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Abstract. Let T : X → X be a continuous selfmap of a compact metrizable space X.
We prove the equivalence of the following two statements: (1) The mapping T is a Banach
contraction relative to some compatible metric on X. (2) There is a countable point sep-
arating family F ⊂ C(X) of non-negative functions f ∈ C(X) such that for every f ∈ F

there is g ∈ C(X) with f = g − g ◦ T .
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1. Introduction and notation

The object of our study is a continuous selfmap T of a compact metrizable spaceX .

Let C(X) andM(X) denote the set of all continuous real-valued functions and the

set of all compatible metrics onX , respectively. Regarding C(X) as an abelian group,

we convert it to an (N, +)-module defining the action of n ∈ N on f ∈ C(X) by

n · f = f ◦ T n,

where T n is the nth iteration of T . In most textbooks on homological algebra only

group-actions are treated, whereas (N, +) is only a commutative monoid reflecting

the fact that T need not have an inverse. But it was shown by S.Maclane, H.Cartan,

A.Bakakhanian [1] and others that the homology and cohomology theory of monoids

is almost identical with that of groups. In our case only one-cohomology will be

relevant. By a one-chain we understand a map

ϕ : N → C(X)
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with ϕ(0) = 0 ∈ C(X). The cochain ϕ is a cocycle if it is of the form

ϕ(n) = f + 1 · f + 2 · f + . . . + (n − 1) · f, n ∈ N,

where f is a function in C(X). If f is of the form g − 1 · g with g ∈ C(X) then the

cocycle is a coboundary. In this case we have

n−1∑

k=0

k · f = g − n · g, n ∈ N

and by abuse of language we call the function itself a coboundary. If F ⊂ C(X) is a

family of functions we say F is point separating if for any x, y ∈ X , x 6= y, there is

f ∈ F with f(x) 6= f(y). A selfmap T : X → X is a Banach contraction if for some

c ∈ [0, 1) and d ∈ M(X) we have

d(Tx, T y) 6 cd(x, y), x, y ∈ X.

We will prove

Theorem 1. The selfmap T is a Banach contraction if and only if there is a

countable point separating family F ⊂ C(X) of nonnegative coboundaries.

2. Proof of the theorem

We prove first the easier “only if” part. Thus let T be a c-contraction on a com-

pact metric space (X, d). Let {xk}k∈N be a countable dense subset of X and for

every k ∈ N consider the orbit O(xk) = {T nxk : n ∈ N}. We define the function fk

as the distance from x ∈ X to the orbit O(xk), i.e. fk(x) = d(x,O(xk). It is obvi-

ous that fk ∈ C(X) and that
∞∑

n=0
fk(T nx) converges uniformly to some continuous

function gk ∈ C(X), so that fk(x) = gk(x) − gk(Tx), x ∈ X , showing that this fk

is a coboundary. It is also easy to see that the family F = {fk : k ∈ N} is point

separating, which completes the “only if” part of the proof.

To prove the “if” part suppose F ⊂ C(X) is a family with the above mentioned

properties. Let f ∈ F . Since f is a coboundary there is g ∈ C(X) with f(x) =

g(x) − g(Tx), x ∈ X . The equation

n−1∑

k=0

f(T kx) = g(x) − g(T nx)
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shows that the infinite sum
∞∑

k=0

f(T kx) exists due to the fact that f > 0, g is

continuous and the space X is compact. This implies that

(2.1) lim
k→∞

f(T kx) = 0, x ∈ X.

We will show that the orbit

O(x) = x, Tx, T 2x, . . . , T nx, . . .

converges for every x ∈ X . Assume that for some x it is not true. Then there are

two distinct points, say y1 6= y2 towards which two subsequences of O(x) converge.

But then 1 implies that f(y1) = f(y2) = 0. Since f is an arbitrary element of F

this implies that F fails to separate y1 from y2, a desired contradiction. This yields

that the orbit O(x) converges and since lim[O(x)] = T lim[O(x)] the limit is a fixed

point, say x∗. From the equality

f(x∗) = g(x∗) − g(Tx∗) = 0

it follows that T cannot have more fixed points than one since otherwise F would

not separate them. Thus T has a unique fixed point x∗ toward which every orbit

converges. We will show also that T has no periodic points. Suppose a point x ∈ X

has period p > 2, i.e. T px = x. Since

f(x) + f(Tx) + . . . + f(T p−1x) = g(x) − g(T px) = 0

we obtain that

f(x) + f(Tx) + . . . + f(T p−1x) = 0

implying that f(T kx) = 0 for k = 0, 1, . . . , p − 1 which would again clash with the

separation property of F . This also shows how strong the argument of separation is.

In the final stage of our proof the function g appearing in f(x) = g(x) − g(Tx)

will play an important role. Note that it is not uniquely determined by f , since

g + c, with c any constant, can replace g. Thus we can choose the function g which

corresponds to f ∈ F by setting g(x∗) = 0. Since

n−1∑

k=0

f(T kx) = g(x) − g(T nx)

and the orbit converges to x∗ it follows that the infinite sum
∞∑

k=0

f(T kx) converges

to the function g.
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One of our previous results (see [1]) is that T is a Banach contraction if and only

if the core of T , core (T ) =
⋂
{T n(X) : n ∈ N} is a singleton. It is known that the

core is a nonempty compact T -invariant subset of X and that the restriction of T to

the core is surjective. Thus, to conclude our proof we will assume that |core (T )| > 2

and deduce from it a contradiction. Since the fixed point x∗ is in the core there

is in the core another point, say y, distinct from x∗. Since T maps the core onto

itself every point in it has at least one pre-image in the core. Since there are no

periodic points we can construct an inverse orbit from y, i.e. a sequence {yk}
∞

k=0 of

distinct points with Tyk+1 = yk, k ∈ N. We observe that there must be at least

one f ∈ F with f(y) > 0 since otherwise F would not separate y from x∗. Let

g be the function corresponding to f and consider the sequence {g(yk)∞k=0}. Since

g(yk+1) > g(yk), k ∈ N and g(x) > f(x) for every x ∈ X the limit of this sequence

exists and is positive. Let m > 0 be the limit. Let Z denote the set of all points

in the core obtainable as limits of subsequences from {yk}
∞

k=0. It follows that for

any z ∈ Z we have g(z) = m > 0. We consider the orbit O(z). Let {yk(i)} where

k(1) < k(2) < . . . → ∞ be the subsequence of {yk} the limit of which is z. Then Tz is

obtained as the limit of {yk(i)−1}. From this we see that O(z) ⊂ Z and the sequence

{g(T nz)}∞n=0 is the sequence of constants m > 0. But since {T nz} converges to

x∗ we obtain the desired contradiction since g(x∗) = 0. Thus the core of T is the

singleton {x∗} which concludes the proof.
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