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1. Introduction

Fractional operators have a long history, having been mentioned by Leibnitz in

a letter to L’Hospital in 1695. Early mathematicians who contributed to fractional

differential operators include Liouville, Riemann, and Holmgren. For three centuries,

the theory of fractional derivatives developed mainly as a pure theoretical field of

mathematics useful only for mathematicians. However, in the last few decades,

many authors pointed out that fractional calculus is very suitable for the description

of memory and hereditary properties of various materials and processes, such effects

are in fact neglected in classical models. Nowadays, fractional differential equations

are increasingly used to model problems in acoustics and thermal systems, materials

and mechanical systems, control and robotics, and other areas of application. For

example, nonlocal epidemics can be modeled with fractional derivatives [2]. The

results are relevant to foot-and-mouth disease, SARS, avian flu. The constitutive

* Supported by National Natural Science Foundation of China (10671012), the Doctoral
Program Foundation of Education Ministry of China (20050007011), and the Fundamen-
tal Research Funds for the Central Universities (06108024).
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equation of viscoelastic fluid is given by τ = η0(d
αγ/dtα) in [5], where dαγ/dtα is

the fractional derivative. The fluid-dynamic traffic model with fractional derivatives

can eliminate the deficiency arising from the assumption of continuum traffic flow [6].

Based on experimental data, fractional partial differential equations for seepage flow

in porous media are suggested in [7]. A review of some applications of fractional

derivatives in continuum and statistical mechanics is given by Mainardi [11]. Re-

cently, there are some papers dealing with the existence and multiplicity of solution

(or positive solution) to fractional boundary value problems (see [3], [12], [13], and

the references therein).

The theory of impulsive differential equations provides a natural framework for

mathematical modeling of many real world phenomena. Significant progress has

been made in the theory of impulsive differential equations in recent years (see [1],

[4], [8]–[10], [14], and the references therein). However, to the best knowledge of

the authors, there is no paper concerned with fractional impulsive boundary value

problems on infinite intervals. Inspired by the above-mentioned works, in this paper,

we will consider the following boundary value problem

(1.1)











Dα
0+u(t) + f(t, u(t)) = 0, t ∈ (0,∞), t 6= tk, k = 1, 2, . . . , m,

u(t+k ) − u(t−k ) = −Ik(u(tk)), k = 1, 2, . . . , m,

u(0) = 0, Dα−1
0+ u(∞) = 0,

where α is a real number with 1 < α 6 2, Dα
0+ is the standard Riemann-Liouville

fractional derivative, t0 = 0, 1 < t1 < t2 < . . . < tm < ∞, u(t+k ) = lim
h→0+

u(tk + h),

u(t−k ) = lim
h→0+

u(tk − h), Dα−1
0+ u(∞) = lim

t→∞
Dα−1

0+ u(t).

The main features of this paper are as follows. First the existence and uniqueness of

unbounded positive solutions for fractional boundary value problems are considered.

Second a computational method is given. Third the solutions of boundary value

problem (1.1) are unbounded.

Now we list some conditions in this section for convenience.

Let

F (t, u) = f(t, (1 + tα)u).

(H1) F : [0,∞) × [0,∞) → [0,∞) is continuous;

(H2) |F (t, u)| 6 ϕ(t)κ(|u|) with κ ∈ C([0,∞), [0,∞)) nondecreasing and

0 <

∫ ∞

0

ϕ(r) dr < ∞;

(H3) Ik : [0,∞) → [0,∞) (k = 1, 2, . . . , m) are continuous;

(H4) there exist constants ck (k = 1, 2, . . . , m) such that |Ik(u)| 6 ck.
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2. Preliminaries

For the convenience of the readers, we provide some background material in this

section.

Let u : [0,∞) → R, J0 = [0, t1], Jm = (tm,∞), Jk = (tk, tk+1], k = 1, . . . , m − 1.

For k = 1, 2, . . . , m, define the function uk : Jk → R by uk(t) = u(t). Consider the

Banach spaces

PC =
{

u : uk ∈ C(Jk,R), k = 0, 1, . . . , m,

u(t+k ) and u(t−k ) exist, u(tk) = u(t−k ), lim
t→∞

u(t)

1 + tα
exists

}

with the norm

‖u‖PC = sup
t∈[0,∞)

∣

∣

∣

u(t)

1 + tα

∣

∣

∣

and

PCl =
{

u : uk ∈ C(Jk,R), k = 0, 1, . . . , m,

u(t+k ) and u(t−k ) exist, u(tk) = u(t−k ), lim
t→∞

u(t) exists
}

with the norm

‖u‖l = sup
t∈[0,∞)

|u(t)|.

Lemma 2.1 ([15]). Let Ω1 ⊆ PCl. Then Ω1 is relatively compact in PCl if the

following conditions hold

(a) Ω1 is bounded in PCl;

(b) the functions belonging to Ω1 are piecewise equicontinuous on any interval of

[0,∞);

(c) the functions belonging to Ω1 are equiconvergent, that is, given ε > 0 there

exists T (ε) > 0 such that |u(t) − u(∞)| < ε for any t > T (ε) and u ∈ Ω1.

Definition 2.1. A function u is said to be a positive solution of (1.1) if u ∈ PC

satisfies (1.1), u(t) > 0, t ∈ [0,∞) and u(t) is not identically zero on [0,∞).

Definition 2.2. The Riemann-Liouville fractional integral of order α of a func-

tion f is defined as

Iα
0+f(t) =

1

Γ(α)

∫ t

0

(t − s)α−1f(s) ds, α > 0,

provided that the right-hand side is point-wise defined on (0,∞).
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Definition 2.3. The Riemann-Liouville fractional derivative of order α > 0 of

a function y is defined as

Dα
0+y(t) =

1

Γ(n − α)

( d

dt

)n
∫ t

0

y(s)

(t − s)α−n+1
ds, α > 0,

where n = [α] + 1, provided that the right-hand side is point-wise defined on (0,∞).

Definition 2.4. Let E be a real Banach space. A nonempty closed set K ⊂ E

is a cone provided that

(1) au + bv ∈ K for all u, v ∈ K and all a > 0, b > 0,

(2) u,−u ∈ K implies u = 0.

Every coneK ⊂ E induces an ordering in E given by x 6 y if and only if y−x ∈ K.

Definition 2.5. The map α is a nonnegative continuous concave functional on

a cone K of a real Banach space E, provided that α : K → [0,∞) is continuous and

α(tu + (1 − t)v) > tα(u) + (1 − t)α(v)

for all u, v ∈ K, 0 6 t 6 1.

Let E = (E, ‖ · ‖) be a Banach space, K ⊂ E a cone, α a nonnegative continuous

concave functional on K and a, b, c > 0 constants. Define

Kc = {x ∈ K : ‖x‖ < c},
K(α, a, b) = {x ∈ K : a 6 α(x), ‖x‖ 6 b}.

To prove our results, we need the following fixed point theorem.

Theorem 2.1 ([3]). Let K be a cone in a Banach space E. Suppose that there

exist a positive number c, and a nonnegative continuous concave functional α on K

with α(x) 6 ‖x‖ for x ∈ Kc. Moreover, assume that T : Kc → Kc is completely

continuous and there exist a, b, c, d with 0 < a < b < d 6 c such that

(S1) {x ∈ K(α, b, d) : α(x) > b} 6= ∅ and α(Tx) > b for all x ∈ K(α, b, d);

(S2) ‖Tu‖ < a for all x ∈ Ka;

(S3) α(Tx) > b for all x ∈ K(α, b, c) with ‖Tu‖ > d.

Then T has at least three fixed points x1, x2, x3 ∈ K such that

‖x1‖ < a, α(x2) > b, ‖x3‖ > a with α(x3) < b.

R em a r k 2.1. If d = c, then the condition (S1) of Theorem 2.1 implies the

condition (S3) of Theorem 2.1.
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3. Related lemmas

Lemma 3.1. Let y ∈ C[0,∞), with
∫ ∞
0

y(s) ds convergent, and 1 < α 6 2. If

u is a solution of the equation

(3.1) u(t) =

∫ ∞

0

G(t, s)y(s) ds +
m

∑

k=1

Wk(t, u(tk)),

where

(3.2) G(t, s) =















tα−1 − (t − s)α−1

Γ(α)
, 0 6 s 6 t 6 ∞,

tα−1

Γ(α)
, 0 6 t 6 s < ∞,

and

(3.3) Wk(t, u(tk)) =















Ik(u(tk))tα−1

tα−1
k − tα−2

k

, 0 6 t 6 tk,

Ik(u(tk))tα−2

tα−1
k − tα−2

k

, tk < t < ∞,

then u is a solution of the following boundary value problem

(3.4)











Dα
0+u(t) + y(t) = 0, t ∈ (0,∞), t 6= tk, k = 1, 2, . . . , m,

u(t+k ) − u(t−k ) = −Ik(u(tk)), k = 1, 2, . . . , m,

u(0) = 0, Dα−1
0+ u(∞) = 0.

P r o o f. If u satisfies the integral equation (3.1), then u(0) = Dα−1
0+ u(∞) = 0.

Let

t ∈ (0,∞) \ {t1, t2 . . . , tm},
then we have

Dα
0+u(t) = Dα

0+

(
∫ ∞

0

G(t, s)y(s) ds +
m

∑

k=1

Wk(t, u(tk))

)

= Dα
0+

(
∫ t

0

tα−1 − (t − s)α−1

Γ(α)
y(s) ds +

∫ ∞

t

tα−1

Γ(α)
y(s) ds

+

m
∑

k=1

Wk(t, u(tk))

)

= Dα
0+

(

tα−1

Γ(α)

∫ ∞

0

y(s) ds −
∫ t

0

(t − s)α−1

Γ(α)
y(s) ds +

m
∑

k=1

Wk(t, u(tk))

)

= − y(t).
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Clearly we have

u(t+k ) − u(t−k ) = −Ik(u(tk)), k = 1, 2 . . . , m.

The proof is complete. �

Let

M =
1

Γ(α)
sup

06t<∞

tα−1

1 + tα
.

Lemma 3.2. The function G(t, s) defined by Eq. (3.2) satisfies the following

conditions

(1) 0 6
G(t, s)

1 + tα
6

1

Γ(α)

tα−1

1 + tα
6 M for t, s ∈ (0,∞);

(2) there exists a positive function γ ∈ C(0,∞) such that

(3.5) min
k6t6l

G(t, s) = γ(s) sup
06t6∞

G(t, s) = γ(s)G(s, s) for 0 < s < ∞,

where 0 < k < l < ∞.

P r o o f. Looking at the expression for G(t, s), it is clear that

0 6
G(t, s)

1 + tα
6

1

Γ(α)
sup

06t<∞

tα−1

1 + tα
for s, t ∈ (0,∞).

In the following, we consider the existence of the positive function γ. Set

g1(t, s) =
tα−1 − (t − s)α−1

Γ(α)
, g2(t, s) =

tα−1

Γ(α)
.

First for given s ∈ (0,∞), G(t, s) is decreasing with respect to t for s 6 t and

increasing with respect to t for t 6 s. Consequently, we have

min
k6t6l

G(t, s) =











g1(l, s), s ∈ (0, k],

min{g1(l, s), g2(k, s)}, s ∈ [k, l],

g2(k, s), s ∈ [l,∞),

=

{

g1(l, s), s ∈ (0, r],

g2(k, s), s ∈ [r,∞),

=















lα−1 − (l − s)α−1

Γ(α)
, s ∈ (0, r],

kα−1

Γ(α)
, s ∈ [r,∞),
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where r is the unique solution of the equation

lα−1 − (l − s)α−1 = kα−1.

Specially if k = 1, l = 4, α = 3
2 , then s = 3 is the unique solution of the equation

2 −
√

4 − s = 1, i.e. r = 3.

By the monotonicity of G(t, s), we have

sup
06t6∞

G(t, s) = G(s, s) =
sα−1

Γ(α)
, s ∈ (0,∞).

Thus setting

γ(s) =















lα−1 − (l − s)α−1

sα−1
, 0 < s 6 r,

(k

s

)α−1

, r 6 s < ∞,

the proof is complete. �

Define the cone K ⊂ PC by

K = {u ∈ PC : u is nonnegative on [0,∞)}.

For u ∈ K, define the operator T by

(3.6) (Tu)(t) =

∫ ∞

0

G(t, s)f(s, u(s)) ds +
m

∑

k=1

Wk(t, u(tk)).

Clearly the boundary value problem (1.1) has a solution u = u(t) if and only if

u solves the operator equation u = Tu. Since the Arzela-Ascoli theorem fails to

work in the space PC, we need a modified compactness criterion to prove T is

compact. Similarly to Theorem 2.5 in [16], we give the following lemma.

Lemma 3.3. Let Ω2 ⊆ PC. Then Ω2 is relatively compact in PC if the following

conditions hold

(a) Ω2 is bounded in PC;

(b) the functions belonging to {u(t)/(1+ tα) : u ∈ Ω2} are piecewise equicontinuous
on any interval of [0,∞),

(c) the functions belonging to {u(t)/(1+tα) : u ∈ Ω2} are equiconvergent at infinity.

P r o o f. It is easy to see that Ω′
2 = {y : y(t) = u(t)/(1 + tα), u ∈ Ω2} ⊆ PCl

satisfies the conditions of Theorem 2.1. So there exists a sequence {yn} ⊆ Ω′
2 and

y0 ∈ PCl such that lim
n→∞

‖yn − y0‖l = 0. Let un(t) = (1 + tα)yn(t), n = 1, 2, . . .

and u0(t) = (1 + tα)y0(t). Obviously {un} ⊆ Ω2, u0 ∈ PC and lim
n→∞

‖un − u0‖PC =

lim
n→∞

‖yn − y(0)‖l = 0. �
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Lemma 3.4. If (H1)–(H4) hold, then T : K → K is completely continuous.

P r o o f. We divide the proof into two steps.

Step 1 : We prove that T : K → K is continuous.

First we show that T : K → K. From Lemma 3.2, we have (Tu)(t) > 0 for u ∈ K.

By (H2), (H4), we get

(3.7)

∫ ∞

0

G(t, s)

1 + tα
F

(

s,
u(s)

1 + sα

)

ds 6
κ(‖u‖PC)tα−1

Γ(α)(1 + tα)

∫ ∞

0

ϕ(s) ds < ∞

and

1

1 + tα

m
∑

k=1

Wk(t, u(tk)) 6
1

1 + tα

m
∑

k=1

Ik(u(tk))tα−1

tα−1
k − tα−2

k

6
tα−1

1 + tα

m
∑

k=1

ck

tα−1
k − tα−2

k

.

Thus the Dominated Convergence Theorem guarantees that

lim
t→∞

(Tu)(t)

1 + tα
(3.8)

= lim
t→∞

(
∫ ∞

0

G(t, s)

1 + tα
F

(

s,
u(s)

1 + sα

)

ds +
1

1 + tα

m
∑

k=1

Wk(t, u(tk))

)

= 0.

Therefore, TK ⊆ K. Second we show that T : K → K is continuous. In fact,

suppose {un} ⊂ K, u0 ∈ K and u0 = lim
n→∞

un, then there exists B > 0 such that

‖un‖PC 6 B, n = 0, 1, 2, . . .. By (H1), (H3), we have

lim
n→∞

F
(

t,
un(t)

1 + tα

)

= F
(

t,
u0(t)

1 + tα

)

, t ∈ [0,∞),

and

lim
n→∞

m
∑

k=1

Wk(t, un(tk)) =

m
∑

k=1

Wk(t, u0(tk)), t ∈ [0,∞).

According to the Dominated Convergence Theorem,

lim
n→∞

‖Tun − Tu0‖PC 6 lim
n→∞

M

(
∫ ∞

0

∣

∣

∣
F

(

s,
un(s)

1 + sα

)

− F
(

s,
u0(s)

1 + sα

)∣

∣

∣
ds

+ Γ(α)

m
∑

k=1

∣

∣

∣

Ik(un(tk)) − Ik(u0(tk))

tα−1
k − tα−2

k

∣

∣

∣

)

= 0.

Thus T : K → K is continuous.
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Step 2 : We show that T : K → K is relatively compact.

Let Ω be any bounded subset of K. Then there exists L > 0 such that

sup
t∈[0,∞)

|u(t)|
1 + tα

= ‖u‖PC 6 L.

First we will show that TΩ is uniformly bounded. For u ∈ Ω, it is easy to prove that

‖Tu‖PC = sup
t∈[0,∞)

(Tu)(t)

1 + tα

= sup
t∈[0,∞)

(
∫ ∞

0

G(t, s)

1 + tα
F

(

s,
u(s)

1 + sα

)

ds +
1

1 + tα

m
∑

k=1

Wk(t, u(tk))

)

6 M

(

κ(L)

∫ ∞

0

ϕ(s) ds +

m
∑

k=1

ck

tα−1
k − tα−2

k

)

< ∞.

Hence, TΩ is uniformly bounded. Second we show that the functions belonging to

{(Tu)(t)/(1 + tα) : u ∈ Ω} are locally equicontinuous on [0,∞). For any u ∈ Ω,

t̄, t̃ ∈ Jk, t̄ < t̃, k = 0, 1, 2, . . . , m, we have

Case 1. t̄, t̃ ∈ J0.

∣

∣

∣

(Tu)(t̃)

1 + t̃α
− (Tu)(t̄)

1 + t̄α

∣

∣

∣

6

∫ ∞

0

|G(t̃, s) − G(t̄, s)|
1 + t̃α

F
(

s,
u(s)

1 + sα

)

ds

+ (t̃α − t̄α)

∫ ∞

0

G(t̄, s)

1 + t̄α
F

(

s,
u(s)

1 + sα

)

ds

+

m
∑

k=1

ck

tα−1
k − tα−2

k

|t̄α−1(1 + t̃α) − t̃α−1(1 + t̄α)|

6 κ(L)

∫ ∞

0

|G(t̃, s) − G(t̄, s)|
1 + t̃α

ϕ(s) ds

+ Mκ(L)(t̃α − t̄α)

∫ ∞

0

ϕ(s) ds

+

m
∑

k=1

ck

tα−1
k − tα−2

k

|t̄α−1(1 + t̃α) − t̃α−1(1 + t̄α)| < ∞.
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Case 2. t̄, t̃ ∈ Jk, k = 1, 2, . . . , m.

∣

∣

∣

(Tu)(t̃)

1 + t̃α
− (Tu)t̄

1 + t̄α

∣

∣

∣

6

∫ ∞

0

|G(t̃, s) − G(t̄, s)|
1 + t̃α

F
(

s,
u(s)

1 + sα

)

ds

+ (t̃α − t̄α)

∫ ∞

0

G(t̄, s)

1 + t̄α
F

(

s,
u(s)

1 + sα

)

ds

+

m
∑

k=1

ck

tα−1
k − tα−2

k

|t̄α−1(1 + t̃α) − t̃α−1(1 + t̄α)|

+

m
∑

k=1

ck

tα−1
k − tα−2

k

|t̄α−2(1 + t̃α) − t̃α−2(1 + t̄α)|

6 κ(L)

∫ ∞

0

|G(t̃, s) − G(t̄, s)|
1 + t̃α

ϕ(s) ds

+ Mκ(L)(t̃α − t̄α)

∫ ∞

0

ϕ(s) ds

+

m
∑

k=1

ck

tα−1
k − tα−2

k

|t̄α−1(1 + t̃α) − t̃α−1(1 + t̄α)|

+

m
∑

k=1

ck

tα−1
k − tα−2

k

|t̄α−2(1 + t̃α) − t̃α−2(1 + t̄α)| < ∞.

Hence,
∣

∣

∣

(Tu)(t̃)

1 + t̃α
− (Tu)t̄

1 + t̄α

∣

∣

∣
→ 0 uniformly as t̄ → t̃.

Therefore, the functions belonging to {(Tu)(t)/(1 + tα) : u ∈ Ω} are piecewise
equicontinuous on any interval of [0,∞).

Finally by (H2), (H4), and Lemma 3.2, for any u ∈ Ω we have

lim
t→∞

∣

∣

∣

(Tu)(t)

1 + tα

∣

∣

∣
6

(

κ(L)

Γ(α)

∫ ∞

0

ϕ(s) ds +

m
∑

k=1

ck

tα−1
k − tα−2

k

)

lim
t→∞

tα−1

1 + tα
= 0.

Hence, TΩ is equiconvergent at infinity. By using Lemma 3.3, we obtain that TΩ is

relatively compact, that is, T is a compact operator. As a consequence of Step 1

and Step 2, we can prove that T : K → K is completely continuous. The proof is

complete. �
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4. Existence of three positive solutions

We define the nonnegative continuous concave functional

α(u) = min
t∈[k,l]

|u(t)|
1 + tα

, ∀u ∈ K.

Let

N1 =
1

M
∫ ∞
0

ϕ(s) ds
, N2 =

1 + lα
∫ l

k
γ(s)G(s, s) ds

.

Theorem 4.1. Assume that (H1)–(H4) hold and there exist constants a, b, c, d

with 0 < (1/Γ(α))
m
∑

k=1

ck/(tα−1
k − tα−2

k ) < a < b < c = d such that the following

conditions hold

(B1) κ(u) < N1

(

a −
m
∑

k=1

ck/(tα−1
k − tα−2

k )
)

for all u ∈ [0, a];

(B2) F (t, u) > N2b for all (t, u) ∈ [k, l]× [b, c];

(B3) κ(u) 6 N1

(

c −
m
∑

k=1

ck/(tα−1
k − tα−2

k )
)

for all u ∈ [a, c].

Then the boundary value problem (1.1) has at least three positive solutions u1, u2,

and u3 such that

sup
t∈[0,∞)

∣

∣

∣

u1(t)

1 + tα

∣

∣ < a, b < min
t∈[k,l]

∣

∣

∣

u2(t)

1 + tα

∣

∣

∣
< sup

t∈[0,∞)

∣

∣

∣

u2(t)

1 + tα

∣

∣

∣
6 c,

a < sup
t∈[0,∞)

∣

∣

∣

u3(t)

1 + tα

∣

∣

∣
6 c with min

t∈[k,l]

∣

∣

∣

u3(t)

1 + tα

∣

∣

∣
< b.

P r o o f. First we show that (S2) of Theorem 2.1 holds.

If u ∈ Kc then ‖u‖PC 6 c. By Lemma 3.2 and (B3), we get

‖Tu‖PC = sup
t∈[0,∞)

(Tu)(t)

1 + tα

= sup
t∈[0,∞)

(
∫ ∞

0

G(t, s)

1 + tα
F

(

s,
u(s)

1 + sα

)

ds +
1

1 + tα

m
∑

k=1

Wk(t, u(tk))

)

6 M

∫ ∞

0

ϕ(s)κ
( u(s)

1 + sα

)

ds +

m
∑

k=1

ck

tα−1
k − tα−2

k

6 M

∫ ∞

0

ϕ(s)N1

(

c −
m

∑

k=1

ck

tα−1
k − tα−2

k

)

ds +

m
∑

k=1

ck

tα−1
k − tα−2

k

6 c.

Hence, the condition (S2) of Theorem 2.1 is satisfied. In the same way, we can show

that if (B1) holds, then TKa ⊂ Ka.
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Second we show that (S1) of Theorem 2.1 holds. To check the condition (S1) of

Theorem 2.1, we choose

u0(t) =
1

2
(b + c)(1 + tα), t ∈ [0,∞).

It is easy to see that u ∈ K, ‖u‖PC = 1
2 (b + c) 6 c, α(u) = 1

2 (b + c) > b. That is,

u0 ∈ {u ∈ K(α, b, d) : α(u) > b} 6= ∅.

Moreover, for all u ∈ K(α, b, d) we have b 6 u(t)/(1 + tα) 6 c for t ∈ [k, l]. By (B2)

and Lemma 3.2, we have

α(Tu) = min
t∈[k,l]

|(Tu)(t)|
1 + tα

= min
t∈[k,l]

(
∫ ∞

0

G(t, s)

1 + tα
F

(

s,
u(s)

1 + sα

)

ds +
1

1 + tα

m
∑

k=1

Wk(t, u(tk))

)

>
1

1 + lα

∫ ∞

0

γ(s)G(s, s)F
(

s,
u(s)

1 + sα

)

ds

>
1

1 + lα

∫ l

k

γ(s)G(s, s)F
(

s,
u(s)

1 + sα

)

ds

>
1

1 + lα

∫ l

k

γ(s)G(s, s)N2b ds = b.

Hence, condition (S1) of Theorem 2.1 is satisfied. By Remark 2.1, condition (S3) of

Theorem 2.1 is satisfied. To sum up, all the hypotheses of Theorem 2.1 are satisfied.

The proof is complete. �

5. Existence of successive iteration solutions

Theorem 5.1. Assume (H1)–(H4) hold. If there exists a positive number Λ >
m
∑

k=1

ck/(tα−1
k − tα−2

k ) such that

(C1) F (t, ·), Ik(·) : [0, Λ] → [0,∞) (k = 1, 2, . . . , m) are nondecreasing for all t ∈
[0,∞);

(C2) κ(Λ) 6 N1

(

Λ −
m
∑

k=1

ck/(tα−1
k − tα−2

k )
)

for all u ∈ [0, Λ];

(C3) F (t, 0) is not identically zero on any compact subinterval of (0,∞),

then the boundary value problem (1.1) has two positive solutions w∗, v∗ ∈ KΛ with

‖w∗‖PC 6 Λ and lim
n→∞

T nw0 = w∗,(5.1)

‖v∗‖PC 6 Λ and lim
n→∞

T nv0 = v∗,(5.2)
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where
w0(t) = Λ(1 + tα), t ∈ [0,∞),

v0 = 0, t ∈ [0,∞).

P r o o f. We now show that T : KΛ → KΛ. If u ∈ KΛ then ‖u‖PC 6 Λ, and we

have

0 6
u(t)

1 + tα
6 sup

t∈[0,∞)

u(t)

1 + tα
= ‖u‖PC 6 Λ.

By (H2), (H4), (C1), (C2), and Lemma 3.2, we get

‖Tu‖PC = sup
t∈[0,∞)

(
∫ ∞

0

G(t, s)

1 + tα
F

(

s,
u(s)

1 + sα

)

ds +
1

1 + tα

m
∑

k=1

Wk(t, u(tk))

)

6 M

∫ ∞

0

ϕ(s)κ
( u(s)

1 + sα

)

ds +

m
∑

k=1

ck

tα−1
k − tα−2

k

6 M

∫ ∞

0

ϕ(s)N1

(

Λ −
m

∑

k=1

ck

tα−1
k − tα−2

k

)

ds +

m
∑

k=1

ck

tα−1
k − tα−2

k

6 Λ.

Thus we conclude that T : KΛ → KΛ.

Let wn = T nw0, vn = T nv0. Then wn, vn ∈ KΛ, n = 1, 2, . . .. Since T is

completely continuous, we see that {wn}∞n=1, {vn}∞n=1 are relatively compact sets.

By (H3), (C1), (C2), and Lemma 3.2, we get

w1(t)

1 + tα
=

(Tw0)(t)

1 + tα

=

∫ ∞

0

G(t, s)

1 + tα
f(s, w0(t)) ds +

1

1 + tα

m
∑

k=1

Wk(t, w0(tk))

6

∫ ∞

0

G(t, s)

1 + tα
F (s, Λ) ds +

m
∑

k=1

ck

tα−1
k − tα−2

k

6

∫ ∞

0

G(t, s)

1 + tα
ϕ(s)κ(Λ) ds +

m
∑

k=1

ck

tα−1
k − tα−2

k

6 M

∫ ∞

0

ϕ(s)N1

(

Λ − 1

Γ(α)

m
∑

k=1

ck

tα−1
k − tα−2

k

)

ds

+
1

Γ(α)

m
∑

k=1

ck

tα−1
k − tα−2

k

= Λ.

Hence, w1(t) 6 Λ(1 + tα), i.e., w1(t) 6 w0(t) for t ∈ [0,∞).

Similarly we get w2(t) = (Tw1)(t) 6 (Tw0)(t) = w1(t) for t ∈ [0,∞).
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By induction, we get

wn+1(t) = (Twn)(t) 6 (Twn−1)(t) = wn(t) for t ∈ [0,∞), n = 1, 2, . . . .

Hence, there exists w∗ ∈ KΛ such that w∗ = lim
n→∞

wn. Applying the continuity of T

and wn+1 = Twn, we get Tw∗ = w∗.

For t ∈ [0,∞), by (C3), we get

v1(t) = (Tv0)(t) =

∫ ∞

0

G(t, s)f(s, v0(s)) ds +

m
∑

k=1

Wk(t, v0(tk))

>

∫ ∞

0

G(t, s)f(s, 0) ds > 0 = v0(t)

and v2(t) = (Tv1)(t) > (Tv0)(t) = v1(t), t ∈ [0,∞).

By induction, we get

vn+1(t) = (Tvn)(t) > (Tvn−1)(t) = vn(t), t ∈ [0,∞), n = 1, 2, . . . .

Hence, there exists v∗ ∈ KΛ such that v∗ = lim
n→∞

vn. Applying the continuity of T

and vn+1 = Tvn, we get Tv∗ = v∗. The proof is complete. �

Theorem 5.2. Assume that there exist a function h ∈ L1[0,∞) and numbers dk

(k = 1, 2, . . . , m) such that

|F (t, x) − F (t, y)| 6 h(t)|x − y| for t ∈ [0,∞), 0 < x, y < Λ,

|Ik(x) − Ik(y)| 6 dk|x − y| for k = 1, 2, . . . , m, 0 < x, y < Λ,

and

M

∫ ∞

0

h(s) ds +
m

∑

k=1

dk

tα−1
k − tα−2

k

< 1.

Then T has a unique fixed point in KΛ, that is, w
∗ = v∗ (defined by Eq. (5.1), (5.2)).

P r o o f. Let u1, u2 ∈ E. Then we have

∣

∣

∣

(Tu1)(t) − (Tu2)(t)

1 + tα

∣

∣

∣
=

∫ ∞

0

G(t, s)

1 + tα

∣

∣

∣
F

(

s,
u1(s)

1 + sα

)

− F
(

s,
u2(s)

1 + sα

)∣

∣

∣
ds

+
1

1 + tα

m
∑

k=1

|Wk(t, u1(tk)) − Wk(t, u2(tk))|

6

(

M

∫ ∞

0

h(s) ds +

m
∑

k=1

dk

tα−1
k − tα−2

k

)

‖u1 − u2‖PC

< ‖u1 − u2‖PC .
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Thus

‖(Tu1)(t) − (Tu2)(t)‖PC < ‖u1 − u2‖PC .

Consequently, T is a contraction. As a consequence of the Banach fixed point the-

orem, we deduce that T has a unique fixed point which is an unbounded iteration

positive solution of the boundary value problem (1.1). Hence, w∗ = v∗ (defined by

Eq. (5.1), (5.2)). The proof is complete. �

6. Example

E x am p l e 6.1. Consider the problem

(6.1)











D
3/2
0+ u(t) + f(t, u) = 0, t ∈ (0,∞) \ {t1},

u(t+1 ) − u(t−1 ) = −I1(u(t1)),

u(0) = 0, D
3/2
0+ u(∞) = 0,

where

t1 = 2, I1(u) =

{

1
20

√
π u, u ∈ [0, 10];

1
2

√
π, u ∈ [10,∞),

F (t, u) = f(t, (1 + t3/2)u) =
( 2

5
√

π

u + 10
)

e−t, t ∈ [0,∞).

Choose Λ = 5
√

π, h(t) = ϕ(t) = e−t, κ(u) = 2
5

1√
π

u + 10, c1 = d1 = 1
20

√
π, w0(t) =

5
√

π(1 + t3/2), v0(t) = 0, t ∈ [0,∞). By computing, we have M = 4
3

1
3
√

2
√

π

, N1 =
3
4

3
√

2
√

π. Hence,

(1) F (t, ·), I1(·) : [0,∞) → [0,∞) are nondecreasing for all t ∈ [0,∞);

(2) κ(5
√

π) 6 12 < N1

(

Λ − c1

√
t1/(t1 − 1)

)

for all t ∈ [0,∞);

(3) F (t, 0) = 10e−t is not identically zero on any compact subinterval of (0,∞);

(4) |F (t, x) − F (t, y)| 6 h(t)|x − y| for t ∈ [0,∞), 0 < x, y < Λ,

|I1(x) − I1(y)| 6 d1|x − y|, 0 < x, y < Λ, M
∫ ∞
0

h(s) ds + d1

√
t1/(t1 − 1) < 1.

Thus by Theorem 5.2, the problem (6.1) has an unbounded iteration positive solution.

By computing, we have

‖w1 − w0‖PC = 7.85227, ‖w2 − w1‖PC = 0.00975, ‖w3 − w2‖PC = 0.000012.

E x am p l e 6.2. Consider the problem

(6.2)











D
3/2
0+ u(t) + f(t, u) = 0, t ∈ (0,∞) \ {t1},

u(t+1 ) − u(t−1 ) = −I1(u(t1)),

u(0) = 0, D
3/2
0+ u(∞) = 0,
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where

t1 = 2, I1(u) =

{

1
1000 u, u ∈ [0, 5],

1
200 , u ∈ [5,∞),

F (t, u) = f(t, (1 + t3/2)u) =

{
(

1
20 + 4u4

)

e−t, u 6 1,
(

3 + 1
20 + u

)

e−t, u > 1.

Choose a = 1
10 , b = 1, c = 12, k = 1, l = 4. By computing, we have N1 = 4

3
1

3
√

2
√

π

≈
0.5971, N2 = 27

14

√
π ≈ 3.4183, c1 = 1

40 . Hence,

(1) κ(u) = 1
20 + 4u4 6 0.0504 < N1(a− c1

√
t1/(t1 − 1)) for (t, u) ∈ [0,∞)×

[

0, 1
10

]

;

(2) F (t, u) = 3 + 1
20 + u > 4.005 > N2b for (t, u) ∈ [1, 4] × [1, 12];

(3) κ(u) = 3 + 1
20 + u 6 15.05 < N1(c− c1

√
t1/(t1 − 1)) for (t, u) ∈ [0,∞)× [1, 12].

By Theorem 4.1, we get that the fractional boundary value problem (6.2) has at

least three positive solutions u1, u2, and u3 with

sup
t∈[0,∞)

∣

∣

∣

u1(t)

1 + t3/2

∣

∣

∣
<

1

10
, 1 < min

t∈[1,4]

∣

∣

∣

u2(t)

1 + t3/2

∣

∣

∣
< sup

t∈[0,∞)

∣

∣

∣

u2(t)

1 + t3/2

∣

∣

∣
6 12,

1

10
< sup

t∈[0,∞)

∣

∣

∣

u3(t)

1 + t3/2

∣

∣

∣
6 12 with min

t∈[1,4]

∣

∣

∣

u3(t)

1 + t3/2

∣

∣

∣
< 1.
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