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ARCHIVUM MATHEMATICUM (BRNO)
Tomus 47 (2011), 99–109

CRITERION OF p-CRITICALITY FOR ONE TERM 2n-ORDER
DIFFERENCE OPERATORS

Petr Hasil

Abstract. We investigate the criticality of the one term 2n-order difference
operators l(y)k = ∆n(rk∆nyk). We explicitly determine the recessive and the
dominant system of solutions of the equation l(y)k = 0. Using their structure
we prove a criticality criterion.

1. Introduction

In this paper, we deal with the 2n-order one term difference operators and
equations

(1.1) l(y)k := ∆n(rk∆nyk) = 0 , rk > 0, k ∈ Z ,

where ∆ is the forward difference operator, i.e., ∆yk = yk+1 − yk.
Our paper is motivated by a conjecture given in [7, Conj. 4.1] and by some

results presented in [8], where the ordered system of solutions of the 2n-order
one term differential equations

[
r(t)y(n)](n) = 0 is investigated. The concept of

a critical operator was introduced in [10] for the second order Sturm-Liouville
equations (via tridiagonal matrices) and in [7] for the 2n-order Sturm-Liouville
difference equations (via Hamiltonian systems). We recall these concepts in more
details in the next section.

Our results are based on a structure of the solution space of Equation (1.1),
which is described in [6] (we recall this structure in Lemma 2), see also [1].

The paper is organized as follows. In the next section, we recall necessary
preliminaries, including the relationship between banded symmetric matrices,
Sturm-Liouville difference operators, and linear Hamiltonian difference systems,
and the concept of p-criticality as introduced in [7]. Section 3 is devoted to the
study of the structure of the solution space of Equation (1.1) and in the last section
we formulate the main results of our paper.
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2. Preliminaries

In this section we describe the relationship between Sturm-Liouville operators,
banded symmetric matrices, and linear Hamiltonian systems, which is necessary
for understanding the results of [7] and [10], and their connection. Let us consider
the Sturm-Liouville operator

(2.1) L(y)k :=
n∑
ν=0

(−∆)ν
(
r

[ν]
k ∆νyk−ν

)
, k ∈ Z, r

[n]
k 6= 0 ,

and the equation

(2.2) L(y)k = 0 .

It was established in [12, 13], that the operator (2.1) is associated to the matrix
operators

(2.3) (T y)k =
k+n∑
j=k−n

tk,jyj , k ∈ Z .

defined by the infinite symmetric banded matrix

T = (tµ,ν), tµ,ν = tν,µ , µ, ν ∈ Z , tµ,ν = 0 for |µ− ν| > n .

Expanding the differences in (2.1), we obtain the recurrence relation (2.3) with ti,j
given by the formulas

(2.4)

tk,k+j = (−1)j
n∑
µ=j

µ∑
ν=j

(
µ

ν

)(
µ

ν − j

)
r

[µ]
k+ν ,

tk,k−j = (−1)j
n∑
µ=j

µ−j∑
ν=0

(
µ

ν

)(
µ

ν + j

)
r

[µ]
k+ν ,

for k ∈ Z and j ∈ {0, . . . , n}. Therefore, one can associate the difference operator
L given by (2.1) with the matrix operator T defined via the infinite matrix T by
the formula

(T y)k := L(y)k , k ∈ Z .

Conversely, the coefficients r[·]
k can be expressed in terms of the elements of the

matrix T . Having any symmetric banded matrix T = (tµ,ν) with the bandwidth
2n+ 1, we can associate this matrix with the Sturm-Liouville operator (2.1) with
r[µ], µ = 0, . . . , n, given by the formula

(2.5) r
[µ]
k+µ = (−1)µ

n∑
s=µ

[(s
µ

)
tk,k+s +

s−µ∑
l=1

s

l

(
µ+l−1
l−1

)(
s−l−1
s−µ−l

)
tk−l,k−l+s

]
,

where k ∈ Z, 0 ≤ µ ≤ n.
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For Equation (1.1) we get formulas (2.4) and (2.5) in the form

tk,k+j = (−1)j
n∑
ν=j

(
n

ν

)(
n

ν − j

)
rk+ν ,

tk,k−j = (−1)j
n−j∑
ν=0

(
n

ν

)(
n

ν + j

)
rk+ν ,

and
rk+n = (−1)ntk,k+n .

Now, we recall some basic facts concerning linear Hamiltonian systems (see
papers [3, 5, 9] and books [2, 11])

(2.6) ∆xk = Akxk+1 +Bkuk , ∆uk = Ckxk+1 −ATk uk ,

where Ak, Bk, and Ck are n× n matrices, Bk and Ck are symmetric, and I −Ak
is invertible (where I stands for the identity matrix of the appropriate dimension).
Let y be a solution of Equation (2.2) and let

xk =


yk−1

∆yk−2
...

∆n−1yk−n

 , uk =


∑n
µ=1(−1)µ−1∆µ−1(r[µ]

k ∆µyk−µ)
...

−∆(r[n]
k ∆nyk−n) + r

[n−1]
k ∆n−1yk−n+1

r
[n]
k ∆nyk−n

 .

Then
(
x
u

)
solves the linear Hamiltonian difference system (2.6) with a constant

matrix

(2.7) Ak = A := aij =
{

1 if j = i+ 1, i = 1, . . . , n− 1 ,
0 elsewhere,

and matrices

(2.8) Bk = diag
{

0, . . . , 0, 1
r

[n]
k

}
, Ck = diag

{
r

[0]
k , . . . , r

[n−1]
k

}
.

We say that the solution
(
x
u

)
of (2.6) is generated by the solution yk of (2.2). For

Equation (1.1) we obtain this system with Ck = 0.
Let us consider the matrix linear Hamiltonian system

(2.9) ∆Xk = AkXk+1 +BkUk, ∆Uk = CkXk+1 −ATk Uk,

where the matrices Ak, Bk, and Ck are given by (2.7) and (2.8). We say that
a solution (X,U) of (2.9) is generated by the solutions y[1], . . . , y[n] of (2.2) if
and only if its columns

(
x[1]

u[1]

)
, . . . ,

(
x[n]

u[n]

)
(the solutions of (2.6)) are generated by

y[1], . . . , y[n], respectively. On the other hand, if we have the solution (X,U) of
(2.9), the elements from the first line of the matrix X are exactly the solutions
y[1], . . . , y[n] of (2.2).

Let (X,U) and (X̃, Ũ) be two solutions of (2.9). Then

(2.10) XT
k Ũk − UTk X̃k ≡W
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holds with a constant matrix W . (This is an analog of the continuous Wronskian
identity.) We say that the solution (X,U) of (2.9) is a conjoined basis if

XT
k Uk ≡ UTk Xk and rank

(
X

U

)
= n .

Two conjoined bases (X,U), (X̃, Ũ) of (2.9) are called normalized conjoined bases
of (2.9) if W = I in (2.10).

System (2.6) is said to be right disconjugate in a discrete interval [l,m], l,m ∈ Z,
if the solution

(
X
U

)
of (2.9) given by the initial condition Xl = 0, Ul = I satisfies

KerXk+1 ⊆ KerXk and XkX
†
k+1(I −A)−1Bk ≥ 0

for k = l, . . . ,m− 1, see [3]. Here Ker, † and ≥ stand for the kernel, Moore-Penrose
generalized inverse, and non-negative definiteness of a matrix indicated, respectively.
Similarly, (2.6) is said to be left disconjugate on [l,m] if the solution given by the
initial condition Xm = 0, Um = −I satisfies

KerXk ⊆ KerXk+1 and Xk+1X
†
kBk(I −A)T−1 ≥ 0 , k = l, . . . ,m− 1 ,

see [4]. System (2.6) is disconjugate on Z if it is right disconjugate (which is the
same as left disconjugate, see e.g. [4, Th. 1]) on [l,m] for every l,m ∈ Z, l < m.
System (2.6) is said to be non-oscillatory at ∞ (non-oscillatory at −∞) if there
exists l ∈ Z (m ∈ Z) such that it is right disconjugate on [l,m] for every m > l
(left disconjugate on [l,m] for every l < m).

System (2.6) is said to be eventually controllable if there exist N,κ ∈ N such
that for any m ≥ N the trivial solution

(
x
u

)
=
(0

0
)

is the only solution for which
xm = xm+1 = · · · = xm+κ = 0. Note that Hamiltonian system (2.6) corresponding
to Sturm-Liouville Equation (2.2) is controllable with the constant κ = n, see [3,
Rem. 9].

We call a conjoined basis
(
X̃
Ũ

)
of (2.9) the recessive solution at ∞ if the matrices

X̃k are nonsingular, X̃kX̃
−1
k+1(I −Ak)−1Bk ≥ 0, both for large k, and for any other

conjoined basis
(
X
U

)
for which the (constant) matrix XT Ũ − UT X̃ is nonsingular

we have
lim
k→∞

X−1
k X̃k = 0 .

The solution (X,U) is usually called dominant at ∞. The recessive solution at ∞
is determined uniquely up to a right multiple by a nonsingular constant matrix and
exists whenever (2.6) is non-oscillatory and eventually controllable. The recessive
solution at −∞ is defined analogously.

We say that a pair
(
x
u

)
is admissible for system (2.6) if and only if the first

equation in (2.6) holds.
Finally, we can define the oscillatory properties of (2.2) via the corresponding

properties of the associated Hamiltonian system (2.6) with matrices Ak, Bk, and
Ck given by (2.7) and (2.8). E.g., Equation (2.2) is disconjugate if and only if the
associated system (2.6) is disconjugate, the system of solutions y[1] . . . , y[n] is said
to be recessive if and only if it generates the recessive solution X of (2.9), etc.
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Now, let us recall the concept of p-critical operators as it is introduced in [7].
Let ŷ[i] and ỹ[i], i = 1, . . . , n, be the recessive systems of solutions of (2.2) at −∞
and ∞, respectively. We introduce the linear spaces

V− = Lin {ŷ[1], . . . , ŷ[n]} , V+ = Lin {ỹ[1], . . . , ỹ[n]} , H = V− ∩ V+ .

Definition 1. Let (2.2) be disconjugate on Z and let dimH = p ∈ {1, . . . , n}.
Then we say that the operator L given by (2.1) (or Equation (2.2)) is p-critical on
Z. If dimH = 0, we say that L is subcritical on Z. If (2.2) is not disconjugate on
Z, we say that L is supercritical on Z.

The following theorem describes a very important property of the p-critical
operators – their resistance to negative perturbations of their coefficients. We use
a notation |J | for a number of elements of a set J .

Theorem 1 ([7, Th. 4.1]). Let the operator L be p-critical on Z, and let m ∈ Z
and ε > 0 be arbitrary. Further, let J ⊆ {0, . . . , n− 1} with |J | = n− p+ 1 and let
us consider the sequences

r̂[µ]
m =

{
r

[µ]
m − ε , for µ ∈ J ,
r

[µ]
m , otherwise,

r̂
[µ]
k = r

[µ]
k , for k 6= m, (µ = 0, . . . , n) .

Then the operator

L̂(y) :=
n∑
ν=0

(−∆)ν
(
r̂

[ν]
k ∆νyk−ν

)
is supercritical on Z, i.e., it is not disconjugate.

Remark 1. If we consider the operator l from (1.1) as a special case of the operator
L with r[i] ≡ 0, i = 0, . . . , n− 1, then Theorem 1 is applicable.

3. Recessive and dominant system of solutions

In this section we describe the recessive and the dominant system of solutions
of Equation (1.1). Let us recall, that H = V+ ∩ V−, where V+ and V− denote the
subspaces of the solution space of Equation (1.1) generated by the recessive system
of solutions at ∞ and −∞, respectively. To prove the results in this section, we
need the following statements, where we use the generalized power function

k(0) = 1 , k(i) = k(k − 1) . . . (k − i+ 1) , i ∈ N .

Lemma 1 ([7]). (i) Let zk be any sequence and

yk := 1
(n− 1)!

k−1∑
j=0

(k − j − 1)(n−1)zj ,

then ∆nyk = zk.
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(ii) The generalized power function has the binomial expansion

(k − j)(n) =
n∑
i=0

(−1)i
(
n

i

)
k(n−i)(j + i− 1)(i) .

We distinguish two types of solutions of (1.1). The polynomial solutions k(i),
i = 0, . . . , n− 1, for which ∆nyk = 0, and non-polynomial solutions

k−1∑
j=0

(k − j − 1)(n−1)j(i)r−1
k , i = 0, . . . , n− 1 ,

for which ∆nyk 6= 0. (Using Lemma 1 we obtain that ∆nyk = (n− 1)!k(i)r−1
k .)

The following Lemma describes the structure of the solution space of (1.1).

Lemma 2 ([6, Sec. 2]). Equation (1.1) is disconjugate on Z and possesses a system
of solutions y[j], ỹ[j], j = 1, . . . , n, such that

(3.1) y[1] ≺ · · · ≺ y[n] ≺ ỹ[1] ≺ · · · ≺ ỹ[n]

as k → ∞, where f ≺ g as k → ∞ for a pair of sequences f, g means that
limk→∞(fk/gk) = 0. If (3.1) holds, the solutions y[j] form the recessive system of
solutions at ∞, while ỹ[j] form the dominant system, j = 1, . . . , n. The analogous
statement holds for the ordered system of solutions as k → −∞.

Using Lemma 2 we can explicitly describe the recessive and the dominant system
of solutions of Equation (1.1). We split this problem into two partially different
cases.

Theorem 2. Suppose that m ∈ {0, . . . , n− 1}, p := n−m− 1, p ≤ m+ 1, and

(3.2)
∞∑
k=0

[
k(p)

]2
r−1
k =∞ ,

∞∑
k=0

k(p)k(p−1)r−1
k <∞ .

Then
{1, k, . . . , k(m)} ⊆ V+ , {k(m+1), . . . , k(n−1)} 6⊆ V+ .

Proof. Let us consider the following non-polynomial solutions of Equation (1.1)

y
[`]
k =

k−1∑
j=0

(k − j − 1)(n−1)j(p+`−1)r−1
j

−
p−∑̀
i=0

[
(−1)i

(
n− 1
i

)
(k − 1)(n−1−i)

∞∑
j=0

j(p+`−1)(j + i− 1)(i)r−1
j

]
,

for ` = 1− p, . . . , p, and

y
[`]
k =

k−1∑
j=0

(k − j − 1)(n−1)j(p+`−1)r−1
j ,
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for ` = p + 1, . . . ,m + 1. It is clear that these solutions are ordered, i.e., y[i] ≺
y[i+1], i = 1 − p, . . . ,m, as well as the polynomial solutions, i.e., k(i) ≺ k(i+1),
i = 0, . . . , n− 2.

Now, we prove that

(3.3) {1, . . . , k(m), y
[1−p]
k , . . . , y

[0]
k } ≺ {y

[1]
k , . . . , y

[m+1]
k , k(m+1), . . . , k(n−1)}

which is sufficient for the statement of Theorem 2.
At first, we show that for ` = 1, . . . , p it holds that y[`]

k ≺ k(m+`), which means
that y[1]

k is the smallest solution in the set on the right-hand side of (3.3) (the
recessive system of solutions). We have

∆m+`y
[`]
k = (n− 1)!

(n−m− 1− `)!

k−1∑
j=0

(k − j − 1)(n−m−1−`)j(p+`−1)r−1
j

−
p−∑̀
i=0

[
(−1)i

(
n− 1
i

)
(n− 1− i)!

(n−m− 1− `− i)! (k − 1)(n−m−1−`−i)

×
∞∑
j=0

j(p+`−1)(j + i− 1)(i)r−1
j

]

= (n− 1)!
(p− `)!

k−1∑
j=0

(k − j − 1)(p−`)j(p+`−1)r−1
j

−
p−∑̀
i=0

[
(−1)i (n− 1)!(n− 1− i)!

(n− 1− i)!i!(p− `− i)! (k − 1)(p−`−i)

×
∞∑
j=0

j(p+`−1)(j + i− 1)(i)r−1
j

]

= (n− 1)!
(p− `)!

{ k−1∑
j=0

(k − j − 1)(p−`)j(p+`−1)r−1
j

−
p−∑̀
i=0

[
(−1)i

(
p− `
i

)
(k − 1)(p−`−i)

∞∑
j=0

j(p+`−1)(j + i− 1)(i)r−1
j

]}

= (n−1)!
(p−`)!

[ k−1∑
j=0

(k−j−1)(p−`)j(p+`−1)r−1
j −

∞∑
j=0

(k−j−1)(p−`)j(p+ −̀1)r−1
j

]
= − (n−1)!

(p−`)!

∞∑
j=k

(k−j−1)(p−`)j(p+`−1)r−1
j

= (−1)p−`+1 (n− 1)!
(p− `)!

∞∑
j=k

(j + 1− k)(p−`)j(p+`−1)r−1
j
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and
∞∑
j=k

(j + 1− k)(p−`)j(p+`−1)r−1
j ≤

∞∑
j=k

j(p−`)j(p+`−1)r−1
j ≤

∞∑
j=k

j(p)j(p−1)r−1
j ,

hence,

lim
k→∞

y
[`]
k

k(m+`) = lim
k→∞

∆m+`y
[`]
k = 0,

thus y[`]
k ≺ k(m+`), ` = 1, . . . , p, holds.

Now, we show that k(m) ≺ y[1]
k . We have

(p− 1)!
(n− 1)!

∣∣∣ k−1∑
i=0

∆m+1y
[1]
i

∣∣∣ =
k−1∑
i=0

∞∑
j=i

(j + 1− i)(p−1)j(p)r−1
j

=
k−1∑
j=0

j∑
i=0

(j + 1− i)(p−1)j(p)r−1
j +

∞∑
j=k

k−1∑
i=0

(j + 1− i)(p−1)j(p)r−1
j

=
k−1∑
j=0

j(p)r−1
j

[
− (j + 1− i)(p)

p

]j+1

0
+
∞∑
j=k

j(p)r−1
j

[
− (j + 1− i)(p)

p

]k
0

= 1
p

k−1∑
j=0

j(p)r−1
j (j + 1)(p) + 1

p

∞∑
j=k

j(p)r−1
j

[
(j + 1)(p) − (j + 1− k)(p)] ,

where for k ≥ p the first sum tends to infinity as k → ∞ (using the assumption∑∞
j(p)j(p)r−1

j =∞) and the second sum is positive. Therefore, we have

lim
k→∞

y
[1]
k

k(m) = 1
m! lim

k→∞

k−1∑
i=0

∆m+1y
[1]
i =∞,

which means that k(m) ≺ y[1]
k .

Altogether, we have obtained that k(m) ≺ y
[1]
k and y

[`]
k ≺ k(m+`), ` = 1, . . . , p,

where m + p = n − 1. Thus (3.3) (and therefore the statement of Theorem 2)
holds. �

Theorem 3. Suppose that m ∈ {0, . . . , n − 1}, p := n −m − 1, p ≥ m + 1, and
(3.2) holds. Then

{1, k, . . . , k(m)} ⊆ V+ , {k(m+1), . . . , k(n−1)} 6⊆ V+ .

Proof. Here, we use the non-polynomial solutions

y
[`]
k =

∞∑
j=k

(k − j − 1)(n−1)j(p+`−1)r−1
j ,



CRITERION OF p-CRITICALITY 107

for ` = 1− p, . . . , p− n+ 1, and

y
[`]
k =

k−1∑
j=0

(k − j − 1)(n−1)j(p+`−1)r−1
j

−
p−∑̀
i=0

[
(−1)i

(
n− 1
i

)
(k − 1)(n−1−i)

∞∑
j=0

j(p+`−1)(j + i− 1)(i)r−1
j

]
,

for ` = p− n+ 2, . . . ,m+ 1, and we can proceed as in the proof of Theorem 2. �

The following Corollary follows directly from the proofs of Theorems 2 and 3
and from Lemma 2.

Corollary 1. Let m ∈ {0, . . . , n− 1} and p := n−m− 1 and suppose that (3.2)
holds. Then the recessive and dominant systems of solutions of Equation (1.1) are{

1, . . . , k(m), y
[1−p]
k , . . . , y

[0]
k

}
and

{
k(m+1), . . . , k(n−1), y

[1]
k , . . . , y

[m+1]
k

}
,

respectively, where the solutions y[1−p], . . . , y[m+1] are given in the proof of Theorem
2 for p ≤ m+ 1 and (or) in the proof of Theorem 3 for p ≥ m+ 1.

Remark 2. To find a counterpart of Theorems 2 and 3 and Corollary 1 at −∞, it
suffices to replace

∑∞ by
∑
−∞.

Remark 3. The previous analysis shows that only polynomial solutions can be
simultaneously contained both in the recessive systems of solutions at ∞ and −∞.

4. Criticality of one term operator

Now, we can formulate the main results of this paper. The first one follows
directly from Theorems 2 and 3 and from Remarks 2 and 3.

Theorem 4. Let V+ and V− denote the subspaces of the solution space of Equation
(1.1) generated by the recessive system of solutions at ∞ and −∞, respectively. If
for some m ∈ {0, . . . , n− 1}

0∑
k=−∞

[
k(n−m−1)]2r−1

k =∞ =
∞∑
k=0

[
k(n−m−1)]2r−1

k ,

then
Lin {1, . . . , k(m)} ⊆ V+ ∩ V−.

If in addition
0∑

k=−∞
k(n−m−1)k(n−m−2)r−1

k <∞ or
∞∑
k=0

k(n−m−1)k(n−m−2)r−1
k <∞ ,

then
Lin {1, . . . , k(m)} = V+ ∩ V−,

i.e., (1.1) is (m+ 1)-critical on Z.

In the last theorem we formulate a criterion of subcriticality.
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Theorem 5. Let us consider Equation (1.1) and let at least one of the sums

(4.1)
0∑

k=−∞

[
k(n−1)

]2
r−1
k ,

∞∑
k=0

[
k(n−1)

]2
r−1
k

be convergent. Then Equation (1.1) is subcritical, i.e., V+ ∩ V− = ∅.

Proof. Let
∑∞
k=0

[
k(n)]2r−1

k < ∞. The case where only the first sum in (4.1) is
convergent can be treated analogically. We consider the following non-polynomial
solutions of Equation (1.1)

y
[`]
k =

∞∑
j=k

(k − j − 1)(n−1)j(n−1+`)r−1
j ,

where ` = 1− n, . . . , 0. For k > 1 we have

|y[0]
k | =

∣∣∣ ∞∑
j=k

(k − j − 1)(n−1)j(n−1)r−1
j

∣∣∣ ≤ ∞∑
j=k

j(n−1)j(n−1)r−1
j .

Therefore by (4.1)
lim
k→∞

y
[0]
k = 0 .

Thus y[0]
k ≺ 1 and we have obtained the ordered system of solutions

y
[1−n]
k ≺ · · · ≺ y[0]

k ≺ 1 ≺ · · · ≺ k(n−1) .

Therefore, by Lemma 2, there is no polynomial solution in the recessive system of
solutions of (1.1) at ∞ and therefore V+ ∩ V− = ∅. �

Remark 4. Theorem 1 deals with perturbations of n− p+ 1 coefficients at one
point m ∈ Z. If we consider the matrix operator (2.3) we can see, using (2.4), that
these perturbations affect the matrix T in rows (and columns) from m + 1 − n
to m + 1. Hence a natural question arises, whether a perturbation of only one
coefficient at more points will cause the same effect. Theorem 4, the Sections IV.
and V. in [8], together with the proof of Lemma 4.1 in [7] have lead us to the
following conjecture, in which we sufficiently (in the sense of (4.2)) perturb some of
the diagonal elements of the matrix T . This conjecture is a subject of the present
investigation.

Conjecture 1. Let there exists an integer m ∈ {0, . . . , n− 1} and real constants
c0, . . . , cm such that

0∑
k=−∞

[
k(n−m−1)]2r−1

k =∞ =
∞∑
k=0

[
k(n−m−1)]2r−1

k ,

and the sequence zk := c0 + c1k + · · ·+ cmk
(m) satisfies

(4.2) lim sup
K↓−∞,L↑∞

L∑
k=K

qkz
2
k ≤ 0 .
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If q 6≡ 0, then the equation
(−∆)n (rk∆nyk−n) + qkyk = 0

is not disconjugate.
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