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Abstract. In this paper we prove that the maximal operator

σ̃
κ,∗

f := sup
n∈P

|σκ
nf |

log2(n+ 1)
,

where σκ
nf is the n-th Fejér mean of the Walsh-Kaczmarz-Fourier series, is bounded from

the Hardy space H1/2(G) to the space L1/2(G).
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1. Introduction

The a.e. convergence of Walsh-Fejér means σnf was proved by Fine [2]. In 1975
Schipp [11] showed that the maximal operator σ∗ is of weak type (1, 1) and of type
(p, p) for 1 < p 6 ∞. The boundedness fails to hold for p = 1. But, Fujii [3]
proved that σ∗ is bounded from the dyadic Hardy space H1 to the space L1. The
theorem of Fujii was extended by Weisz [21], he showed that the maximal operator
σ∗ is bounded from the martingale Hardy space Hp to the space Lp for p > 1/2.

Simon gave a counterexample [13], which shows that the boundedness does not hold
for 0 < p < 1/2. The counterexample for p = 1/2 is due to Goginava [9]. In the
endpoint case p = 1/2 two positive results were showed. Weisz [22] proved that σ∗

is bounded from the Hardy space H1/2 to the space weak-L1/2. In 2008 Goginava
[8] proved that the maximal operator σ̃∗ defined by

σ̃∗f := sup
n∈P

|σnf |

log2(n + 1)
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is bounded from the Hardy space H1/2 to the space L1/2. He also proved that for
any nondecreasing function ϕ : P → [1,∞) satisfying the condition

(1.1) lim
n→∞

log2(n + 1)

ϕ(n)
= +∞

the maximal operator sup
n∈P

|σnf |/ϕ(n) is not bounded from the Hardy space H1/2 to
the space L1/2.
In 1948 Šneider [16] introduced the Walsh-Kaczmarz system and showed that the

inequality

lim sup
n→∞

Dκ
n(x)

log n
> C > 0

holds a.e. In 1974 Schipp [12] and Young [18] proved that the Walsh-Kaczmarz system
is a convergence system. Skvortsov in 1981 [15] showed that the Fejér means with
respect to the Walsh-Kaczmarz system converge uniformly to f for any continuous
function f . Gát [4] proved, for any integrable function, that the Fejér means with re-
spect to the Walsh-Kaczmarz system converge almost everywhere to the function. He
showed that the maximal operator of Walsh-Kaczmarz-Fejér means σκ,∗ is weak type
(1, 1) and of type (p, p) for all 1 < p 6 ∞. Gát’s result was generalized by Simon [14],
who showed that the maximal operator σκ,∗ is of type (Hp, Lp) for p > 1/2.
In the endpoint case p = 1/2 the first author [6] proved that maximal operator is

not of type (H1/2, L1/2) and Weisz [22] showed that the maximal operator is of weak
type (H1/2, L1/2).
In the present paper we prove that the maximal operator σ̃κ,∗ defined by

σ̃κ,∗ := sup
n∈P

|σκ
nf |

log2(n + 1)

is bounded from the Hardy space H1/2 to the space L1/2.We also prove that for any
nondecreasing function ϕ : P → [1,∞) satisfying the condition (1.1) the maximal
operator sup

n∈P

|σκ
nf |/ϕ(n) is not bounded from the Hardy spaceH1/2 to the space L1/2.

2. Definitions and notation

Now, we give a brief introduction to the theory of dyadic analysis [1], [10]. Let P
denote the set of positive integers, N := P∪{0}. Denote Z2 the discrete cyclic group
of order 2, that is Z2 = {0, 1}, where the group operation is the modulo 2 addition
and every subset is open. The Haar measure on Z2 is given such that the measure of
a singleton is 1/2. Let G be the complete direct product of countably many copies of
the compact group Z2. The elements ofG are of the form x = (x0, x1, . . . , xk, . . .) with
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xk ∈ {0, 1} (k ∈ N). The group operation on G is the coordinate-wise addition, the
measure (denoted by µ) and the topology are the product measure and topology. The
compact Abelian group G is called the Walsh group. A base for the neighborhoods
of G can be given in the following way:

I0(x) := G, In(x) := In(x0, . . . , xn−1)

:= {y ∈ G : y = (x0, . . . , xn−1, yn, yn+1, . . .)},

(x ∈ G, n ∈ N). These sets are called dyadic intervals. Let 0 = (0: i ∈ N) ∈ G denote
the null element of G, and In := In(0) (n ∈ N). Set en := (0, . . . , 0, 1, 0, . . .) ∈ G, the
n-th coordinate of which is 1 and the rest are zeros (n ∈ N).

For k ∈ N and x ∈ G denote

rk(x) := (−1)xk

the k-th Rademacher function. If n ∈ N, then n =
∞∑

i=0

ni2
i can be written, where

ni ∈ {0, 1} (i ∈ N), i.e. n is expressed in the number system of base 2. Denote
|n| := max{j ∈ N : nj 6= 0}, that is 2|n| 6 n < 2|n|+1.

The Walsh-Paley system is defined as the sequence of Walsh-Paley functions:

wn(x) :=

∞∏

k=0

(rk(x))nk = r|n|(x)(−1)

|n|−1∑

k=0

nkxk

(x ∈ G, n ∈ P).

The Walsh-Kaczmarz functions are defined by κ0 = 1 and for n > 1

κn(x) := r|n|(x)

|n|−1∏

k=0

(r|n|−1−k(x))nk = r|n|(x)(−1)

|n|−1∑

k=0

nkx|n|−1−k

.

The set of Walsh-Kaczmarz functions and the set of Walsh-Paley functions is the
same in dyadic blocks. Namely,

{κn : 2k
6 n < 2k+1} = {wn : 2k

6 n < 2k+1}

for all k ∈ P and κ0 = w0.

V.A. Skvortsov (see [15]) gave a relation between the Walsh-Kaczmarz functions
and the Walsh-Paley functions with the help of the transformation τA : G → G

defined by

τA(x) := (xA−1, xA−2, . . . , x1, x0, xA, xA+1, . . .)
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for A ∈ N. By the definition of τA, we have

κn(x) = r|n|(x)wn−2|n|(τ|n|(x)) (n ∈ N, x ∈ G).

The Dirichlet kernels are defined by

Dα
n :=

n−1∑

k=0

αk,

where αn = wn or κn (n ∈ P), Dα
0 := 0. The 2n-th Dirichlet kernels have a closed

form (see e.g. [10])

(2.1) Dw
2n(x) = Dκ

2n(x) = D2n(x) =

{
0 if x 6∈ In,

2n if x ∈ In.

The σ-algebra generated by the dyadic intervals of measure 2−k will be denoted by
Fk (k ∈ N). Denote by f = (f (n), n ∈ N) a martingale with respect to (Fn, n ∈ N)

(for details see, e. g. [19], [20]). The maximal function of a martingale f is defined
by

f∗ = sup
n∈N

|f (n)|.

In case f ∈ L1(G), the maximal function can also be given by

f∗(x) = sup
n∈N

1

µ(In(x))

∣∣∣∣
∫

In(x)

f(u) dµ(u)

∣∣∣∣, x ∈ G.

For 0 < p < ∞ the Hardy martingale space Hp(G) consists of all martingales for
which

‖f‖Hp := ‖f∗‖p < ∞.

If f ∈ L1(G), then it is easy to show that the sequence (S2nf : n ∈ N) is a mar-
tingale. If f is a martingale, that is f = (f (0), f (1), . . .) then the Walsh-(Kaczmarz)-
Fourier coefficients must be defined in a little bit different way:

f̂(i) = lim
k→∞

∫

G

f (k)(x)αi(x) dµ(x) (αi = wi or κi).

The Walsh-(Kaczmarz)-Fourier coefficients of f ∈ L1(G) are the same as the ones
of the martingale (S2nf : n ∈ N) obtained from f .
The partial sums of the Walsh-(Kaczmarz)-Fourier series are defined as follows:

Sα
M (f ; x) :=

M−1∑

i=0

f̂(i)αi(x) (α = w or κ).
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For n = 1, 2, . . . and a martingale f the Fejér mean of order n of the Walsh-
(Kaczmarz)-Fourier series of the function f is given by

σα
n(f ; x) =

1

n

n−1∑

j=0

Sα
j (f ; x).

The Fejér kernel of order n of the Walsh-(Kaczmarz)-Fourier series defined by

Kα
n (x) :=

1

n

n−1∑

k=0

Dα
k (x).

For a martingale f we consider the maximal operators

σκ,∗f = sup
n∈P

|σκ
n(f ; x)|,

σ̃κ,∗f = sup
n∈P

|σκ
n(f ; x)|

log2(n + 1)
.

3. Auxiliary propositions and main results

First, we formulate our main theorems.

Theorem 3.1. The maximal operator σ̃κ,∗ is bounded from the Hardy space

H1/2(G) to the space L1/2(G).

Theorem 3.2. Let ϕ : P → [1,∞) be a nondecreasing function satisfying the

condition (1.1). Then the maximal operator

sup
n∈P

|σκ
nf |

ϕ(n)

is not bounded from the Hardy space H1/2(G) to the space L1/2(G).

To prove our Theorem 3.1 we need the following Lemmas:

Lemma 3.3 (Skvortsov [15]). For n ∈ P, x ∈ G

nKκ
n(x) = 1 +

|n|−1∑

i=0

2iD2i(x) +

|n|−1∑

i=0

2iri(x)Kw
2i(τi(x))

+ (n − 2|n|)(D2|n|(x) + r|n|(x)Kw
n−2|n|(τ|n|(x))).
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Lemma 3.4 (Gát [4]). Let A, t ∈ N, A > t. Suppose that x ∈ It \ It+1. Then

Kw
2A(x) =

{
0 if x − xtet 6∈ IA,

2t−1 if x − xtet ∈ IA.

If x ∈ IA, then Kw
2A(x) = 1

2 (2A − 1).

A bounded measurable function a is a p-atom if there exists a dyadic interval I,
such that

a)
∫

I a dµ = 0,
b) ‖a‖∞ 6 µ(I)−1/p,
c) supp a ⊂ I.

Lemma 3.5 (Weisz [20]). Suppose that the operator T is sublinear and p-

quasilocal for any 0 < p 6 1. If T is bounded from L∞ to L∞, then

‖Tf‖p 6 cp‖f‖Hp for all f ∈ Hp.

Lemma 3.6 (Gát, Goginava, Nagy [5]). Let n < 2A+1, A > N and x ∈

IN (x0, . . . , xm−1, xm = 1, 0, . . . , 0, xl = 1, 0, . . . , 0) =: Jm,l
N , l = 0, . . . , N − 1,

m = −1, 0, . . . , l. Then

∫

IN

n|Kw
n (τA(x + t))| dt 6 c

2A

2m+l
,

where

IN (x0, . . . , xm = 1, 0, . . . , 0, xl = 1, 0, . . . , 0) := IN (0, . . . , 0, xl = 1, 0, . . . , 0)

for m = −1.

Lemma 3.7 (Goginava [7]). Let 2 < A ∈ P and qA := 22A + 22A−2 + . . . + 22 +

20.Then

qA−1|KqA−1
(x)| > 22m+2s−3

for x ∈ I2A(0, . . . , 0, x2m = 1, 0, . . . , 0, x2s = 1, x2s+1, . . . , x2A−1), m = 0, 1, . . . ,

A − 3, s = m + 2, m + 3, . . . , A − 1.
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4. Proofs of the theorems

First, we prove Theorem 3.1.

P r o o f of Theorem 3.1. Lemma 3.3 yields that

σ̃κ
nf =

|f ∗ Kκ
n |

log2(n + 1)

6

∣∣∣∣f ∗
1

n|n|2

(
1 +

|n|−1∑

i=0

2iD2i

)∣∣∣∣ +

∣∣∣∣f ∗
1

n|n|2

|n|−1∑

i=0

2iriK
w
2i ◦ τi

∣∣∣∣

+
∣∣∣f ∗

n − 2|n|

n|n|2
(D2|n| + r|n|K

w
n−2|n| ◦ τ|n|)

∣∣∣ =:

3∑

i=1

|f ∗ Li
n|

and

σ̃κ,∗f 6 sup
n∈P

|f ∗ L1
n| + sup

n∈P

|f ∗ L2
n| + sup

n∈P

|f ∗ L3
n| =: R1f + R2f + R3f.

With the help of Lemma 3.5 we show that the operators Ri (i = 1, 2, 3) are of type
(H1/2, L1/2). The boundedness from the space L∞ to the space L∞ follows from
(2.1) and

‖Kw
n ◦ τi‖1 = ‖Kw

n ‖1 6 2

for i 6 |n|, n ∈ P (see Yano [17]). By Lemma 3.5, the proof will be complete if we
show that the maximal operators Ri (i = 1, 2, 3) are 1/2-quasilocal. That is, there
exists a constant c such that

∫

I

|Ria|1/2 dµ 6 c < ∞

for every 1/2-atom a, where the dyadic interval I is the support of the 1/2-atom a.
Let a be an arbitrary 1/2-atom with support I, and µ(I) = 2−N . Without loss of

generality, we may assume that I := IN .
It is evident that σ̃κ

n(a) = 0 and a ∗ Li
n = 0 (i = 1, 2, 3) if n 6 2N . Therefore, we

set n > 2N .
By ‖a‖∞ 6 c22N we have that

|a ∗ Li
n| 6

∫

IN

|a(s)||Li
n(x + s)| dµ(s) 6 c22N

∫

IN

|Li
n(x + s)| dµ(s)

and

(4.1) |Ria| 6 c22N sup
n>2N

∫

IN

|Li
n(x + s)| dµ(s).
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Now, we write

IN =

N−1⋃

j=0

(Ij \ Ij+1).

Set x ∈ Ij \ Ij+1 and s ∈ IN , then x + s ∈ Ij \ Ij+1 for j = 0, . . . , N − 1. Thus, we
have

sup
n>2N

∫

IN

|L1
n(x + s)| dµ(s) 6 sup

n>2N

∫

IN

1

n|n|2

(
1 +

j∑

i=0

2iD2i(x + s)

)
dµ(s)

6
c

2NN2
22j2−N 6

c22j

N222N

and

∫

IN

|R1a(x)|1/2 dµ(x) =

N−1∑

j=0

∫

Ij\Ij+1

|R1a(x)|1/2 dµ(x)

6 c2N
N−1∑

j=0

∫

Ij\Ij+1

( 22j

N222N

)1/2

dµ(x) 6
cN

N
6 c.

Now, we discuss
∫

IN
|R2a|1/2 dµ. We use the disjoint decomposition of IN above.

That is, IN =
N−1⋃
t=0

(It \ It+1) and we decompose the sets It \ It+1 as the following

disjoint union:

It \ It+1 =

N⋃

l=t+1

J l
t ,

where J l
t := IN (0, . . . , 0, xt = 1, 0, . . . , 0, xl = 1, xl+1, . . . , xN−1) for t < l < N and

J l
t := IN (et) for l = N .

∫

IN

|R2a(x)|1/2 dµ(x) =

N−1∑

t=0

N∑

l=t+1

∫

Jl
t

|R2a(x)|1/2 dµ(x)

=

N−1∑

t=0

N−1∑

l=t+1

∫

Jl
t

|R2a(x)|1/2 dµ(x)

+
N−1∑

t=0

∫

JN
t

|R2a(x)|1/2 dµ(x) =: Σ1 + Σ2.

Let x ∈ J l
t and s ∈ IN , then x + s ∈ J l

t (0 6 t < N , t < l 6 N).
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For 0 6 t < l < N , Lemma 3.4 and Kw
2i(τi(x + s)) 6= 0 imply that i 6 l,

Kw
2i(τi(x + s)) = 2i−t−2 for l > i > t and Kw

2i(τi(x + s)) = 1
2 (2i − 1) for i 6 t. Thus,

sup
n>2N

∫

IN

|L2
n(x + s)| dµ(s) 6 sup

n>2N

1

n|n|2

∫

IN

l∑

i=0

2i|Kw
2i(τi(x + s))| dµ(s)

6 sup
n>2N

c

n|n|2

∫

IN

( t∑

i=0

22i +

l∑

i=t+1

2i2i−t

)
dµ(s)

6
c(22t + 22l−t)

22NN2
.

Hence,

Σ1 6 c

N−1∑

t=0

N−1∑

l=t+1

∫

Jl
t

2N

(
(22t + 22l−t)

22NN2

)1/2

dµ(x)

6 c

N−1∑

t=0

[3t/2]∑

l=t+1

∫

Jl
t

2t

N
dµ(x) + c

N−1∑

t=0

N−1∑

l=[3t/2]+1

∫

Jl
t

2l−t/2

N
dµ(x)

6 c

N−1∑

t=0

[3t/2]∑

l=t+1

1∑

yi=0
i∈{l+1,...,N−1}

∫

IN (y+et+el)

2t

N
dµ(x)

+ c

N−1∑

t=0

N−1∑

l=[3t/2]+1

1∑

yi=0
i∈{l+1,...,N−1}

∫

IN (y+et+el)

2l−t/2

N
dµ(x)

6 c

N−1∑

t=0

[3t/2]∑

l=t+1

2t

N
2−l + c

N−1∑

t=0

N−1∑

l=[3t/2]+1

2l−t/2

N
2−l 6 c.

For l = N , let x ∈ JN
t . Lemma 3.4 yields

sup
n>2N

∫

IN

|L2
n(x + s)| dµ(s) 6 sup

n>2N

1

n|n|2

∫

IN

|n|−1∑

i=0

2i|Kw
2i(τi(x + s))| dµ(s)

6 c sup
n>2N

1

n|n|2

( ∫

IN

( t∑

i=0

22i +
N∑

i=t+1

2i2i−t

)
dµ(s) +

|n|−1∑

i=N+1

∫

Ii(xN,i−1)

2i2i−t dµ(s)

)

6 c sup
n>2N

22t−N + 2N−t + 2|n|−t

n|n|2
6

c22t

22NN2
+

c

2tN2
,
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where xN,i−1 :=
i−1∑
j=N

xjej;

Σ2 6 c

N−1∑

t=0

∫

JN
t

2N
( 22t

22NN2
+

1

2tN2

)1/2

dµ(x)

6 c

[2N/3]∑

t=0

∫

JN
t

2N

2t/2N
dµ(x) + c

N−1∑

t=[2N/3]+1

∫

JN
t

2N 2t

2NN
dµ(x)

6 c

[2N/3]∑

t=0

1

2t/2N
+ c

N−1∑

t=[2N/3]+1

2t

2NN
6 c.

To discuss
∫

IN
|R3a|1/2 dµ we use Lemma 3.6 and the following disjoint decompo-

sition of IN :

IN =
N−1⋃

l=0

l⋃

m=−1

J l,m
N ,

where the set J l,m
N is defined in Lemma 3.6.

If x ∈ IN and s ∈ IN , then x+s ∈ IN and D2|n|(x+s) = 0. Moreover, if x ∈ J l,m
N ,

then x + s ∈ J l,m
N and by Lemma 4 we have

sup
n>2N

∫

IN

|L3
n(x + s)| dµ(s) 6 sup

n>2N

∫

IN

n − 2|n|

n|n|2
|Kw

n−2|n|(τ|n|(x + s))| dµ(s)

6 c sup
n>2N

1

n|n|2
2|n|

2l+m
6

c

2l+mN2
.

By the above

∫

IN

|R3a(x)|1/2 dµ(x) =
N−1∑

l=0

l∑

m=−1

∫

Jl,m
N

|R3a(x)|1/2 dµ(x)

6 c

N−1∑

l=0

l∑

m=−1

∫

Jl,m
N

2N

2(l+m)/2N
dµ(x)

6 c

N−1∑

l=0

l∑

m=−1

1∑

yi=0
i∈{0,...,m−1}

∫

IN (y+em+el)

2N

2(l+m)/2N
dµ(x)

6 c

N−1∑

l=0

l∑

m=−1

2N

2(l+m)/2N
2−N+m

6 c.

This completes the proof of Theorem 3.1. �
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Next, we prove Theorem 3.2.

P r o o f of Theorem 3.2. Let {nk : k ∈ P} be an increasing sequence of positive
integers such that

lim
k→∞

log2 nk

ϕ(nk)
= +∞.

It is evident that for every nk there exists a positive integer m′
k such that

qm′
k

6 nk < qm′
k
+1 < 5qm′

k
.

Since ϕ(n) is nondecreasing function we have

lim
k→∞

(m′
k)2

ϕ(qm′
k
)

> c lim
k→∞

log2 nk

ϕ(nk)
= +∞.

Let {mk : k ∈ P} ⊂ {m′
k : k ∈ P} such that

lim
k→∞

(mk)2

ϕ(qmk
)

= +∞.

Let
fmk

(x) := D22mk+1(x) − D22mk (x).

It is evident that

f̂κ
mk

(i) =

{
1, if i = 22mk , . . . , 22mk+1 − 1,

0, otherwise.

Then we can write

(4.2) Sκ
i (fmk

; x) =





Dκ
i (x) − D22mk (x), i = 22mk + 1, . . . , 22mk+1 − 1,

fmk
(x), i > 22mk+1,

0, otherwise.

Since,
f∗

mk
(x) = sup

n∈N

|S2n(fmk
; x)| = |fmk

(x)|,

from (2.1) we get

(4.3) ‖fmk
‖Hp = ‖f∗

mk
‖p = ‖D22mk ‖p = 22mk(1−1/p).

Since we have

Dκ
n(x) = D2|n|(x) + r|n|(x)Dw

n−2|n|(τ|n|(x)),
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from (4.2) we can write

sup
n∈P

|σκ
n(fmk

; x)|

ϕ(n)
>

|σκ
qmk

(fmk
; x)|

ϕ(qmk
)

=
1

ϕ(qmk
)

1

qmk

∣∣∣∣
qmk

−1∑

j=0

Sκ
j (fmk

; x)

∣∣∣∣

=
1

ϕ(qmk
)

1

qmk

∣∣∣∣
qmk

−1∑

j=22mk

Sκ
j (fmk

; x)

∣∣∣∣

=
1

ϕ(qmk
)

1

qmk

∣∣∣∣
qmk

−1∑

i=22mk

(Dκ
i (x) − D22mk (x))

∣∣∣∣

=
1

ϕ(qmk
)

1

qmk

∣∣∣∣
qmk−1−1∑

i=0

(Dκ
i+22mk

(x) − D22mk (x))

∣∣∣∣

=
1

ϕ(qmk
)

1

qmk

∣∣∣∣
qmk−1−1∑

i=0

Dw
i (τ2mk

(x))

∣∣∣∣

=
1

ϕ(qmk
)

qmk−1

qmk

|Kw
qmk−1

(τ2mk
(x))|.

Let x ∈ J2A−2s−1,2A−2l−1
2mk

for some l < s < mk. Then from Lemma 3.7 we have

σκ
qmk

(fmk
; x)

ϕ(qmk
)

> c
22s+2l−2mk

ϕ(qmk
)

.

Hence, we can write

∫

G

(
sup
n∈P

|σκ
n(fmk

; x)|

ϕ(n)

)1/2

dµ(x)

> c

mk−3∑

l=0

mk−1∑

s=l+2

∫

J2A−2s−1,2A−2l−1

2mk

(
sup
n∈P

|σκ
n(fmk

; x)|

ϕ(n)

)1/2

dµ(x)

> c

mk−3∑

l=0

mk−1∑

s=l+2

1∑

yi=0
i∈{0,...,2mk−2s−2}

∫

I2mk
(y+e2A−2s−1+e2A−2l−1)

( |σκ
qmk

(fmk
; x)|

ϕ(qmk
)

)1/2

dµ(x)

> c

mk−3∑

l=0

mk−1∑

s=l+2

22mk−2s

22mk

2s+l−mk

√
ϕ(qmk

)

>
c√

ϕ(qmk
)

mk

2mk
.
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Then from (4.3) we obtain

{∫

G

(
sup
n∈P

|σκ
n(fmk

; x)|

ϕ(n)

)1/2

dµ(x)

}2/
‖fmk

‖H1/2

>
cm2

k

ϕ(qmk
)2−2mk22mk

=
cm2

k

ϕ(qmk
)
→ ∞ as k → ∞.

Theorem 3.2 is proved. �
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