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Abstract. This paper obtains a class of tight framelet packets on L
2(Rd) from the exten-

sion principles and constructs the relationships between the basic framelet packets and the
associated filters.
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1. Introduction

Recently there has been an interest in the applications of redundant dyadic wavelet

systems. Although many applications of wavelets use wavelet bases, other types of

applications work better with redundant wavelet families, of which tight wavelet

frames are the easiest to use. Tight wavelet frames are different from orthonormal

wavelet bases in one important respect; they are (in general) redundant systems

but with the same fundamental structure as wavelet systems. To mention only

a few references on tight wavelet frames, the reader is referred to [11]–[16], [18]

and [19]. The most common method to construct tight wavelet frames relies on

the so-called extension principles. The resulting tight wavelet frames are based on

a multiresolution analysis, and the generators are often called mother framelets. The

construction of multiresolution-based wavelet frames has been extensively studied

and well developed, see [2], [6], [11], [12], [14], [16], [18] or [19] .

However, wavelet frames provide poor frequency localization in applications. Take

signal processing as example. The pyramid-structured framelet transform decom-

poses the signal into a set of frequency channels that have narrower bandwidths in

Supported by the Chinese National Programs for High Technology Research and Devel-
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the lower frequency region. The transform is suitable for a signal whose main infor-

mation is concentrated in the low frequency regions. But it may not be suitable for

information whose domain frequency channels are focused on the middle frequency

region. To overcome this disadvantage, the concept of wavelet frames must be gener-

alized to include a library of wavelet frames, called framelet packets or wavelet frame

packets.

The original idea of framelet packets was introduced by Coifman, Meyer and Wick-

erhauser in [9] and [10], where orthonormal wavelet packets were considered; and then

lots of results on wavelet packets emerged, see [1], [4], [5], [7], [8], [17] or [21]. As for

the redundant wavelet packets, we refer the reader to [1] and [17] for the detailed dis-

cussion. In this paper, we first construct a class of tight framelet packets on L2(Rd)

from the unitary principle of Ron and Shen in [18], and then extend the results to

the case of the oblique extension principle of Daubechies, Han, Ron and Shen in [12].

The results of [2, Section 7.2] show that, at a fixed dilation level, the spaces spanned

by the basic framelet packets overlap and are not independent or even orthogonal

anymore, which is different from the traditional wavelet frame packets given in [1]

and [17].

2. Preliminaries

We begin by introducing some notation and a few results that we shall use. Z de-

notes the collection of all integers, R refers to the real line, and C represents the set

of all complex numbers. Thoughout this paper, d and L are two positive integers.

Translation by h ∈ R
d, Th is defined by (Thf)(x) = f(x− h) and dilation by j ∈ Z,

Dj is defined by (Djf)(x) = 2jd/2f(2jx). 〈·, ·〉 denotes the standard inner product

in L2(Rd), i.e.,

(2.1) 〈f, g〉 :=

∫

Rd

f(x)g(x) dx,

which can be extended to other f and g, e.g., when fg ∈ L1(Rd). We normalize

the Fourier transform as follows: f̂(ξ) :=
∫
Rd f(x)e−iξ·x dx. Given a function ψ ∈

L2(Rd), we set ψj,k : x 7→ 2jd/2ψ(2jx − k). If the function ψi already carries an

enumerative index, we write ψi,j,k instead.

Let Ψ be a finite subset of L2(Rd). The dyadic wavelet system generated by the

mother wavelets Ψ is the family

(2.2) X(Ψ) := {ψj,k = DjTkψ : ψ ∈ Ψ, j ∈ Z, k ∈ Z
d}.
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The wavelet systemX(Ψ) is called a dyadic wavelet frame, or simply a wavelet frame,

if there exist positive numbers 0 < A 6 B <∞ such that for all f ∈ L2(Rd)

(2.3) A‖f‖2
6

∑

g∈X(Ψ)

|〈f, g〉|2 6 B‖f‖2.

The largest A and smallest B satisfying (2.3) are the optimal wavelet frame bounds.

We call X(Ψ) a tight wavelet frame if A = B and a Parseval wavelet frame if

A = B = 1.

Next we shall introduce some results corresponding to FMRA. FMRA is just one

way to construct wavelet frames via multiscale techniques. In this article, we shall

follow a fundamental idea of Ron and Shen, which (in its first version) appeared

in [18]. The idea is to modify the definition of the classical multiresolution analy-

sis by requiring ϕ to satisfy a refinement equation instead of {Tkϕ}k∈Zd being an

orthonormal sequence.

The other conditions will be stated in the general setup as follows.

General setup: Let ϕ := ψ0 ∈ L2(Rd).

(1) There exists a 2πZ
d-periodic measurable function H0 ∈ L∞([−π, π)d) such that

(2.4) ψ̂0(2ξ) = H0(ξ)ψ̂0(ξ).

(2) lim
ξ→0

ψ̂0(ξ) = 1.

Furthermore, let H1, . . . , HL ∈ L∞([−π, π)d) be 2πZ
d-periodic measurable func-

tions. Define ψ1, . . . , ψL ∈ L2(Rd) by

(2.5) ψ̂l(2ξ) = Hl(ξ)ψ̂0(ξ), l = 1, 2, . . . , L.

Then we call {ψl, Hl}
L
l=0 a general setup.

The spectrum σ(ψ0) associated to ψ0 is defined by

(2.6) σ(ψ0) = {ξ ∈ [−π, π]d : ψ̂0(ξ + 2kπ) 6= 0 for some k ∈ Z
d}.

Daubechies et al. in [12] gave a complete characterization of the tight frames

which can be obtained via the general setup. The following is the fundamental tool

they gave to construct Parseval wavelet frames.
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Theorem 2.1 The Oblique Extension Principle (OEP). Let {ψl, Hl}
L
l=0 be as in

the general setup. Assume that there exists a measurable and 2πZ
d-periodic function

θ(ω) which is strictly positive, essentially bounded, continuous at the origin, and

θ(0) = 1. If for almost all ξ ∈ σ(ψ0) and ν ∈ {0, π}d satisfying ξ + ν ∈ σ(ψ0), we

have

(2.7) H0(ξ)H0(ξ + ν)θ(2ξ) +

L∑

l=1

Hl(ξ)Hl(ξ + ν) =

{
θ(ξ), if ν = 0,

0, otherwise,

then the resulting wavelet systemX(Ψ) is a Parseval wavelet frame for L2(Rd), where

Ψ = {ψ1, . . . , ψL}.

Remark 2.2. If θ ≡ 1, Theorem 2.1 reduces to the Unitary Extension Principle

(UEP) of Ron and Shen in [18].

Remark 2.3. In many (most) interesting cases the spectrum σ(ψ0) is equal to

[−π, π]d. For example, if the integer translates of the scaling function ψ0 are Riesz

sequences, this is the case. So we suppose that σ(ψ0) = [−π, π]d in this paper.

A wavelet system X(Ψ) is said to be MRA-based if it is generated by the OEP

or the UEP. The elements in X(Ψ) are called framelets, and the elements in Ψ are

called mother framelets. We call H0 the refinement mask and the functions Hl,

l = 1, 2, . . . , L, wavelet masks.

3. Basic framelet packets

In this section, we shall show the construction of the basic framelet packets for

L2(Rd) via a frame multiresolution analysis generated by the UEP.

Let {ψl, Hl}
L
l=0 satisfy the conditions of the UEP and w0 := ϕ = ψ0. Define the

functions wn(x), n = 1, 2, . . ., associated with the refinable function ϕ recursively by

(3.1) ŵn(L+1)+l(2ξ) = Hl(ξ)ŵn(ξ), l = 0, 1, . . . , L, n = 0, 1, 2, . . . .

When n = 0 and l = 1, 2, . . . , L, we obtain

(3.2) ŵl(2ξ) = Hl(ξ)ŵ0(ξ) = Hl(ξ)ψ̂0(ξ),

which shows that wl = ψl, l = 1, 2, . . . , L.
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Theorem 3.1. Let wn, n = 0, 1, . . ., be as in equation (3.1). Then, for all n > 0

and j ∈ Z, we have

(3.3)
∑

k∈Zd

|〈f,DjTkwn〉|
2 =

L∑

l=0

∑

k∈Zd

|〈f,Dj−1Tkwn(L+1)+l〉|
2 ∀f ∈ L2(Rd).

P r o o f. Let

Cc(R
d) = {f ∈ L2(Rd) : f̂ is continuous and has compact support}.

Then ∀f ∈ Cc(R
d),

〈f,Dj−1Tkwn(L+1)+l〉 =
1

(2π)d
2−(j−1)d/2

∫

Rd

f̂(ξ)ŵn(L+1)+l(2−(j−1)ξ)e2−(j−1) ik·ξ dξ

=
1

(2π)d
2−(j−1)d/2

∫

[−2j−1
π,2j−1

π]d

∑

α∈Zd

f̂(ξ + 2j
πα)

× ŵn(L+1)+l(2−(j−1)ξ + 2πα)e2−(j−1)ik·ξ dξ.

The exchange of the integral and the summation is legitimate in the above formula.

Since {(2j
π)−d/2e2−(j−1)ik·ξ}k∈Zd is an orthonormal basis for L2([−2j−1

π, 2j−1
π]d),

we have

I :=

L∑

l=0

∑

k∈Zd

|〈f,Dj−1Tkwn(L+1)+l〉|
2

=
1

(2π)d

L∑

l=0

∫

[−2j−1
π,2j−1

π]d

∣∣∣∣
∑

α∈Zd

f̂(ξ + 2j
πα)ŵn(L+1)+l(2−(j−1)ξ + 2πα)

∣∣∣∣
2

dξ.

By equation (3.1) we obtain

I =
1

(2π)d

L∑

l=0

∫

[−2j−1
π,2j−1

π]d

∣∣∣∣
∑

α∈Zd

f̂(ξ + 2j
πα)ŵn(2−jξ + πα)Hl(2−jξ + πα)

∣∣∣∣
2

dξ

=
1

(2π)d

L∑

l=0

∫

[−2j−1
π,2j−1

π]d

∣∣∣∣
∑

α′∈Zd

∑

ν∈{0,1}d

f̂(ξ + 2j
π(2α′ + ν))

× ŵn(2−jξ + π(2α′ + ν))Hl(2−jξ + π(2α′ + ν))

∣∣∣∣
2

dξ
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=
1

(2π)d

L∑

l=0

∫

[−2j−1
π,2j−1

π]d

∣∣∣∣
∑

α′∈Zd

∑

ν∈{0,1}d

f̂(ξ + 2j
π(2α′ + ν))

× ŵn(2−jξ + π(2α′ + ν))Hl(2−jξ + πν)

∣∣∣∣
2

dξ

:=
1

(2π)d

L∑

l=0

∫

[−2j−1
π,2j−1

π]d

∣∣∣∣
∑

ν∈{0,1}d

P j
f,wn

(ξ, ν)Hl(2−jξ + πν)

∣∣∣∣
2

dξ,

where

P j
f,wn

(ξ, ν) =
∑

α′∈Zd

f̂(ξ + 2j
π(2α′ + ν))ŵn(2−jξ + π(2α′ + ν)).

Recall that equation (2.7), when θ ≡ 1, can be written as

L∑

l=0

Hl(ξ)Hl(ξ + νπ) =

{
1, if ν = 0,

0, otherwise,

for ξ ∈ [−π, π]d and ν ∈ {0, 1}d. Hence

I =
1

(2π)d

L∑

l=0

∫

[−2j−1
π,2j−1

π]d

∑

ν∈{0,1}d

P j
f,wn

(ξ, ν)Hl(2−jξ + πν)

×
∑

ν′∈{0,1}d

P j
f,wn

(ξ, ν′)Hl(2
−jξ + πν′) dξ

=
1

(2π)d

∫

[−2j−1
π,2j−1

π]d

∑

ν,ν′∈{0,1}d

P j
f,wn

(ξ, ν)P j
f,wn

(ξ, ν′)

×
L∑

l=0

Hl(2
−jξ + πν′)Hl(2−jξ + πν) dξ

=
1

(2π)d

∫

[−2j−1
π,2j−1

π]d

∑

ν∈{0,1}d

|P j
f,wn

(ξ, ν)|2 dξ.

Noticing that P j
f,wn

(ξ, ν) are 2j+1
πZ

d-periodic functions and

⋃

ν∈{0,1}d

([−2j−1
π, 2j−1

π]d + 2j
πν) = [−2j−1

π, 3 × 2j−1
π]d,
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we have

I =
1

(2π)d

∑

ν∈{0,1}d

∫

[−2j−1
π,2j−1

π]d

∣∣∣∣
∑

α′∈Zd

f̂(ξ + 2j
π(2α′ + ν))

× ŵn(2−jξ + π(2α′ + ν))

∣∣∣∣
2

dξ

=
1

(2π)d

∑

ν∈{0,1}d

∫

[−2j−1
π,2j−1

π]d+2j
πν

∣∣∣∣
∑

α′∈Zd

f̂(ξ + 2j+1
πα′)ŵn(2−jξ + 2πα′)

∣∣∣∣
2

dξ

=
1

(2π)d

∫

[−2j−1
π,3×2j−1

π]d

∣∣∣∣
∑

α′∈Zd

f̂(ξ + 2j+1
πα′)ŵn(2−jξ + 2πα′)

∣∣∣∣
2

dξ

=
1

(2π)d

∫

[−2j
π,2j

π]d

∣∣∣∣
∑

α′∈Zd

f̂(ξ + 2j+1
πα′)ŵn(2−jξ + 2πα′)

∣∣∣∣
2

dξ.

With the same method we can obtain

∑

k∈Zd

|〈f,DjTkwn〉|
2 =

1

(2π)d

∫

[−2j
π,2j

π]d

∣∣∣∣
∑

α′∈Zd

f̂(ξ + 2j+1
πα′)ŵn(2−jξ + 2πα′)

∣∣∣∣
2

dξ.

So equation (3.3) holds for all f ∈ Cc(R
d). The proof is complete since Cc(R

d) is

dense in L2(Rd). �

Define a family of subspaces of L2(Rd) by

(3.4) U
n
j := span

{
DjTkwn : k ∈ Z

d
}

for j ∈ Z and n = 0, 1, 2, . . .. We have the following results on the subspaces Un
j .

Theorem 3.2. For n = 0, 1, 2, . . ., we have

(3.5) U
n
j+1 = U

n(L+1)
j + . . .+ U

n(L+1)+L
j , j ∈ Z.

P r o o f. Recall that

ŵn(L+1)+l(2ξ) = Hl(ξ)ŵn(ξ), l = 0, 1, . . . , L, n = 0, 1, . . . .

So we conclude that, for all n = 0, 1, 2, . . . and j ∈ Z,

U
n(L+1)+l
j ⊆ U

n
j+1, l = 0, 1, . . . , L,
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which means that

∆j := U
n(L+1)
j + . . .+ U

n(L+1)+L
j ⊆ U

n
j+1.

To show equation (3.5), we argue by contradiction. If there exists 0 6= f ∈ U
n
j+1

such that f ∈ ∆⊥
j , where ∆⊥

j denotes the orthogonal complement of ∆j in U
n
j+1,

then
L∑

l=0

∑

k∈Zd

|〈f,DjTkwn(L+1)+l〉|
2 = 0.

However,
∑

k∈Zd

|〈f,Dj+1Tkwn〉|
2 6= 0, which contradicts equation (3.3). So we com-

plete the proof. �

Using equation (3.5) repeatedly, we have the following results.

Theorem 3.3. For each j = 1, 2, . . ., we have

(3.6) Vj = span{DjTkϕ : k ∈ Z
d} = span{DjTkw0 : k ∈ Z

d} = U
0
j

and

(3.7)





U
0
j = U

0
j−1 + U

1
j−1 + . . .+ U

L
j−1,

U
0
j = U

0
j−2 + U

1
j−2 + . . .+ U

(L+1)2−1
j−2 ,

...

U
0
j =

(L+1)k−1∑
l=0

U
l
j−k,

...

U
0
j =

(L+1)j−1∑
l=0

U
l
0,

where U
n
j are defined as in equation (3.4).

Theorem 3.4. Let Un
j be as in equation (3.4). Then

(3.8) L2(Rd) =

∞∑

l=0

U
l
0,

and the collection {Tkwn : k ∈ Z
d; n = 0, 1, . . .} generates a Parseval frame for

L2(Rd).

Definition 3.5. The functions wn, n = 0, 1, 2, . . ., are called the basic framelet

packets associated with the refinable function ϕ.

In order to prove Theorem 3.4 we need some lemmas as follows.
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Lemma 3.6 (see [3]). Let ϕ ∈ L2(Rd). For j ∈ Z, define

Vj = span{DjTkϕ : k ∈ Z
d}.

If Vj ⊆ Vj+1, j ∈ Z, and |ϕ̂| > 0 on a neighborhood of 0, then

⋃

j∈Z

Vj = L2(Rd) and
⋂

j∈Z

Vj = {0}.

Lemma 3.7. Assume that ϕ ∈ L2(Rd) satisfies lim
ξ→0

ϕ̂(ξ) = 1. If f ∈ Cc(R
d),

then for any ε > 0 there exists J ∈ Z such that

(3.9) (1 − ε)‖f‖2 6
∑

k∈Zd

|〈f,DjTkϕ〉|
2 6 (1 + ε)‖f‖2 for all j > J.

Indeed, the proof of Lemma 3.7 is similar to that of its analogue in the case of

d = 1 (see [6, Lemma 14.2.2]). However, for the readers’ convenience, we give the

argument as follows:

P r o o f. Let j ∈ Z and f ∈ Cc(R
d). Then

∑

k∈Zd

|〈f,DjTkϕ〉|
2 =

1

(2π)2d

∑

k∈Zd

∣∣∣∣2
jd/2

∫

Rd

f̂(2jξ)ϕ̂(ξ)eik·ξ dξ

∣∣∣∣
2

=
1

(2π)2d

∑

k∈Zd

∣∣∣∣2
jd/2

∫

[−π,π]d

∑

α∈Zd

f̂(2j(ξ + 2πα))ϕ̂(ξ + 2πα)eik·ξ dξ

∣∣∣∣
2

.

It is easy to know that [f, ϕ](ξ) :=
∑

α∈Zd

f̂(2j(ξ + 2πα))ϕ̂(ξ + 2πα) is well defined.

When we only consider ξ ∈ [−π, π]d, [f, ϕ] can be bounded by a finite linear combi-

nation of translates of ϕ̂, so [f, ϕ] ∈ L2([−π, π]d). Recall that {(2π)−d/2eik·ω}k∈Zd is

an orthonormal basis for L2([−π, π]d). So

∑

k∈Zd

|〈f,DjTkϕ〉|
2 = 2jd 1

(2π)d

∫

[−π,π]d

∣∣∣∣
∑

α∈Zd

f̂(2j(ξ + 2πα))ϕ̂(ξ + 2πα)

∣∣∣∣
2

dξ.

Now let ε > 0 be given. By assumption, we can choose b ∈ (0, π) such that 1 − ε 6

|ϕ̂(ω)|2 6 1 + ε whenever ξ with ‖ξ‖Rd 6 b. By taking J ∈ Z such that Dj f̂ has
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support in Bb := {ξ : ‖ξ‖Rd 6 b} for j > J , we obtain that for all j > J ,

∑

k∈Zd

|〈f,DjTkϕ〉|
2 = 2jd 1

(2π)d

∫

Bb

|f̂(2jξ)ϕ̂(ξ)|2 dξ

6 (1 + ε)
1

(2π)d

∫

Bb

|Dj f̂(ξ)|2 dξ

= (1 + ε)
1

(2π)d

∫

Rd

|Dj f̂(ξ)|2 dξ

= (1 + ε)‖f‖2.

On the other hand, we have

(1 − ε)‖f‖2 6
∑

k∈Zd

|〈f,DjTkϕ〉|
2.

So equation (3.9) holds for all f ∈ Cc(R
d). �

P r o o f of Theorem 3.4. We first consider equation (3.8). By Lemma 3.6 and

Theorem 3.3 we get

L2(Rd) =
⋃

j∈Z

Vj = lim
j→∞

Vj = lim
j→∞

(L+1)j−1∑

l=0

U
l
0 =

∞∑

l=0

U
l
0.

Let ε > 0 and f ∈ Cc(R
d). By Lemma 3.7, we can choose J > 0 such that for all

j > J ,

(1 − ε)‖f‖2 6
∑

k∈Zd

|〈f,DjTkϕ〉|
2 6 (1 + ε)‖f‖2.

For any j > 0, Theorem 3.1 shows that

∑

k∈Zd

|〈f,DjTkϕ〉|
2 =

∑

k∈Zd

|〈f,DjTkw0〉|
2 =

L∑

l=0

∑

k∈Zd

|〈f,Dj−1Tkwl〉|
2

=

L∑

l=0

L∑

µ=0

∑

k∈Zd

|〈f,Dj−2Tkwl(L+1)+µ〉|
2

=

(L+1)2−1∑

n=0

∑

k∈Zd

|〈f,Dj−2Tkwn〉|
2 = . . .

=

(L+1)j−1∑

n=0

∑

k∈Zd

|〈f, Tkwn〉|
2.
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It follows that for all j > J

(1 − ε)‖f‖2 6

(L+1)j−1∑

n=0

∑

k∈Zd

|〈f, Tkwn〉|
2 6 (1 + ε)‖f‖2.

Letting j → ∞,

(1 − ε)‖f‖2 6

∞∑

n=0

∑

k∈Zd

|〈f, Tkwn〉|
2 6 (1 + ε)‖f‖2.

Since ε > 0 was arbitrary, we conclude that

∞∑

n=0

∑

k∈Zd

|〈f, Tkwn〉|
2 = ‖f‖2.

The proof is complete since Cc(R
d) is dense in L2(Rd). �

For w0 = ϕ with lim
ξ→0

ŵ0(ξ) = 1, we have

ŵ0(ξ) = H0

(ξ
2

)
ŵ0

(ξ
2

)

= H0

(ξ
2

)
H0

( ξ

22

)
ŵ0

( ξ

22

)
= . . .

= ŵ0

( ξ

2n

) n∏

j=1

H0

( ξ

2j

)
.

If the finite product
n∏

j=1

H0(ξ/2
j) is convergent as n→ ∞ for each ξ ∈ R

d, then

(3.10) ŵ0(ξ) =

∞∏

j=1

H0

( ξ

2j

)
.

To generalize the result to the basic framelet packets we need to consider the unique

“a-adic expansion” (i.e., expansion in the base a) for an integer n > 1:

(3.11) n =

k∑

j=1

εja
j−1,

where εj ∈ {0, 1, 2, . . . , a − 1} for all j = 1, 2, . . . , k and εk 6= 0. Let a = L + 1.

Suppose that εj = 0 if j > k + 1. Then we have

(3.12) n =

∞∑

j=1

εj(L+ 1)j−1

for all n > 0, where εj ∈ {0, 1, 2, . . . , L}.
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Theorem 3.8. Let n be a non-negative integer with “(L + 1)-adic expansion”

given by (3.12). Then the Fourier transform of the basic framelet packets given by

(3.1) satisfies

(3.13) ŵn(ξ) =

∞∏

j=1

Hεj
(2−jξ) =

{ k∏

j=1

Hεj
(2−jξ)

}
ϕ̂(2−kξ)

if H0(ξ) is a continuously differentiable function.

P r o o f. The infinite product

∞∏

j=1

Hεj
(2−jξ)

clearly converges for each ξ ∈ R
d. In fact, from the definition of the basic framelet

packets we know that when k is sufficiently large, Hεk
= H0. We also have, from

the general setup, H0(0) = 1. Let Πk(ξ) =
k∏

j=1

Hεj
(2−jξ). Note that equation (2.7)

implies that |Hεj
(ξ)| 6 1 for all ξ, which shows that |Πk(ξ)| 6 1 for all k > 1.

Consequently,

|Πk+1(ξ) − Πk(ξ)| = |Πk(ξ)(H0(2
−k−1ξ) − 1)|

6 |H0(2
−k−1ξ) −H0(0)| 6 ‖H ′

0‖L∞(Rd)2
−(k+1)|ξ|.

Hence,

|Πk+m(ξ) − Πk(ξ)| 6 ‖H ′
0‖L∞(Rd)|ξ|(2

−(k+1) + . . .+ 2−(k+m))

6 ‖H ′
0‖L∞(Rd)|ξ|2

−k

for all m ∈ N and all sufficiently large k ∈ N. This shows that the sequence {Πk(ξ) :

k ∈ N} not only converges but it does so uniformly on bounded sets.

We now turn to the equality (3.13) and proceed by induction on n.

Let n ∈ {0, 1, . . . , L}. The “(L+ 1)-adic expansion” of n is ε1 = n, εj = 0, j > 2.

By equation (3.1) we have

ŵn(ξ) = Hn

(ξ
2

)
ŵ0

(ξ
2

)
= Hn

(ξ
2

) ∞∏

j=1

H0

( ξ

2j+1

)

= Hn

(ξ
2

) ∞∏

j=2

H0

( ξ

2j

)
=

∞∏

j=1

Hεj

( ξ

2j

)
.

Hence equation (3.13) holds for n ∈ {0, 1, . . . , L}.
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Suppose equation (3.13) is true for every non-negative integer m < n, where

n > L+ 1.

For some µ ∈ {0, 1, . . . , L}, n can be written as n = t(L + 1) + µ. It is easy to

know that t < n. Suppose the “(L+ 1)-adic expansion” of t is

t =

∞∑

j=1

εj(L+ 1)j−1.

By assumption we have

ŵt(ξ) =
∞∏

j=1

Hεj

( ξ

2j

)
.

On the one hand,

n = t(L+ 1) + µ =

∞∑

j=1

εj(L+ 1)j + µ

=

∞∑

j=2

εj−1(L+ 1)j−1 + µ :=

∞∑

j=1

ε′j(L + 1)j−1,

where ε′1 = µ, ε′j = εj−1, j > 2. On the other hand,

ŵn(ξ) = ŵt(L+1)+µ(ξ) = Hµ

(ξ
2

)
ŵt

(ξ
2

)

= Hµ

(ξ
2

) ∞∏

j=1

Hεj

( ξ

2j+1

)
= Hµ

( ξ
2

) ∞∏

j=2

Hεj−1

( ξ

2j

)

=
∞∏

j=1

Hε′

j

( ξ

2j

)
.

This completes the proof. �

The idea of the basic framelet packets enables us to construct lots of tight frames

for L2(Rd) by replacing some mother framelets.

Theorem 3.9. Let Ψ = {ψ1, ψ2, . . . , ψL}. Suppose X(Ψ) is a Parseval wavelet

frame generated by the UEP, and H0, H1, . . . , HL are the refinement mask and

wavelet masks, respectively. Given m0 ∈ {1, 2, . . . , L}, define functions ψµ
m0
, µ =

0, 1, . . . , L, by

(3.14) ψ̂µ
m0

(2ξ) = Hµ(ξ)ψ̂m0(ξ).
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Then the collection {DjTkψm, D
j−1Tkψ

µ
m0

: m = 1, 2, . . . , L and m 6= m0, µ =

0, 1, 2, . . . , L ; j ∈ Z, k ∈ Z
d} generates a new Parseval frame for L2(Rd).

P r o o f. Let wn = ψm0 . It is obvious that wn(L+1)+µ = ψµ
m0
. For j ∈ Z, by

Theorem 3.1 we know that

∑

k∈Zd

|〈f,DjTkψm0〉|
2 =

∑

k∈Zd

|〈f,DjTkwn〉|
2

=
L∑

µ=0

∑

k∈Zd

|〈f,Dj−1Tkwn(L+1)+µ〉|
2

=

L∑

µ=0

∑

k∈Zd

|〈f,Dj−1Tkψ
µ
m0

〉|2.

Hence,

L∑

m=1
m 6=m0

∑

j∈Z

∑

k∈Zd

|〈f,DjTkψm〉|2 +

L∑

µ=0

∑

j∈Z

∑

k∈Zd

|〈f,Dj−1Tkψ
µ
m0

〉|2

=
L∑

m=1
m 6=m0

∑

j∈Z

∑

k∈Zd

|〈f,DjTkψm〉|2 +
∑

j∈Z

∑

k∈Zd

|〈f,DjTkψm0〉|
2

=

L∑

m=1

∑

j∈Z

∑

k∈Zd

|〈f,DjTkψm〉|2 = ‖f‖2.

This completes the proof. �

For illustration and completeness, we briefly and almost verbatim recall a simple

example of an application of the UEP, see [18]. For a higher dimensional construction,

see [12].

Letm be a positive integer, and define the 2π-periodic functionH0(ξ) = cos2m(1
2ξ).

The polynomial H0 is the refinement mask of the centered B-spline ψ0 = ϕ := B2m

of order 2m defined by its Fourier transform as follows:

(3.15) ψ̂0(ξ) =
sin2m(ξ/2)

(ξ/2)2m
.

Note that lim
ξ→0

ψ̂0(ξ) = 1. Define 2m (2π-periodic) wavelet masksHl, l = 1, 2, . . . , 2m,

by

(3.16) Hl(ξ) = −il

√[
2m

l

]
sinl

( ξ
2

)
cos2m−l

(ξ
2

)
.
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Observe that firstly,

2m∑

l=0

|Hl(ξ)|
2 =

(
cos2

(ξ
2

)
+ sin2

(ξ
2

))2m

= 1,

and that secondly,

2m∑

l=0

Hl(ξ)Hl(ξ + π) =
(

sin
(ξ

2

)
cos

(ξ
2

))2m

(1 − 1)2m = 0.

Therefore, the 2m wavelets defined by

(3.17) ψ̂l(ξ) = −il

√[
2m

l

]
cos2m−l(ξ/4) sin2m+l(ξ/4)

(ξ/4)2m
, l = 1, 2, . . . , 2m,

generate a tight Parseval frame for L2(R).

Example 3.10. Let m = 1. Here, we obtain the refinable function ϕ = ψ0 = B2,

and mother framelets ψ1, ψ2.

Let w0 = ϕ. Define functions wn, n > 0, as follows:

ŵ3n(2ξ) = H0(ξ)ŵn(ξ),

ŵ3n+1(2ξ) = H1(ξ)ŵn(ξ)

and

ŵ3n+2(2ξ) = H2(ξ)ŵn(ξ).

Then the collection {wn}n>0 is a family of the basic framelet packets for L
2(R).

By Theorem 3.9 we know that each of the collections

{DjTkψ1, D
j−1Tkwn : n = 6, 7, 8; j, k ∈ Z},

{Dj−1Tkwn, D
jTkψ2 : n = 3, 4, 5; j, k ∈ Z}

and

{Dj−1Tkwn : n = 3, 4, . . . , 8; j, k ∈ Z},

generates a Parseval frame for L2(R).
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4. Conclusion

Let Ψ = {ψl : l = 1, 2, . . . , L}. Suppose the tight wavelet frame X(Ψ) is generated

by the OEP with the refinable function ϕ. Suppose H0 and Hl, l = 1, 2, . . . , L, are

the refinable mask and wavelet masks, respectively. Then we can verify that

H̃0(ξ) =

√
θ(2ξ)

θ(ξ)
H0(ξ), H̃l(ξ) =

√
1

θ(ξ)
Hl(ξ), l = 1, 2, . . . , L,

satisfy the conditions of the UEP with the refinable function ϕ̃ defined by ̂̃ϕ(ξ) =√
θ(ξ)ϕ̂(ξ). The resulting mother framelets ψ̃l via the UEP are equal to ψl, l =

1, 2, . . . , L. So the results in Section 3 still hold for the refinable function ϕ̃, mother

wavelets ψl, l = 1, 2, . . . , L, the refinable mask H̃0 and wavelet masks H̃l, l =

1, 2, . . . , L.

At the end of the paper, it is worthy to point out that as a generalization of

tight wavelet frames, tight framelet packets generated in this paper preserve many

nice constructive properties of tight wavelet frames. For example, when d = 1, the

methods of construction for symmetric tight wavelet frames via the UEP given in

[20] is still works for tight framelet packets with a slight modification by requiring

the basic framelet packets instead of the refinable function.
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