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1. Introduction

Let D denote the open unit disc in the complex plane. Let H be a Hilbert space

of analytic functions defined on D such that for each λ in D the linear functional of

point evaluation at λ given by f 7→ f(λ) is bounded. By a Hilbert space of analytic

functions H we mean one satisfying the above conditions.

For any λ ∈ D, let eλ denote the linear functional of point evaluation at λ on H ,

that is, eλ(f) = f(λ) for every f in H . Since eλ is a bounded linear functional, the

Riesz representation theorem states that

eλ(f) = 〈f, kλ〉

for some kλ ∈ H .

A well-known example of a Hilbert space of analytic functions is the weighted

Hardy space. Let {β(n)}n be a sequence of positive numbers with β(0) = 1.

The weighted Hardy space H2(β) is defined as the space of analytic functions f =
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∞
∑

n=0
f̂(n)zn on D satisfying

‖f‖2
β =

∞
∑

n=0

|f̂(n)|2[β(n)]2 <∞.

These spaces are Hilbert spaces with the inner product defined by

〈f, g〉 =

∞
∑

n=0

f̂(n)ĝ(n)[β(n)]2

for every f and g in H2(β).

The classical Hardy space, the Bergman space and the Dirichlet space are weighted

Hardy spaces with β(j) = 1, β(j) = (j + 1)−1/2 and β(j) = (j + 1)1/2, respectively.

Weighted Bergman and Dirichlet spaces are also weighted Hardy spaces. For further

information on these spaces see [4].

Let ϕ be an automorphism of the disc. Recall that ϕ is elliptic if it has one fixed

point in the disc and the other in the complement of the closed disc, hyperbolic if

both of its fixed points are on the unit circle, and parabolic if it has one fixed point

on the unit circle (of multiplicity two).

Recall that a multiplier of H is a complex-valued function w on D such that

wH ⊆ H . The set of all multipliers ofH is denoted byM(H ). If w is a multiplier,

then the multiplication operatorMw, defined byMwf = wf , is bounded onH . Also,

note that for each λ ∈ D, M∗
wkλ = w(λ)kλ. It is known that M(H ) ⊆ H∞. In fact,

suppose that w ∈M(H ) and f is a nonzero function inH . If f has a zero of order n

at z ∈ D and wf has a zero of order m at z, then (j − 1)n 6 jm for every j > 1

thanks to the fact that f j−1(fwj) = (fw)j and fwj is analytic on D. Therefore,

j − 1

j
6
m

n
, j = 1, 2, 3, . . .

letting j → ∞, we conclude that n 6 m, which implies that w = wf/f is analytic

on D. On the other hand, if λ ∈ D then

|w(λ)kλ(λ)| = |〈Mwkλ, kλ〉| 6 ‖Mw‖‖kλ‖2.

This implies that |w(λ)| 6 ‖Mw‖ for every λ ∈ D and so w ∈ H∞.

If w ∈M(H ) and ϕ is an analytic self-map of D such that (f ◦ϕ)(z) = f(ϕ(z)) is

in H for every f ∈ H , then an application of the closed graph theorem shows that

the weighted composition operator Cw,ϕ defined by Cw,ϕ(f)(z) = MwCϕ(f)(z) =

w(z)f(ϕ(z)) is bounded. The mapping ϕ is called the composition map and w is
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called the weight. From now on, we assume that w is a multiplier of H and ϕ

has the above property. For a positive integer n, ϕn is the nth iterate of ϕ; also

ϕ0 is the identity function and when ϕ is invertible ϕ−n is the nth iterate of ϕ
−1.

The weighted composition operators come up naturally. In 1964, Forelli [6] showed

that every isometry on Hp for 1 < p < ∞ and p 6= 2 is a weighted composition

operator. Recently, there has been a great interest in studying composition and

weighted composition operators on the unit disc, polydisc or the unit ball, see for

example monographs [4], [13]. In this paper, we discuss the cyclic behavior of the

adjoint of these operators.

If x is a vector inH and T is an operator onH , the set {x, Tx, T 2x, . . .}, denoted
by Orb{T, x}, will be called the orbit of x under T . If some orbit is dense in H ,

then T is called a hypercyclic operator and the vector x is called a hypercyclic vector

for T . The operator T is called supercyclic, if the set of scalar multiples of the

elements of Orb{T, x} is dense, and cyclic if the linear span of Orb{T, x} is dense;
the vector x is called, respectively, a supercyclic vector or a cyclic vector for T .

Hypercyclicity of operators has been studied a lot in literature. The classical

hypercyclic operator is 2B on the space ℓ2(N) where B is the backward shift [10]. It

is proved that many famous operators are hypercyclic. For instance, certain operators

in the classes of composition operators [2], the adjoints of subnormal, hyponormal and

multiplication operators ([5], [3]) and weighted shift operators ([11]) are hypercyclic.

As a good source on hypercyclicity and supercyclicity of operators one can see [1].

The hypercyclicity of the adjoint of a weighted composition operator on a Hilbert

space of analytic functions is investigated in [14] and [15]. In this paper, we first give

counterexamples to the main result of [14] and then establish sufficient conditions for

hypercyclicity, supercyclicity and cyclicity of the adjoint of a weighted composition

operator.

2. Hypercyclicity of the adjoint of weighted composition operators

In [14] the authors claimed “as a theorem” that the adjoint of a weighted com-

position operator MwCϕ is hypercyclic on H if ϕ is an automorphism, the com-

position operator Cϕ is bounded and w is a non-constant multiplier such that the

sets {λ ∈ D : sup
n

|w ◦ ϕn(λ)| < 1} and {λ ∈ D : inf
n

|w ◦ ϕ−1
n (λ)| > 1} have limit

points in D. But here we present many examples to show that the above result is

not correct on the Hardy space H2 and the Bergman space L2
a(D). For a > 1, put

α = a/(a+ 1) and let

ϕ(z) =
z + α

1 + αz
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and

w(z) =

√
2a+ 1

az + a+ 1

for all z ∈ D.

If a1 = a+ 1, an+1 = (2a+ 1)an − a for n > 1, then using induction we see that

a+ 1 6 an; moreover,

ϕn(z) =
z + αn
1 + αnz

, where αn =
an − 1

an

and

w ◦ ϕn(z) =
((an − 1)z + an)

√
2a+ 1

(2aan + an − a− 1)z + 2aan + an − a
.

Suppose that 0 < x < 1. So x 6 xan and a 6 an + ax, which implies that

|w ◦ ϕn(x)| = w ◦ ϕn(x) 6

√
2a+ 1

2a
< 1.

Therefore, the open interval (0, 1) is a subset of the set
{

λ ∈ D : sup
n>0

|w◦ϕn(λ)| < 1
}

.

On the other hand, it is obvious that

ϕ−n(z) =
z − αn
1 − αnz

and

w ◦ ϕ−n(z) =
((an − 1)z − an)

√
2a+ 1

(an − a− 1)z − an − a

for all n > 1.

Suppose that −1 < x 6 − 1
2 . Then 2a(1 + x) 6 a 6 an and xan 6 x. It follows

that

|w ◦ ϕ−n(x)| = w ◦ ϕ−n(x) =
((1 − an)x+ an)

√
2a+ 1

(a− an + 1)x+ an + a
>

2
√

2a+ 1

3
> 1;

therefore,
(

−1,−1

2

]

⊆
{

λ ∈ D : inf
n>1

|w ◦ ϕ−n(λ)| > 1
}

.

Now, all conditions are satisfied forH2. Moreover, if ϕ(eiθ) = eit then |ϕ′(eiθ)| dθ =

dt. Also, an easy calculation shows that |ϕ′(eiθ)| = |w(eiθ)|2 for all θ in [0, 2π]. There-

fore,

‖MwCϕf‖2
H2 =

∫ 2π

0

|w(eiθ)f ◦ ϕ(eiθ)|2 dθ

2π

=

∫ 2π

0

|f(eit)|2 dθ

2π

= ‖f‖2
H2
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for all f ∈ H2. So ‖(MwCϕ)∗‖H2 = ‖(MwCϕ)‖H2 = 1 and consequently, (MwCϕ)∗

cannot be hypercyclic on the Hardy space H2. On the other hand, if v(z) = w(z)2

then it follows that the open interval (0, 1) is a subset of
{

λ ∈ D : sup
n>0

|v◦ϕn(λ)| < 1
}

;

moreover,
(

−1,−1

2

]

⊆
{

λ ∈ D : inf
n>1

|v ◦ ϕ−n(λ)| > 1
}

.

Also, an easy calculation shows that ϕ′(z) = v(z) for all z in D. So if η = ϕ(z), the

usual change of variable formula implies that

‖MvCϕf‖2
L2

a
(D) =

∫

D

|v(z)f ◦ ϕ(z)|2 dA(z)

=

∫

ϕ(D)

|f(η)|2 dA(η)

=

∫

D

|f(η)|2 dA(η) = ‖f‖2
L2

a
(D)

for all f ∈ L2
a(D) where dA denotes the Lebesgue area measure on the unit disc.

Thus,

‖(MvCϕ)∗‖L2
a
(D) = ‖(MvCϕ)‖L2

a
(D) = 1;

consequently, (MvCϕ)∗ cannot be hypercyclic on the Bergman space L2
a(D).

The first example of a hypercyclic operator on a Banach space was given by

Rolewicz [10] in 1969. The study of hypercyclicity was really begun with Kitai’s

work [9] in 1982. She gave a hypercyclicity criterion. In [7], Gethner and Shapiro

rediscovered this criterion independently and generalized it. We state this criterion

and use it for indicating the hypercyclicity of the adjoint of Cw,ϕ.

Hypercyclicity criterion

Suppose that X is a separable Banach space and T is a bounded operator on X . If

there exist an increasing sequence of positive integers {nk}k∈N and two dense sets Y

and Z such that

1. T nkx→ 0 for every x ∈ Y , and

2. there exists a function S : Z → Z such that TSx = x for all x ∈ Z, and

Snkx→ 0 for every x ∈ Z

then T is hypercyclic.

In the next theorem we give sufficient conditions for hypercyclicity of the adjoint of

a weighted composition operator. We say that a sequence {aj}j of complex numbers
is not a Blaschke sequence, if there exists j0 such that aj ∈ D for all j > j0 and
∞
∑

j=1

(1 − |aj |) diverges.
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Theorem 1. Let ϕ be a disc automorphism such that the sets

E = {λ ∈ D : {w ◦ ϕn(λ)}∞n=0 is not a Blaschke sequence}

and

F = {λ ∈ D : {(w ◦ ϕ−n(λ))−1}∞n=1 is not a Blaschke sequence}

have limit points in D. If for every λ1 ∈ E and every λ2 ∈ F the sequences

{kϕn(λ1)}n>1 and {kϕ
−n(λ2)}n>1 are bounded, then C

∗
w,ϕ is hypercyclic on H .

P r o o f. First we note that the sets HE = span{kλ : λ ∈ E} and HF = span{kλ :

λ ∈ F} are dense in H . To see this, suppose that f ∈ H and 〈f, kλ〉 = 0 for all

λ ∈ E. Then the zero set of f has a limit point in D and so f ≡ 0; i.e., clHE = H .

Similarly clHF = H . Since C∗
ϕkλ = kϕ(λ) and M

∗
wkλ = w(λ)kλ, we have C

∗
w,ϕkλ =

w(λ)kϕ(λ). By using the mathematical induction we get,

C∗n
w,ϕkλ =

n−1
∏

j=0

w(ϕj(λ))kϕn(λ).

Fix λ ∈ E. Since {w(ϕj(λ))}j is not a Blaschke sequence,
∞
∑

j=0

(1 − |w(ϕj(λ))|) = ∞;
or equivalently, lim

n→∞

n−1
∏

j=0

w(ϕj(λ)) = 0. This together with the fact that {kϕn(λ)}n
is a bounded sequence implies that lim

n→∞
C∗n
w,ϕkλ = 0. Set GF = {kλ : λ ∈ F} and

first suppose that GF is a linearly independent set. Also define B : GF → H by

Bkλ = (w(ϕ−1(λ))−1kϕ−1(λ). Clearly, ϕ
−1(λ) ∈ F whenever λ ∈ F , and so we can

define Bn for all n > 1. Since GF is linearly independent, we can extend B by

linearity on HF . An easy computation shows that

Bnkλ =
n

∏

j=1

(w(ϕ−j(λ)))
−1kϕ

−n(λ) for all λ ∈ F.

If λ ∈ F then we have C∗
w,ϕBkλ = kλ, that is, C

∗
w,ϕB = I on the dense set HF

of H . A similar argument shows that lim
n→∞

Bnkλ = 0 for all λ ∈ F . Now assume

that GF is not necessarily linearly independent. In this case, we use the same method

as the one used by Godefroy and Shapiro in Theorem 4.5 of [8] or [14]. Consider

a countable dense subset F1 = {λn : n > 0} of F , and using induction choose a
sequence {zn}n as follows. Take z1 = λ1, F2 = F1 − {λ ∈ F1 : kλ ∈ span{kz1}}.
Denote the first element of F2 by z2 and let F3 = F2−{λ ∈ F2 : kλ ∈ span{kz1 , kz2}}.
Continuing this process we obtain a subset L = {zn : n > 0} of F for which the set
HL = {kλ : λ ∈ L} is linearly independent and dense in H . Define Sn : HL 7→ H
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by Snkλ =
( n

∏

j=1

w ◦ ϕ−j(λ)
)−1

kϕ
−n(λ). Clearly C

∗n
w,ϕSnkλ = kλ for all kλ ∈ HL.

Furthermore, to prove the fact that Sn → 0 pointwise on HL is similar to the proof

of the fact that Bn → 0 pointwise on HG. So in both cases the conditions of

hypercyclicity criterion are satisfied for C∗
w,ϕ and the proof is completed. �

Recall that if ϕ is an analytic self-map of D that is neither the identity nor an

elliptic automorphism, then there is a point a in D, called the Denjoy-Wolff point

of ϕ, such that {ϕn}n converges to a uniformly on compact subsets of D. If ϕ is a
hyperbolic automorphism one of its fixed point is the Denjoy-Wolff point of ϕ and

the other is repulsive, i.e., it is the Denjoy-Wolff point of ϕ−1. Furthermore, the

angular derivative of ϕ at the Denjoy-Wolff point a, ϕ′(a) is less than 1.

Corollary 1. Suppose that H is a Hilbert space of analytic functions such that

the set {kλ : λ ∈ D} is bounded and ϕ is a hyperbolic automorphism with the
Denjoy-Wolff point a and the repulsive fixed point b. Moreover, suppose that w has

nontangential limits w(a) at a and w(b) at b. If |w(a)| < 1 < |w(b)|, then C∗
w,ϕ is

hypercyclic.

P r o o f. Since ϕ′(a) < 1, for every z ∈ D there is a nontangential approach

region containing all the iterates ϕn(z); so lim
n→∞

w(ϕn(z)) = w(a) which implies that
∞
∑

j=0

(1−|w(ϕj(z))|) = ∞. Therefore, the set E, in the preceding theorem, has a limit

point in D. Similarly, since ϕ′
−1(b) < 1, we have

∞
∑

j=1

(1 − |w(ϕ−j(z))|−1) = ∞ and

so the set F in the preceding theorem has a limit point in D. Hence, the proof is

completed by applying Theorem 1. �

For a ∈ D, consider an automorphism of D defined by ψa(z) = (a− z)/(1 − āz)

(z ∈ D). A Hilbert space H of analytic functions is called automorphism invariant,

if for every a ∈ D, f ◦ψa ∈ H whenever f ∈ H , and also, w◦ψa ∈M(H ) whenever

w ∈M(H ). Many spaces such as the Hardy and Bergman spaces are automorphism

invariant.

Theorem 2. Suppose thatH is automorphism invariant and ϕ is an elliptic disc

automorphism. If the sets E and F in the preceding theorem have limit points in D,

then C∗
w,ϕ is hypercyclic.

P r o o f. First suppose that ϕ(0) = 0. Then ϕ(z) = αz for some α ∈ C with

|α| = 1. Thus, for every λ ∈ E, {ϕn(λ) : n ∈ N} ⊆ λ∂D. But λ∂D is a compact

subset of D and so for f ∈ H the continuity of f implies that {f(ϕn(λ))}n is a
bounded sequence. This, by virtue of the uniform boundedness principle, implies
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that {kϕn(λ)}n is also bounded. Similarly, the sequence {kϕ
−n(λ)}n is bounded for

each λ ∈ F . Hence, by Theorem 1, C∗
w,ϕ is hypercyclic.

Now, suppose that 0 6= a ∈ D is a fixed point of ϕ. Set

ψa(z) =
a− z

1 − az
, φ = ψa ◦ ϕ ◦ ψa, W = w ◦ ψa,

Ea = {λ ∈ D : {W ◦ φj(λ)}j is not a Blaschke sequence},

and

Fa = {λ ∈ D : {(W ◦ φ−j(λ))−1}j is not a Blaschke sequence}.

Now, an application of the closed graph theorem shows that CW,φ is bounded. More-

over, W ◦ φj(λ) = w ◦ ϕj(ψa(λ)) for all j > 1 and all λ ∈ D; thus, ψ−1
a (E) = Ea

and ψ−1
a (F ) = Fa. Hence, the sets Ea and Fa have limit points in D. But since

φ(0) = 0, according to the first part of the proof, C∗
W,φ is hypercyclic. Thus, taking

into account that C∗
w,ϕ is similar to C

∗
W,φ, the result follows. �

Corollary 2 ([15], Theorem 3.3). LetH be automorphism invariant, let ϕ be an

elliptic automorphism with an interior fixed point a and suppose that w satisfies the

inequality |w(a)| < 1 < lim inf
|z|→1−

|w(z)|. Then C∗
w,ϕ is hypercyclic.

P r o o f. As is seen in the preceding theorem, we can assume that a = 0 and

ϕ(z) = αz for some α ∈ C satisfying |α| = 1. From the inequality |w(0)| < 1 <

lim inf
|z|→1−

|w(z)|, we conclude that there exist δ1, δ2, λ1, λ2 in C such that if |z| < δ1

then |w(z)| < λ1 < 1, and if |z| > 1 − δ2 then |w(z)| > λ2 > 1. But since |α| = 1,

we have |ϕj(z)| = |z| for all j ∈ N. Thus, whenever |z| < δ1, we observe that

|w ◦ ϕj(z)| < λ1 < 1 and so
∣

∣

∣

n−1
∏

j=0

w ◦ ϕj(z)
∣

∣

∣
< λn1 < 1. Furthermore, if |z| > 1 − δ2,

we have
∣

∣

∣

n
∏

j=1

w ◦ ϕ−j(z)
∣

∣

∣

−1

< λn2 < 1. These two inequalities imply that

{z ∈ D : |z| < δ1} ⊆ {z ∈ D : {w ◦ ϕn(z)}n is not a Blaschke sequence},

and

{z ∈ D : |z| > 1 − δ2} ⊆ {z ∈ D : {(w ◦ ϕ−n(z))−1}n is not a Blaschke sequence}.

Now, the corollary follows from the preceding theorem. �

Recall that if ϕ is an elliptic automorphism, a rotation through a rational mul-

tiple of π, then there is m > 0 such that ϕm(z) = z for all z ∈ D. Also, an
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automorphism ϕ of D is an involution if (ϕ ◦ ϕ)(z) = z for all z ∈ D. For example

ψa(z) = (a− z)/(1 − az) where |a| < 1 and ϕ(z) = z are involutions. In the next

proposition for a subset E of the complex plane, by E we mean the set {z : z ∈ E}.

Proposition 1. Suppose that there is m > 0 such that ϕm(z) = z for all z ∈ D.

(a) If C∗
w,ϕ is hypercyclic then cl

(

ran
(m−1

∏

j=0

w ◦ ϕj
))

∩ ∂D 6= ∅.

(b) If w is non-constant and ran
(m−1

∏

j=0

w ◦ ϕj
)

∩ ∂D 6= ∅ then C∗
w,ϕ is hypercyclic.

P r o o f. (a) If C∗
w,ϕ is hypercyclic then so is (C∗

w,ϕ)m. Consequently,

σ((C∗
w,ϕ)m) ∩ ∂D 6= ∅ (see [1], page 11). But (C∗

w,ϕ)m = M∗
ψ, where ψ =

m−1
∏

j=0

w ◦ ϕj

and σ(M∗
ψ) = cl(ranψ); so the result follows.

(b) We observe that the sequences {ϕn(λ)}∞n=0 and {ϕ−n(λ)}∞n=0 are, indeed,

finite sets consisting of {ϕj(λ)}m−1
j=0 . Thus, the sequences {kϕn(λ)}n and {kϕ

−n(λ)}n
are bounded for every λ in D. Furthermore, since ran

(m−1
∏

j=0

w ◦ ϕj
)

∩ ∂D 6= ∅ and
m−1
∏

j=0

w ◦ ϕj is analytic on D, the open mapping theorem implies that U =
{

λ ∈ D :

∣

∣

∣

m−1
∏

j=0

w ◦ ϕj(λ)
∣

∣

∣
< 1

}

and V =
{

λ ∈ D :
∣

∣

∣

m−1
∏

j=0

w ◦ ϕj(λ)
∣

∣

∣
> 1

}

are non-empty

open sets. Fix λ ∈ U , and let Pn =
n−1
∏

j=0

w ◦ ϕj(λ) for n ∈ N. We have Pkm =

(m−1
∏

j=0

w◦ϕj(λ)
)k

and so Pkm → 0 as k → ∞. Also, ifM = max
{∣

∣

∣

i
∏

j=0

w◦ϕj(λ)
∣

∣

∣
: i =

0, 1, . . . ,m− 1
}

and n > m then |Pn| 6 |Pkm|M for some k ∈ N, which implies that

Pn → 0 as n → ∞. Similarly, if λ ∈ V and Qn =
n
∏

j=1

(w ◦ ϕ−j(λ))
−1 for n ∈ N then

Qn → 0 and the result follows by using Theorem 1. �

If we let ϕ(z) = z then in virtue of part (b) of the preceding proposition we obtain

the following result due to Godefroy and Shapiro [8].

Corollary 3. If w is a non-constant multiplier of H such that ranw intersects

the unit circle then M∗
w is hypercyclic.
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3. Supercyclicity of the adjoint of weighted composition operators

To discuss the supercyclicity of the adjoint of a weighted composition operator we

need the supercyclicity criterion. See [12], or more generally [5].

Supercyclicity criterion

Suppose that X is a separable Banach space and T is a bounded operator on X .

If there is an increasing sequence of positive integers {nk}k∈N, and two dense sets Y

and Z of X such that

1. there exists a function S : Z → Z satisfying TSx = x for all x ∈ Z, and

2. ‖T nkx‖ · ‖Snky‖ → 0 for every x ∈ Y and y ∈ Z,

then T is supercyclic.

Theorem 3. Let ϕ be a disc automorphism. Set

E =

{

λ ∈ D :

{n−1
∏

j=0

w ◦ ϕj(λ)
}

n

is a bounded sequence

}

,

F = {λ ∈ D : {(w ◦ ϕ−n(λ))−1}n is not a Blaschke sequence},
G = {λ ∈ D : {w ◦ ϕn(λ)}n is not a Blaschke sequence}

and

H =

{

λ ∈ D :

{( n
∏

j=1

w ◦ ϕ−j(λ)

)−1}

n

is a bounded sequence

}

.

If one of the following conditions holds then C∗
w,ϕ is a supercyclic operator.

(i) The sets E and F have limit points in D; moreover, {kϕn(λ1)}n and {kϕ
−n(λ2)}n

are bounded sequences for all λ1 ∈ E and λ2 ∈ F .

(ii) The sets G and H have limit points in D; furthermore, {kϕn(λ1)}n and
{kϕ

−n(λ2)}n are bounded sequences for all λ1 ∈ G and λ2 ∈ H .

P r o o f. The proof is similar to the proof of Theorem 1. �

Corollary 4. Suppose thatH is automorphism invariant and ϕ is an elliptic disc

automorphism with an interior fixed point a.

(a) If the sets E and F or the sets G and H , defined in Theorem 3, have limit

points in D, then C∗
w,ϕ is supercyclic.

(b) If |w(a)| < 1 and there exists 0 < δ < 1 satisfying |w(z)| > 1 for all |z| > 1 − δ,

then C∗
w,ϕ is supercyclic.
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P r o o f. (a) By an argument similar to the proof of Theorem 2, one can show

that {kϕn(λ)}n is bounded for every λ in E, F , G and H . So the result follows from
the previous theorem.

(b) By an argument similar to the proof of Corollary 2, one can show that the

sets G and H in Theorem 3 have limit points in D. So the result follows. �

Proposition 2. Let ϕ be an analytic self-map of D, λ ∈ D and let {λm}m be a
sequence in D satisfying

ϕm(λm) = λ, m = 1, 2, 3, . . . .

Suppose, further, that the set {λm : m > 1} has a limit point in D. If w is not

identically zero, but w(λ) = 0, then C∗
w,ϕ is supercyclic.

P r o o f. Taking f ∈ H such that

〈f, kλm
〉 = f(λm) = 0, m = 1, 2, 3, . . . ,

we have f ≡ 0. Therefore,
∨

{kλm
: m = 1, 2, 3, . . .} = H .

On the other hand,

C∗n
w,ϕkz =

n−1
∏

j=0

w(ϕj(z))kϕn(z) ∀ z ∈ D.

But then for every positive integer n

C∗n
w,ϕkλm

= 0, m = 0, 1, . . . n− 1

where λ0 = λ, because of the fact that w(λ) = 0. Thus, cl
( ∞

⋃

n=1
kerC∗n

w,ϕ

)

= H .

Let U and V be two nonempty open subsets of H . To see that the operator C∗
w,ϕ

is supercyclic, it is sufficient to show that there exist a natural number n and a

scalar α such that αC∗n
w,ϕ(U) ∩ V 6= ∅ (see [1], page 9). Choose f ∈ U such that

C∗n
w,ϕ(f) = 0 for some n. Since for every g ∈ H ,

Cnw,ϕ(g) =

(n−1
∏

k=0

w ◦ ϕk
)

g ◦ ϕn,

it is easily seen that kerCnw,ϕ = 0. Thus, C∗n
w,ϕ has dense range. It follows that there

is a function h inH such that C∗n
w,ϕ(h) ∈ V . Now pick α such that α−1h+f belongs

to U . Then

αC∗n
w,ϕ

( 1

α
h+ f

)

= C∗n
w,ϕ(h) ∈ V

and the result follows. �
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Corollary 5. LetH be automorphism invariant and let ϕ be an elliptic automor-

phism, conjugate to a rotation through an irrational multiple of π, with an interior

fixed point a. If w is not identically zero, but w(λ) = 0 for some λ 6= a, then C∗
w,ϕ is

supercyclic.

P r o o f. Since similarity preserves supercyclicity, we may assume that a = 0.

Then ϕ(z) = eiπθz where θ is an irrational number. Put

λm = ei(−m)πθλ, m = 1, 2, 3, . . . .

Therefore, ϕm(λm) = λ. Moreover, since cl{ei(−m)πθ : m > 0} = ∂D, {λm}m has a
limit point in D; hence the proof is completed by Proposition 2. �

4. Cyclicity of the adjoint of weighted composition operators

In this section, we are going to give sufficient conditions for the cyclicity of the

adjoint of a weighted composition operator.

Theorem 4. Suppose that w is not identically zero on D.

(a) If ϕ is not a constant function and has a Denjoy-Wolff point a ∈ D, or

(b) if H is automorphism invariant and ϕ is an elliptic automorphism, conjugate

to a rotation through an irrational multiple of π,

then C∗
w,ϕ is cyclic.

P r o o f. First, suppose that (a) holds. Since w is not identically zero the set of

all λ ∈ D such that w ◦ ϕn(λ) 6= 0 for all n > 0 is uncountable. On the other hand,

if for some λ ∈ D the set {ϕn(λ) : n > 1} is finite then there is a positive integer N
such that for n > N , ϕn(λ) = a. This coupled with the assumption that ϕ is not

constant shows easily the existence of λ ∈ D satisfying w ◦ ϕn(λ) 6= 0 for all n > 0

and so the set {ϕn(λ) : n > 1} is infinite. Now, suppose that f ∈ H and

〈f, C∗n
w,ϕkλ〉 =

〈

f,

n−1
∏

j=0

w ◦ ϕj(λ)kϕn(λ)

〉

= 0

for all n ∈ N. Then f(ϕn(λ)) = 0 for every positive integer n. Since the Denjoy-Wolff

point of ϕ lies in D, the zeros of f have a limit point in D, which implies that f ≡ 0;

consequently,
∨

{C∗n
w,ϕkλ : n ∈ N ∪ {0}} = H .
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(b) Now, let (b) hold. Without loss of generality we can assume that ϕ(z) =

eiπθz where θ is not a rational number. Applying an argument similar to the one

used in (a) shows that if 〈f, C∗n
w,ϕkλ〉 = 0, then f(einπθλ) = 0 for all n > 1. But

cl{einπθ : n > 1} = ∂D, and so the zero set of f must have limit points in D; this in

turn implies that f ≡ 0. �
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