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Abstract. Consider boundary value problems for a functional differential equation

{

x(n)(t) = (T+x)(t)− (T−x)(t) + f(t), t ∈ [a, b],

lx = c,

where T+, T− : C[a, b] → L[a, b] are positive linear operators; l : ACn−1[a, b] → R
n is a

linear bounded vector-functional, f ∈ L[a, b], c ∈ R
n, n > 2.

Let the solvability set be the set of all points (T +, T −) ∈ R
+
2 such that for all operators

T+, T− with ‖T±‖C→L = T ± the problems have a unique solution for every f and c. A
method of finding the solvability sets are proposed. Some new properties of these sets are
obtained in various cases.
We continue the investigations of the solvability sets started in R.Hakl, A. Lomtatidze,

J. Šremr: Some boundary value problems for first order scalar functional differential equa-
tions. Folia Mathematica 10, Brno, 2002.
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1. Introduction

Consider the boundary value problem for a scalar n-th order functional differential

equation on the finite interval [a, b]:

(1.1)

{
x(n)(t) = (Tx)(t) + f(t), t ∈ [a, b],

lx = c,
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where T = T + − T−, T + and T− are positive linear operators from the space of

continuous functions C ≡ C[a, b] to the space of summable functions L ≡ L[a, b];

l = (l1, . . . , ln) is a linear n-dimensional vector-functional bounded on the space

AC
n−1 ≡ AC

n−1[a, b] of functions with absolutely continuous derivatives up to the

(n − 1)-th order; f ∈ L, c = (c1, . . . , cn) ∈ R
n. Solutions of (1.1) belong to AC

n−1.

Here positive operators map every non-negative function from C into a nonnegative

almost everywhere function from L.

We continue the investigation of the solvability of boundary value problems for

functional differential equations started in works by N.V.Azbelev and its pupils [1].

The method is a development of the method applied by R.Hakl, S.Mukhigulashvili,

A. Lomtatidze, B. Půža, J. Šremr [4], [5], [6]. The work continues the investigation of

book [5], where the case n = 1 was considered in detail. We will assume that n > 2.

In 1995 in the notes [2], [3] S.Mukhigulashvili and A. Lomtatidze used the method

of obtaining a priori estimates of the solutions to the periodic value problem for

ordinary differential equations from the work [7] by A. Lasota and Z.Opial. They

expanded the results to nonlinear functional differential equations with monotone

operators. It turned out [3] that for the Dirichlet problem for second order func-

tional differential equations with positive operators such a method of obtaining a

priori estimates can enlarge the solvability conditions in comparison with the Ba-

nach principle.

Later this method was used to many different boundary value problems for dif-

ferent functional differential equations and systems: [5], [8] (first order); [4], [9], [10]

(second order); [11] (third order); [12] (fourth order); [13] (systems of two equations

of first order); [14], [15] (periodical problems for n-th order equations).

Here we replace obtaining an a priori estimate by an equivalent procedure that is

reduced to minimizing a given function defined on a finite-dimensional set. In some

cases (which will be described below) this problem can be solved exactly. It allows

to obtain unimprovable in a sense conditions of solvability. These criteria will be

formulated here in the form of necessary and sufficient conditia for all problems from

a certain set to be uniquely solvable.

2. The Fredholm property of a boundary value problem

Define operators L : AC
n−1 → L and B : AC

n−1 → L × R
n by the equalities

Lx = x(n) − T +x + T−x and Bx = {Lx, lx}. Then the boundary value problem
(1.1) can be written in one equation Bx = {f, c}, where the operator B = [L, l] has

the Fredholm property [1] under given conditions on the parameters of the problem

(it means the operator B is normally solvable, its null-space is finite-dimensional, its

dimension coincides with the dimension of the null-space of the conjugate operator).
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We connect the boundary value problem (1.1) for all pairs f ∈ L and c ∈ R
n

with the operator B. We will say that the problem (1.1) has the Fredholm property

provided the appropriate operator B has the Fredholm property.

If B has the Fredholm property, then B is invertible if and only if the equation

Bx = 0 has only the trivial solution. Therefore problem (1.1) has a unique solution

for all pairs f ∈ L and c ∈ R
n if and only if the homogeneous problem

(2.1)

{
x(n)(t) = (T +x)(t) − (T−x)(t), t ∈ [a, b],

lx = 0

has only the trivial solution.

Hence, either for every pair f and c problem (1.1) cannot have a unique solution,

or this problem for every pair f and c has only one solution. In the latter case

problem (1.1) is called uniquely solvable.

3. Solvability sets

We will say that a point (T +, T −) ∈ R
2
+ ≡ [0, +∞) × [0, +∞) is a point of

unique solvability of problem (1.1) if this problem is uniquely solvable for all positive

operators T + and T− such that

‖T +‖C→L = T +, ‖T−‖C→L = T −.

Note that for any positive operator T± : C → L the norm is defined by the equality

‖T±‖C→L =

∫ b

a

(T±1)(s) ds.

The set of all points of unique solvability is called the solvability set of prob-

lem (1.1) and is denoted by R. It is clear that the set R = R(l) for given n and

[a, b] depends on the vector-functional l only. Generally speaking the set R(l) is not

open. So, the property of a point from R
2
+ to be a point of unique solvability of

problem (1.1) is not a stable property.

Our main intention is to construct or to estimate the solvability setR(l). It will be

shown that the problem of building R is reduced to minimizing some known function
defined on a finite-dimensional set. This approach can be easily expanded to systems

of functional differential equations (in this case the solvability set will be a subset of

the k-dimensional space Rk
+ for some k > 1).
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Now we will describe the dependence of R on properties of l. Denote by N = N(l)

the dimension of the linear space of solutions to the homogeneous problem

(3.1)

{
x(n)(t) = 0, t ∈ [a, b],

lx = 0.

It turns out that the set R(l) depends essentially on the number N(l).

Theorem 3.1. If N(l) > 2, then R(l) is the empty set.

P r o o f. Under the conditions of the theorem, problem (3.1) has a nontrivial

solution u such that u(τ) = 0 for some τ ∈ [a, b]. Hence problem (3.1) is not uniquely

solvable if T±x = p±x(τ) for any p± ∈ L. �

So, we have to consider only two cases: N = 0 and N = 1.

4. The problem is uniquely solvable for T + = T− = 0

Let N(l) = 0. Then the problem

{
x(n)(t) = f(t), t ∈ [a, b],

lx = 0

is uniquely solvable, its solution has the integral representation [1]

x(t) =

∫ b

a

G(t, s)f(s) ds, t ∈ [a, b],

where the Green function G(t, s) is such that G(t, ·) ∈ L∞ for all t ∈ [a, b], and there

exist finite inf
t∈[a,b]

vrai sup
s∈[a,b]

G(t, s), sup
t∈[a,b]

vrai inf
s∈[a,b]

G(t, s).

For given T + and T −, for all non-positive values T +
1 , T +

2 , T −

1 , T −

2 such that

T +
1 + T +

2 = T +, T −

1 + T −

2 = T −, and for all points τ1, τ2, c
+, c−, d+, d− ∈ [a, b]

define a function ∆T +,T − by the equality

∆T +,T −(τ1, τ2, c
+, c−, d+, d−, T +

1 , T +
2 , T −

1 , T −

2 )(4.1)

≡ 1 − T +
2 g1(d

+) − T +
1 g2(c

+) + T −
1 g1(c

−) + T −
2 g2(d

−)

+ T +
2 g1(d

+)(T +
1 g2(c

+) − T −

2 g2(d
−)) + T +

2 g2(d
+)(T −

2 g1(d
−) − T +

1 g1(c
+))

+ T −

1 g1(c
−)(T −

2 g2(d
−) − T +

1 g2(c
+)) + T −

1 g2(c
−)(T +

1 g1(c
+) − T −

2 g1(d
−)),

where g1(s) = G(τ1, s), g2(s) = G(τ2, s).

148



We will say that for given T + and T − the condition A is fulfilled if there exist

no sets Ec+ , Ec− , Ed+ , Ed− ⊂ [a, b] with positive measure such that for almost all

points c+ ∈ Ec+ , c− ∈ Ec− , d
+ ∈ Ed+ , d− ∈ Ed− the equality ∆T +,T − = 0 is fulfilled

for some fixed other arguments.

Theorem 4.1. If N(l) = 0, then

1) the set R(l) is not empty and contains a neighborhood of zero in R
2
+;

2) R(l) has at most two connected components; every component is bounded;

the component that contains the origin is always present, it belongs to the

intersection of all pairs (T +, T −) satisfying the inequality

(4.2) vrai sup
s∈[a,b]

G(t, s)T + − vrai inf
s∈[a,b]

G(t, s)T −
6 1 for all t ∈ [a, b];

the other connected component can exist if the Green function G(t, s) is essen-

tially separated from zero; in this case for all points (T +, T −) of the second

connected component, the inequality

(4.3) vrai inf
s∈[a,b]

G(t, s)T + − vrai sup
s∈[a,b]

G(t, s)T − > 1 for all t ∈ [a, b]

is fulfilled;

3) a point (T +, T −) ∈ R
2
+ belongs to the solvability set R(l) if and only if the

condition A is fulfilled and either (4.2) is fulfilled and ∆T +,T − > 0 almost

everywhere, or (4.3) is fulfilled and ∆T +,T − 6 0 almost everywhere;

4) if the equality lx = 0 implies that the function x has a zero on [a, b], then the

solvability set R(l) has only one connected component; moreover, if (T +, T −) ∈
R(l), then (T̃ +, T̃ −) ∈ R(l) for all T̃ + ∈ [0, T +], T̃ − ∈ [0, T −].

P r o o f. The item 1) can be proved by the Banach principle.

Here we can only give a plan of the proof for items 2) and 3). Problem (1.1)

is not uniquely solvable if and only if there exists a solution to the homogeneous

problem (2.1). This solution is a solution of problem (2.1) with a special operator

T̃ x = p1x(τ1) + p2x(τ2), where τ1, τ2 ∈ [a, b], p1, p2 ∈ L, p1 + p2 = T 1, and −T−1 6

p1, p2 6 T +1. The necessary and sufficient conditions of the unique solvability of all

these problem with ‖T±‖ = T ± are the conditions 2) and 3) of the theorem.

Under the conditions of item 4), if (T +, T −) 6∈ R(l), then for some positive opera-

tors T +, T− with ‖T±‖ = T ± there exists a solution to the problem (2.1) that has a

zero at some point τ ∈ [a, b]. So, for the operator Tx ≡ T +x+p+x(τ)−T−x−p−x(τ),

where functions p+, p− are positive and summable, problem (1.1) is not uniquely

solvable. Therefore, for all T̃ + > T + and T̃ − > T − we have (T̃ +, T̃ −) 6∈ R(l). �
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E x am p l e 4.2. Consider the boundary value problem

(4.4)

{
ẍ(t) = (T +x)(t) − (T−x)(t) + f(t), t ∈ [0, 1],

ẋ(0) = 0, ẋ(1) = x(0),

which can be used for investigation of economic processes.

A point (T +, T −) belongs to the solvability set R4.4 of problem (4.4) if and only

if at least one of the following conditions is fulfilled:

T + ∈
[
0,

1

2

]
, 0 6 T − 6 2 +

√
8
√

1 − T +,(4.5)

T + ∈
(1

2
,

√
5 + 1

4

]
,

2T + − 1

1 − T +
6 T − 6 2 +

√
8
√

1 − T +,(4.6)

T − ∈
[
0,

1

7

]
,

2T − + 1

1 − T −

4

6 T + 6 3 + 2
√

1 − T −,(4.7)

T − ∈
(1

7
,

√
5 − 1

2

]
,

T − + 1

1 − T −
6 T +

6 3 + 2
√

1 − T −.(4.8)

The direct estimate of the norm of the operator T gives only the conclusion that

(T +, T −) ∈ R4.4 if T + + T − 6 1/2. However, we see from (4.7) that (5, 0) ∈ R4.4.

E x am p l e 4.3 (see also [4], [9]). For the Dirichlet problem

(4.9)

{
ẍ(t) = (T +x)(t) − (T−x)(t) + f(t), t ∈ [0, 1],

x(0) = 0, x(1) = 0,

the solvability set is defined by the equality

R4.9 =
{
(T +, T −) : T − ∈ [0, 4], T + ∈

[
0, 8

(
1 +

√
1 − T −/4

)]}
.

The direct estimate of the norm of the operator T gives only the conclusion that

(T +, T −) ∈ R4.9 if T + + T − 6 4.
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5. The space of solutions of the problem for T + = T− = 0

is one-dimensional

Consider the last case, when N = 1. Obviously, the point (0, 0) does not belong

to the solvability set. We cannot even assert that the solvability set is not empty.

If N = 1, there exists a linear bounded vector-functional l̃ : AC
n−1 → R

n such

that ker l̃ = ker l, and the n-th component l̃n has the form l̃nx =
∫ b

a
ϕn(s)x(n)(s) ds,

where ϕn ∈ L∞ (all other components have the representation l̃ix =
n−1∑
j=0

Kijx
(j)(a)+

∫ b

a
ϕi(s)x

(n)(s) ds, ϕi ∈ L∞, Kij ∈ R, j, i = 1, . . . , n − 1).

Further we will suppose that the vector-functional of the boundary value problem

has such a form. Since the null-space is not changed, the space of solutions to the

homogeneous problem (2.1) is not changed, either. So, this replacement does not

affect the unique solvability of problem (1.1).

Theorem 5.1. If N = 1 and ϕn(t) = 0 on a set with positive measure, then the

solvability set R(l) is empty.

P r o o f. Suppose ϕn(t) = 0 for all t ∈ e, where e ⊂ [a, b] is a set with positive

measure. It is sufficient to take the operator T of the form Tx = p1x(τ1) + p2x(τ2),

where a 6 τ1 < τ2 6 b and p1(t) = p2(t) = 0 for all t ∈ [a, b] \ e. Then problem (2.1)

has a nontrivial solution, and (1.1) is not uniquely solvable. �

Now suppose ϕn(t) > 0 for almost all t ∈ [a, b] (we don’t consider the case when ϕn

changes its sign). Let v ∈ AC
n−1 be any nontrivial element of the one-dimensional

set {Kv : K ∈ R} of all solutions to problem (3.1).

Theorem 5.2. If N = 1 and v has a zero on [a, b], then the solvability set R(l)

is empty.

P r o o f. Let v(τ) = 0 for some τ ∈ [a, b]. Problem (3.1) is not uniquely solvable

if T±x = p±x(τ) for any p± ∈ L. �

Suppose further that the function v has no zeros (let v(t) > 0 for all t ∈ [a, b]).

Then the problem

{
x(n)(t) = f(t), t ∈ [a, b],

x(a) = 0, lix = 0, i = 1, . . . , n − 1

is uniquely solvable. Denote by G(t, s) its Green function.
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We need some more definitions. Let Rv
ϕn

(modified solvability set) be the set of

points (T +, T −) ∈ R
2
+ such that for all positive operators T +, T− : C → L with

∫ b

a

ϕn(s)(T +v)(s) ds = T +,

∫ b

a

ϕn(s)(T−v)(s) ds = T −,

problem (1.1) is uniquely solvable.

Obviously, for the periodic problem (for n-th order equations) and the Neumann

problem (for second order equations) we have v = 1, ϕn = 1. Note also that R1
1 = R.

Let

Gt1,t2(s) ≡
G(t1, s)

v(t1)
− G(t2, s)

v(t2)
,

Mt1,t2 ≡ vrai sup
s∈[a,b]

Gt1,t2(s)

ϕn(s)
,

mt1,t2 ≡ vrai inf
s∈[a,b]

Gt1,t2(s)

ϕn(s)
.

For finite numbers Mt1,t2 , mt1,t2 denote

M ≡ sup
t1,t2∈[a,b]

(Mt1,t2 − mt1,t2).

We will say that for the system li, i = 1, . . . , n, of the functionals of boundary

value problem (1.1) the condition C is fulfilled if the equalityM = Mt̃1,t̃2
− mt̃1,t̃2

,

where t̃1, t̃2 ∈ [a, b], implies that the function gt̃1,t̃2
(s) = G(t̃1, s)−G(t̃2, s), s ∈ [a, b],

takes at least one of the values Mt̃1,t̃2
, mt̃1,t̃2

on a zero-measure set only.

R em a r k 5.3. The condition C is fulfilled if all functions ϕi, i = 1, . . . , n, are

polynomials. It is fulfilled for all two-point problems with the functional lix =
n−1∑
j=0

(Aijx
(j)(a) + Bijx

(j)(b)), Aij , Bij ∈ R, i, j = 1, . . . , n.

Theorem 5.3 (see also [10], [11], [12] for periodic conditions). Let N = 1, v(t) >

0 for all t ∈ [a, b], v(a) = 1, let the function ϕn be positive almost everywhere.

If for some ε > 0 for almost all s ∈ [a, b] the inequality ϕn(s) > ε is fulfilled

or the function Gt1,t2(s)/ϕn(s) is essentially bounded on s ∈ [a, b] uniformly on t1,

t2 ∈ [a, b], then the set Rv
ϕn

is not empty. Moreover, a pair of different nonnegative

numbers (T +, T −) belongs to the solvability set Rv
ϕn

if and only if

Y

1 − Y
6 X 6 2(1 +

√
1 − Y ) and the condition C is fulfilled,
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or
Y

1 − Y
< X < 2(1 +

√
1 − Y ) and the condition C is not fulfilled,

where X = Mmax(T +, T −), Y = Mmin(T +, T −).

P r o o f. The outline of the proof is similar to the proof for periodic problems [15].

�

E x am p l e 5.5. If different nonnegative numbers T +, T − are given, then

{
ẍ(t) = T +x(t) − T−x(t) + f(t), t ∈ [0, 1],

ẋ(1) = c1, x(0) − x(1) = c2

is uniquely solvable for all positive operators T +, T− : C → L such that

∫ 1

0

s(T +1)(s) ds = T +,

∫ 1

0

s(T−1)(s) ds = T −,

if and only if

min(T +, T −)

1 − min(T +, T −)
6 max(T +, T −) 6 2

(
1 +

√
1 − min(T +, T −)

)
.

Here v(t) = 1, ϕ2(t) = t,M = 1.
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