{R}^{n+1} onto T in the direction of e and define $Q:=\left(\left.P\right|_{U}\right)^{-1}$. It is easy to see that $Q=F \circ(d F(0))^{-1}$ and therefore $d Q(0)=(d F(0)) \circ(d F(0))^{-1}=\mathrm{id}_{T}$.

Since $0 \in M(K)$, there exist two different minimal curves $\beta, \gamma:[0, r] \rightarrow X$ such that $r=d_{K}(0), \beta(0)=\gamma(0)=0, \beta(r) \in K$, and $\gamma(r) \in K$. As any minimal curves on a convex surface, β and γ have right semitangents at 0 (see [4, Corollary 2]); let $u, v \in \mathbb{R}^{n+1}$ be unit vectors from these semitangents. Further, [12, Theorem 2] easily implies that $u \neq v$.

Clearly $d_{K} \circ \beta(t)=r-t, t \in[0, r]$, and $(P \circ \beta)_{+}^{\prime}(0)=P\left(\beta_{+}^{\prime}(0)\right)=u$. Further observe that $d_{K} \circ Q$ is differentiable at 0 , since $d_{K} \circ F$ is differentiable at $0=$ $(d F(0))^{-1}(0)$. Using the above facts, we obtain

$$
\begin{aligned}
\left(d\left(d_{K} \circ Q\right)(0)\right)(u) & =\left(d\left(d_{K} \circ Q\right)(0)\right)\left((P \circ \beta)_{+}^{\prime}(0)\right) \\
& =\left(d_{K} \circ Q \circ P \circ \beta\right)_{+}^{\prime}(0) \\
& =\left(d_{K} \circ \beta\right)_{+}^{\prime}(0)=-1 .
\end{aligned}
$$

In the same way we obtain $\left(d\left(d_{K} \circ Q\right)(0)\right)(v)=-1$.
Thus, $u+v \neq 0$ and, by linearity of the differential,

$$
\left(d\left(d_{K} \circ Q\right)(0)\right)\left(\frac{u+v}{\|u+v\|}\right)=\frac{-2}{\|u+v\|}<-1 .
$$

Thus there exists $\varepsilon>0$ such that

$$
\begin{equation*}
\left\|d\left(d_{K} \circ Q\right)(0)\right\|>1+\varepsilon \tag{12}
\end{equation*}
$$

Since $d Q(0)=\mathrm{id}_{T}$ and $Q=F \circ(d F(0))^{-1}$ is clearly strictly differentiable at 0 , there exists $\delta>0$ such that

$$
\|Q(p)-Q(q)-(p-q)\| \leqslant \varepsilon\|p-q\|, \quad p, q \in B(0, \delta) \cap T,
$$

and consequently Q is Lipschitz on $B(0, \delta) \cap T$ with constant $1+\varepsilon$. Let $p, q \in$ $B(0, \delta) \cap T$ and consider the curve $\omega:[0,1] \rightarrow X, \omega(t)=Q(t p+(1-t) q)$. Then clearly

$$
\operatorname{dist}(Q(p), Q(q)) \leqslant \operatorname{length} \omega \leqslant(1+\varepsilon)\|p-q\| .
$$

Consequently,

$$
\left\|d_{K} \circ Q(p)-d_{K} \circ Q(q)\right\| \leqslant \operatorname{dist}(Q(p), Q(q)) \leqslant(1+\varepsilon)\|p-q\| .
$$

Thus the function $d_{K} \circ Q$ is Lipschitz on $B(0, \delta) \cap T$ with constant $1+\varepsilon$, which contradicts (12).

Remark 4.5. An analoguous result on ambiguous loci in a Hilbert space was proved in [26].

5. Remarks and questions

The results of [15] and Corollary 3.6 suggest that the following definition is natural.
Definition 5.1. Let X be a length space and let an open set $G \subset X$ be equipped with an n-dimensional DC structure. We will say that this DC structure is compatible with the intrinsic metric on X, if the following statements hold.
(i) For each DC chart (U, φ), the map $\varphi: U \rightarrow \mathbb{R}^{n}$ is locally bilipschitz.
(ii) For each $x_{0} \in X$, the distance function $\operatorname{dist}\left(x_{0}, \cdot\right)$ is DC (with respect to the DC structure) on $G \backslash\left\{x_{0}\right\}$.

If M is an n-dimensional Alexandrov space with curvature bounded from below and without boundary, the results of [15] (cf. [10, § 2.7]) give that there exist an open dense set $M^{*} \subset M$ with $\operatorname{dim}_{H}\left(M \backslash M^{*}\right) \leqslant n-2$ and an n-dimensional DC structure on M^{*} compatible with the intrinsic metric on M (cf. [15, p. 6, line 9 from below]). Since the components of each chart of this DC structure are formed by distance functions, Lemma 2.10 (d) easily implies that no other DC structure on M^{*} compatible with the intrinsic metric exists.

Let $X \subset \mathbb{R}^{n+1}$ be a convex surface. Then Corollary 3.6 gives that the standard DC structure on X is compatible with the intrinsic metric on X. By the above
observations, there is no other compatible DC structure on the (open dense) "Perelman's set" X^{*}. We conjecture that this uniqueness is true also on the whole X. Further note that the standard DC structure on X has an atlas such that all the corresponding transition maps are C^{∞}. Indeed, let C be the convex body for which $X=\partial C$. We can suppose $0 \in \operatorname{int} C$ and find $r>0$ such that $B(0, r) \subset \operatorname{int} C$. Now "identify" X with the C^{∞} manifold $\partial B(0, r)$ via the radial projection of X on $\partial B(0, r)$. Then, this bijection transfers the C^{∞} structure of $\partial B(0, r)$ on X.

We conclude with the following problem.
Problem. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a semiconcave (or a DC) function. Consider the "semiconcave surface" (the DC surface, respectively) $X:=\operatorname{graph} f$ equipped with the intrinsic metric. Let $x_{0} \in X$. Is it true that the distance function $\operatorname{dist}\left(x_{0}, \cdot\right)$ is DC on $X \backslash\left\{x_{0}\right\}$ with respect to the natural DC structure (given by the projection onto $\left.\mathbb{R}^{n}\right)$? In other words, is the natural DC structure on X compatible with the intrinsic metric on X ?

If f is convex, then the answer is affirmative, see Remark 3.9. If f is semiconcave, then each minimal curve φ on X has bounded turn in \mathbb{R}^{n+1} by [19]. Thus an interesting result concerning the intrinsic distance extends from convex surfaces to the case of semiconcave surfaces. So, there is a chance that the above problem has the affirmative answer in this case. However, we have not been able to extend our proof to this case.

References

[1] A. D. Aleksandrov: Intrinsic Geometry of Convex Surfaces. OGIZ, Moscow-Leningrad, 1948. (In Russian.)
[2] A.D. Aleksandrov: On surfaces represented as the difference of convex functions. Izv. Akad. Nauk. Kaz. SSR 60, Ser. Math. Mekh. 3 (1949), 3-20. (In Russian.)
[3] D. Burago, Y. Burago, S. Ivanov: A Course in Metric Geometry. Graduate Studies in Mathematics, Vol. 33. American Mathematical Society (AMS), Providence, 2001.
[4] S. V. Buyalo: Shortest arcs on convex hypersurfaces of Riemannian spaces. Zap. Nauchn. Semin. Leningr. Otd. Mat. Inst. Steklova 66 (1976), 114-132. (In Russian.)
[5] P. Cannarsa, C. Sinestrari: Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control. Progress in Nonlinear Differential Equations and Their Applications, 58. Birkhäuser, Boston, 2004.
[6] S. Ferry: When ε-boundaries are manifolds. Fund. Math. 90 (1976), 199-210.
[7] J. H. G. Fu: Tubular neighborhoods in Euclidean spaces. Duke Math. J. 52 (1985), 1025-1046.
[8] P. Hartman: On functions representable as a difference of convex functions. Pac. J. Math. 9 (1959), 707-713.
[9] D. Hug, G. Last, W. Weil: A local Steiner-type formula for general closed sets and applications. Math. Z. 246 (2004), 237-272.
[10] K. Kuwae, Y. Machigashira, T. Shioya: Sobolev spaces, Laplacian, and heat kernel on Alexandrov spaces. Math. Z. 238 (2001), 269-316.
[11] C. Mantegazza, A. C. Mennucci: Hamilton-Jacobi equations and distance functions on Riemannian manifolds. Appl. Math. Optimization 47 (2003), 1-25.
[12] A. D. Milka: Shortest arcs on convex surfaces. Dokl. Akad. Nauk SSSR 248 (1979), 34-36. (In Russian.)
[13] B. S. Mordukhovich: Variational Analysis and Generalized Differentiation I. Basic Theory. Grundlehren der Mathematischen Wissenschaften 330. Springer, Berlin, 2006.
[14] Y. Otsu, T. Shioya: The Riemannian structure of Alexandrov spaces. J. Differ. Geom. 39 (1994), 629-658.
[15] G. Perelman: DC structure on Alexandrov space. Unpublished preprint. 1995, available at www.math.psu.edu/petrunin/papers/alexandrov/Cstructure.pdf.
[16] A. Petrunin: Semiconcave functions in Alexandrov's geometry. In: Surveys in Differential Geometry, Vol. XI (J. Cheeger, K. Grove, eds.). International Press, Somerville, 2007, pp. 137-201.
[17] C. Plaut: Metric spaces of curvature $\geqslant k$. In: Handbook of Geometric Topology. Elsevier, Amsterdam, 2002, pp. 819-898.
[18] J. Rataj, L. Zajíček: Critical values and level sets of distance functions in Riemannian, Alexandrov and Minkowski spaces. arXiv 0911.4020.
[19] Yu. G. Reshetnyak: On a generalization of convex surfaces. Math. Sb., N. Ser. 40 (1956), 381-398. (In Russian.)
[20] R. Schneider: Convex Bodies: The Brunn-Minkowski Theory. Cambrigde University Press, Cambrigde, 1993.
[21] K. Shiohama, M. Tanaka: Cut loci and distance spheres on Alexandrov surfaces. In: Actes de la Table Ronde de Géométrie Différentielle (Luminy, 1992), Sémin. Congr., 1, (A.L. Besse, ed.). Société Mathématique de France, Paris, 1996, pp. 531-559.
[22] L. Veselý, L. Zajíček: Delta-convex mappings between Banach spaces and applications. Diss. Math. Vol. 289. 1989.
[23] R. Walter: Some analytical properties of geodesically convex sets. Abh. Math. Semin. Univ. Hamb. 45 (1976), 263-282.
[24] J. H. C. Whitehead: Manifolds with transverse fields in Euclidean space. Ann. Math. 73 (1961), 154-212.
[25] L. Zajíček: On the differentiation of convex functions in finite and infinite dimensional spaces. Czechoslovak Math. J. 29 (1979), 340-348.
[26] L. Zajíček: Differentiability of the distance function and points of multi-valuedness of the metric projection in Banach space. Czechoslovak Math. J. 33 (1983), 292-308.
[27] L. Zajíček: On Lipschitz and d.c. surfaces of finite codimension in a Banach space. Czechoslovak Math. J. 58 (2008), 849-864.
[28] T. Zamfirescu: On the cut locus in Alexandrov spaces and applications to convex surfaces. Pac. J. Math. 217 (2004), 375-386.

Authors'address: J. Rataj, L. Zajíček (corresponding author), Charles University, Faculty of Mathematics and Physics, Sokolovská 83, 18675 Praha 8, Czech Republic, e-mail: rataj@karlin.mff.cuni.cz, zajicek@karlin.mff.cuni.cz.

