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KYB ERNET IK A — VO LUME 4 7 ( 2 0 1 1 ) , NUMBER 5 , PAGES 6 5 7 – 6 7 7

ON TESTING HYPOTHESES IN THE GENERALIZED
SKILLINGS–MACK RANDOM BLOCKS SETTING

Frantǐsek Rubĺık

The testing of the null hypothesis of no treatment effect against the alternative of in-
creasing treatment effect by means of rank statistics is extended from the classical Friedman
random blocks model into an unbalanced design allowing treatments not to be applied si-
multaneously in each random block. The asymptotic normality of the constructed rank test
statistic is proved both in the setting not allowing ties and also for models with presence
of ties. As a by-product of the proofs a multiple comparisons rule based on rank statistics
is obtained for the case when the null hypothesis of no treatment effect is tested against
the general alternative of its negation.

Keywords: rank test, random blocks, hypotheses testing, increasing treatment effect,
asymptotic distribution

Classification: 62G10

1. INTRODUCTION AND MAIN RESULTS

In the scheme of random blocks the quality of k treatments is evaluated in such a way
that the experimental units are partitioned into N groups of a homogeneous type
(random blocks) and in each obtained block the examined treatments are assigned
to its units so as the resulting effects would be stochastically independent. In the
classical starting paper [3] on this topic, in each block the number of experimental
units equals the number of treatments and each treatment is applied on one unit.
Since sometimes one can face difficulties in ensuring that all the treatments will be
applied in each block, the classical assumption has been in [8] modified in a way
allowing the design where some of the treatments can be missing, i. e., the number
of the units in the ith block equals the number ki of the treatments applied in the
ith block (no treatment is applied to more than one unit of the block) and ki ≤ k.
The null hypothesis of no difference in the treatment effect is tested against the
hypothesis that there exist treatments i, j such that their effects are different. A
test of the hypothesis of no treatment effect against the alternative of the monotone
increasing ordering in the response was presented in [7] in the classical Friedman’s
random block setting.

The aim of this paper is to extend these results into a scheme of (possibly)
unbalanced designs with missing data, where the evaluated treatments are allowed
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to be applied to more than one experimental unit in the block, i. e., the block consists
of cells of experimental units and in each cell the same treatment is applied. Rank
test statistics for inference in this framework aimed at dealing with alternative of
increasing treatment effect and also multiple comparisons method based on ranks
are constructed in this section. The proofs of theorems of this section can be found
in Section 2. The setting in which the assertions of the paper are derived is based
on the following assumptions.

Let us assume in the theorems of this section that Xi = (Xi1, . . . ,Xiki), i =
1, . . . , N , are independent random vectors (here index i identifies the random block),
and for j = 1, . . . , ki

Xij =
(
X

(1)
ij , . . . , X

(dij)
ij

)
(1.1)

where X
(1)
ij , . . . , X

(dij)
ij are one-dimensional random variables. We shall use also the

notation
Xi = (Zi1, . . . , Zidi.), (1.2)

where {Zir} are one-dimensional random variables and

di. = di1 + . . . + diki (1.3)

denotes the number of observations in the ith block. The examined k treatments
are in the N random blocks applied as follows.

(C1) Let i ∈ {1, . . . , N} be an arbitrary fixed index. Each of the vectors Xij is a
result of the applications of some treatment tij ∈ {1, . . . , k}, k > 1.

(C2) Each of the treatments 1, . . . , k is in the same random block Xi applied at most
in one of the vectors Xi1, . . . ,Xiki . Thus ki ≤ k and with the notation from
(C1) the set {ti1, . . . , tiki} consists of ki elements. Throughout the paper we
shall assume that for all i

ti1 < . . . < tiki .

(C3) The inequality min{k1, . . . , kN} > 1 holds, i. e., there are applied more than
one treatment in every random block.

(C4) Use the notation (1.2). For every i = 1, . . . , N the random variables Zi1, . . . , Zidi.

are mutually different with probability 1.

(C5) For r = 1, . . . , k, let nir denotes the number of applications of the treatment r
in the ith block. Thus nir = dij if r = tij and if such a number tij does not
exist, then nir = 0. Put

mjs =
N∑

i=1

nijnis. (1.4)

For all j 6= s belonging to {1, . . . , k} there exists a limit

pjs = lim
N→∞

mjs

N
(1.5)
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and is a positive number. Moreover, for

DN = max{di.; i = 1, . . . , N} (1.6)

the convergence

lim
N→∞

D3
N

N
= 0 (1.7)

holds.

This setting is constructed for the sake of testing the null hypothesis

H0 : For all i = 1, . . . , N the distribution of the random vector
(Zir1 , . . . , Zirdi.

) is the same for every permutation (r1, . . . , rdi.)
of the set {1, . . . , di.}.

(1.8)

If the random vectors Xij , j = 1, . . . , ki are independent and also their components
X

(1)
ij , . . . , X

(dij)
ij are independent, then this null hypothesis coincides with the hy-

pothesis (here F
(v)
ij denotes the distribution function of X

(v)
ij )

H0 : F
(1)
i1 = . . . = F

(di1)
i1 = F

(1)
i2 = . . . = F

(di2)
i2 = . . . = F

(1)
iki

= . . . = F
(diki

)

iki

for i = 1, . . . , N

of no treatments effect.
The condition (C5) will be used in establishing the asymptotic distribution of the

presented test statistics. The setting (C1) – (C4) is a generalization of the scheme
used by Skillings and Mack [8], who assume the vectors Xij to be one-dimensional.
The presented setting comprises also the framework used by Conover [2], pp. 383–
384, who assumes that for all i = 1, . . . , N the equalities ki = k and dij = m hold.

Suppose that (C4) holds, which means that for any fixed i the random variables
{X(v)

ij } are mutually different almost surely. Therefore the ranks of these observa-
tions (1.2)

Ri = (R(1)
i1 , . . . , R

(di1)
i1 , R

(1)
i2 , . . . , R

(di2)
i2 , . . . , R

(1)
iki

, . . . , R
(diki

)

iki
) (1.9)

are uniquely determined with probability 1. As has been explained, nir denotes the
number of applications of the treatment r in the ith block. In accordance with this
let Sir denote the sum of ranks of the rth treatment in the ith block, i. e.,

Sir =
dij∑
v=1

R
(v)
ij , nir = dij (1.10)

if r = tij and if such an index tij does not exist, then

Sir = 0, nir = 0. (1.11)

Finally, let

A(N) =
(
A

(N)
1 , . . . , A

(N)
k

)′
, A(N)

r =
N∑

i=1

√
12

di. + 1

(
Sir − nir

di. + 1
2

)
. (1.12)
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Theorem 1.1. Suppose that the null hypothesis (1.8) holds, the conditions (C1) –
(C4) are fulfilled and

ΣN = V ar(A(N)) (1.13)

denotes the covariance matrix of this random vector.
(I) The element ΣN (j, s) of this matrix on the position (j, s)

ΣN (j, s) =


N∑

i=1

nij(di. − nij) j = s,

−mjs j 6= s.

(1.14)

If all the numbers mjs defined in (1.4) are positive, then with the notation

fk = (1, 2, . . . , k)′ (1.15)

the number
σ2

N = f ′kΣN fk (1.16)

is positive.

(II) Suppose that also (C5) holds. Then the statistic (cf. (1.12), (1.16))

T̃N =
1

σN

k∑
j=1

jA
(N)
j (1.17)

converges to N(0, 1) in distribution as N →∞.

Let H1 denote the alternative hypothesis that for each 1 ≤ j < j∗ ≤ k the effect
of the treatment j is stochastically not larger than the effect of the treatment j∗ and

this ordering is strict for some 1 ≤ j0 < j1 ≤ k (i. e., every coordinates X
(t)
ij0

st
≺ X

(t∗)
ij1

for all i = 1, . . . , N such that both treatments j0, j1 are applied in the ith block, the
definition of the stochastic ordering can be found on p. 66 of [6]). In accordance with
the previous theorem the null hypothesis H0 is rejected in favor of H1 whenever the
statistic T̃N exceeds the (1− α)th quantile of the normal N(0, 1) distribution.

Since (1.14) holds, the covariance matrix (1.13) can be written as

ΣN =
N∑

i=1

Ψi, (1.18)

where the k × k matrix

Ψi =


ni1(di. − ni1) −ni1ni2 −ni1ni3 . . . −ni1nik

−ni2ni1 ni2(di. − ni2) −ni2ni3 . . . −ni2nik

...
...

−nikni1 −nikni2 −nikni3 . . . nik(di. − nik)

 . (1.19)

According to Theorem 5B on p. 20 of [4] the condition (C4) is fulfilled if for
every i = 1, . . . , N the random variables {X(v)

ij ; j = 1, . . . , ki, v = 1, . . . , dij} are
independent and their distribution functions are continuous. In dealing with the
case of ties inside blocks the following assumption will be useful.
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(C4∗) There exists a number δ > 0 such that for all i = 1, 2, . . . with the notation
(1.2)

1− P (Zi1 = Zi2 = . . . = Zidi.) ≥ δ . (1.20)

Now assume that (1.9) denotes the vector of midranks of the numbers (1.2), the
quantities Sir are again defined by means of (1.10) and (1.11),

σ̃2
i =

1
di. − 1

ki∑
j=1

dij∑
v=1

(R(v)
ij − di. + 1

2
)2, i = 1, . . . , N, (1.21)

and

Ã(N) = (Ã(N)
1 , . . . , Ã

(N)
k )′ =

N∑
i=1

B̃i , (1.22)

where

B̃i = (B̃(i)
1 , . . . , B̃

(i)
k )′, B̃(i)

r =


√

di.

σ̃2
i

(
Sir − nir

di. + 1
2

)
σ̃2

i > 0,

0 σ̃2
i = 0.

(1.23)

If x(1) ≤ . . . ≤ x(m) denotes the ordering of the coordinates of the vector x =
(x1, . . . , xm) according to the magnitude and

x(1) = . . . = x(τ1) < x(τ1+1) = . . . = x(τ1+τ2),

x(τ1+...+τj−1) < x(τ1+...+τj−1+1) = . . . = x(τ1+...+τj−1+τj), j = 3, . . . , L,

τ1 + . . . + τL = m,

then in accordance with [4] the vector τ(x) = (τ1, . . . , τL) is called the vector of
number of ties in x.

Now let τ(X1, . . . ,XN ) = (τ(X1), . . . , τ(XN )) and τ(Xi) denotes the vector of
number of ties in Xi.

Theorem 1.2. Suppose that the conditions (C1) – (C3), (C4∗) are fulfilled and the
null hypothesis (1.8) holds.

(I) Let τN = (τ (N)
1 , . . . , τ

(N)
N ) be such a vector that P (τ(Xi) = τ

(N)
i ) > 0, i =

1, . . . , N . For the conditional covariance matrix

Σ̃N = V ar(Ã(N) | τ(X1, . . . ,XN ) = τN ) (1.24)

the equality

Σ̃N =
N∑

i=1

(1− δ0,σ̃i
)Ψi (1.25)

holds. Here δ0,σ̃i denotes the Kronecker delta and the k× k matrix Ψi is defined in
(1.19).
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If for each j 6= s belonging to {1, . . . , k} there exists i such that nijnis(1−δ0,σ̃i
) >

0, then the number (cf. (1.15))

σ2
N = f ′kΣ̃N fk (1.26)

is positive.

(II) Suppose that also (C5) holds and (cf. (1.6))

lim
N→∞

D4
N

N
= 0. (1.27)

Since the number δ > 0 in (1.20) is the same for all N , the statistic (cf. (1.26))

T̃N =


1

σN

k∑
j=1

jÃ
(N)
j σN > 0,

0 otherwise

(1.28)

converges to N(0, 1) in distribution as N →∞.

In accordance with the previous theorem the null hypothesis H0 is rejected in
favor of the alternative H1 of the increasing treatment effect whenever the statistic
T̃N from (1.28) exceeds the (1− α)th quantile of the normal N(0, 1) distribution.

The results obtained in the proofs of the previous theorems can be used in con-
structing tests of the null hypothesis (1.8) against the general alternative of its nega-
tion. In the wording of the next theorem by the upper left submatrix we understand
the matrix described by (2.1).

Theorem 1.3. (I) Suppose that for each j 6= s belonging to {1, . . . , k} there exists
i such that nijnisσ̃

2
i > 0. Then the rank of upper left (k − 1) × (k − 1) submatrix

Σ̃N [11] of the matrix Σ̃N

rank(Σ̃N [11]) = rank(Σ̃N ) = k − 1, (1.29)

the matrix

Σ̃∗
N =

( (
Σ̃N [1,1]

)−1

0k−1×1

01×k−1 0

)
(1.30)

is the generalized inverse of the matrix Σ̃N and the equality

Ã(N)′Σ̃−
NÃ(N) = Ã(N)′Σ̃∗

NÃ(N) (1.31)

holds for any generalized inverse Σ̃−
N of the matrix Σ̃N .

(II) Define the test statistic by the formula

Q̃N =
1√
N

(Ã(N)
1 , . . . , Ã

(N)
k−1)

( 1
N

Σ̃N [1,1]

)−1 1√
N

(Ã(N)
1 , . . . , Ã

(N)
k−1)

′ (1.32)
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provided that (1.29) is true and put Q̃N = 0 otherwise. Let the null hypothesis (1.8)
and the conditions (C1) – (C3), (C5) hold. Suppose further that either (C4∗) and
(1.27) hold or (C4) is fulfilled. Then Q̃N converges to χ2

k−1 distribution with k − 1
degrees of freedom in distribution as N → ∞. Moreover, if (C4∗) holds with δ = 1
and for every j 6= s belonging to {1, . . . , k} the limit (cf. (1.5))

pjs = p (1.33)

does not depend on j 6= s, then

lim
N→∞

P
(

max
j 6=s

√
2 |Ã(N)

j − Ã
(N)
s |√

mjj + mss + 2mjs

> t(k, 1− α)
)

= α. (1.34)

In this formula t(k, 1− α) denotes (1− α)th quantile of the modulus of the normal
Nk(0, Ik) distribution, i. e.,

P
(

max
i,j

|xi − xj | < t(k, 1− α)
∣∣∣x ∼ Nk(0, Ik)

)
= 1− α, (1.35)

the quantity mjs is for j 6= s defined in (1.4), and for j = 1, . . . , k

mjj =
N∑

i=1

nij(di. − nij). (1.36)

In accordance with the previous theorem the null hypothesis (1.8) is rejected
whenever the statistic Q̃N exceeds the (1−α)th quantile of the chi-square distribution
with k − 1 degrees of freedom. If this test rejects the null hypothesis (1.8) and the
numbers {mjs

N ; 1 ≤ j < s ≤ k} are not strikingly different, then the setting of the
experiment can be perceived as a member of the limiting set-up in which (1.33)
holds, and therefore in accordance with (1.34) the treatments j and s are declared
to be different if

√
2 |Ã(N)

j − Ã
(N)
s |√

mjj + mss + 2mjs

> t, t = t(k, 1− α). (1.37)

If the numbers {mjs

N ; 1 ≤ j < s ≤ k} are perceived as strikingly different, then the
critical constant t in (1.37) should be obtained by means of simulation.

Rank test statistics for mentioned hypotheses can be constructed also in a differ-
ent way. Put

ÂN = (Â(N)
1 , . . . , Â

(N)
k )′, Â(N)

r =
N∑

i=1

B̂(i)
r , B̂(i)

r =
(
Sir − nir

di. + 1
2

)
, (1.38)

Σ̂N =
N∑

i=1

σ̃2
i

di.
Ψi, (1.39)

where Ψi is the matrix (1.19).
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Theorem 1.4. (I) Suppose that for each j 6= s belonging to {1, . . . , k} there exists
i such that nijnisσ̃

2
i > 0. Then the rank of upper left (k − 1) × (k − 1) submatrix

Σ̂N [11] of the matrix Σ̂N

rank(Σ̂N [11]) = rank(Σ̂N ) = k − 1, (1.40)

the matrix

Σ̂∗
N =

( (
Σ̂N [1,1]

)−1

0k−1×1

01×k−1 0

)
(1.41)

is the generalized inverse of the matrix Σ̂N and the equality

Â(N)′Σ̂−
NÂ(N) = Â(N)′Σ̂∗

NÂ(N) (1.42)

holds for any generalized inverse Σ̂−
N of the matrix Σ̂N . Moreover, with the notation

(1.15) the number f ′kΣ̂N fk is positive.

(II) Define the test statistics by the formulas

T̂N =
1√

f ′kΣ̂N fk

k∑
j=1

jÂ
(N)
j , (1.43)

Q̂N =
1√
N

(Â(N)
1 , . . . , Â

(N)
k−1)

( 1
N

Σ̂N [1,1]

)−1 1√
N

(Â(N)
1 , . . . , Â

(N)
k−1)

′, (1.44)

provided that (1.40) is true and put T̂N = Q̂N = 0 otherwise. Let the null hypothesis
(1.8) and the conditions (C1) – (C3), (C4∗), (C5) hold. If sup{di.; i = 1, 2, . . .} <
+∞, then the test statistic T̂N converges to N(0, 1) and Q̂N converges to χ2

k−1

distribution with k − 1 degrees of freedom in distribution as N →∞.

The hat test statistics T̂N , Q̂N from the previous theorem are constructed for
using in tests in the same way as their tilde counterparts T̃N , Q̃N .

Now the power of the mentioned tests is illustrated by means of simulation es-
timates. Let us consider the random block scheme of k = 5 treatments with the
following number of observations per cell.

Block Number of observations

i ni1 ni2 ni3 ni4 ni5

1 1 2 5 0 0

2 1 2 0 0 9

3 0 1 4 7 0

4 0 1 3 0 8

5 1 0 0 7 8

6 0 2 2 8 6

7 2 0 4 5 6

8 2 3 0 6 8

9 2 1 6 0 6

10 3 2 4 7 0



Random blocks 665

Suppose that this scheme of treatments holds, the effect of the jth treatment is
N(µj , 1) distributed for the block index i = 1, . . . , 7 and E(µj , 1) distributed for
i = 8, 9, 10, where E(µj , 1) denotes the exponential distribution with the density
exp(−(x−µj)), x ≥ µj . The simulations are carried out for 6 possible configurations
of the these parameters µj , j = 1, . . . , k, which are described in the following table
(obviously the configuration (I) means that the null hypothesis (1.8) holds).

µ1 µ2 µ3 µ4 µ5

(I) 2 2 2 2 2

(II) 2 2.1 2.2 2.2 2.2

(III) 2 2.1 2.2 2.2 2.3

(IV) 2 2.5 2.6 2.6 2.6

(V) 2 2.5 2.6 2.7 2.7

(VI) 2 2.5 2.6 2.8 2.9

Simulation estimates of the power given in the following table are in each case
based on 10000 trials. For typographical reasons the notation Pα(T̃ ) = P (T̃N >
u1−α), Pα(T̂ ) = P (T̂N > u1−α), Pα(Q̃) = P (Q̃N > χ2

k−1(1−α)), Pα(Q̂) = P (Q̂N >
χ2

k−1(1 − α)) is used, where u1−α and χ2
k−1(1 − α) is (1 − α)th quantile of the

N(0, 1) distribution and of the chi-square distribution with k−1 degrees of freedom,
respectively.

Pα(T̃ ) Pα(T̂ ) Pα(Q̃) Pα(Q̂)

(I) α = 0.05 0.049 0.049 0.044 0.043
α = 0.10 0.095 0.095 0.096 0.097

(II) α = 0.05 0.185 0.185 0.092 0.092
α = 0.10 0.293 0.291 0.170 0.169

(III) α = 0.05 0.311 0.313 0.134 0.133
α = 0.10 0.449 0.445 0.229 0.230

(IV) α = 0.05 0.493 0.494 0.374 0.372
α = 0.10 0.633 0.632 0.500 0.499

(V) α = 0.05 0.678 0.679 0.472 0.470
α = 0.10 0.795 0.791 0.599 0.600

(VI) α = 0.05 0.902 0.902 0.682 0.678
α = 0.10 0.950 0.947 0.794 0.790

Similar results hold when the treatment effects have the Cauchy or exponential or
binomial distribution, in the sense that the values of the probabilities of rejection
will be different but mutual power ordering remains the same. Thus the simulation
results suggest that the tests based on the tilde and the hat variants of the statistics
are practically equivalent.

When the quadratic statistics are considered, the use of the Q̃N test has the
advantage that in the case of the rejection of H0 the multiple comparisons procedure,
based on (1.37) can be used. While the statistics Q̃N , Q̂N are constructed for
testing the hypothesis H0 of no treatment effect against the general alternative of
its negation, the test statistics T̃N , T̂N are constructed for testing H0 against the
alternative H1 of increasing treatment effect. The results of simulations support this
construction and suggest that for testing H0 against this special alternative H1 the
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test based on T̃N should be used, because under validity of H1 it has clearly better
power than the test based on Q̃N .

Now we are going to illustrate in this setting the performance of the multiple
comparisons rule based on (1.37). In the following table Pα(+), Pα(−) are simulation
estimates of the correct and false detection of different treatments, respectively. Thus
Pα(+) denotes the estimate of the probability that (1.37) holds for at least one pair
j, s of the indices such that µj 6= µs, Pα(−) is the estimate of the probability that
(1.37) holds for at least one pair j, s of the indices such that µj = µs. The estimates
are based on 10000 trials in each case.

Pα(+) Pα(−)

(I) α = 0.05 0 0.043
α = 0.10 0 0.092

(II) α = 0.05 0.072 0.015
α = 0.10 0.134 0.035

(III) α = 0.05 0.113 0.005
α = 0.10 0.197 0.013

(IV) α = 0.05 0.306 0.014
α = 0.10 0.436 0.033

(V) α = 0.05 0.385 0.006
α = 0.10 0.521 0.013

(VI) α = 0.05 0.584 0
α = 0.10 0.714 0

The results of simulations suggest that the detection of different treatments by means
of (1.37) is trustworthy, because under the validity of alternative the probability of
the false detection is fractional when compared to the probability of the the correct
detection.

The following example is based on artificial data.

Example. A fertilizer producing company decided to verify the effectiveness of
its products in agricultural practice and asked wheat producing farmers in 10 areas
to apply some of its 5 products. However, not each of the addressed farmers was
willing to take part in this experiment and the company received the following data
on the yield of wheat.

The yield of wheat for particular fertilizer

Area Type 1 Type 2 Type 3 Type 4 Type 5

1 28.5 35.1 31.6 29.8 30.8 30.1
32.7 30.7

2 31.6 32.1 30.2 30.7 31.3 29.4
30.5 30.8 29.0
32.9 28.7 29.6

3 28.4 32.8 29.2 27.2 33.9 32.2 31.3
32.3 29.3 29.5 33.5

33.3

4 29.5 32.3 31.1 30.0 29.3 31.6 27.4
27.9 35.0 30.9
36.3 30.5
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The yield of wheat for particular fertilizer

Area Type 1 Type 2 Type 3 Type 4 Type 5

5 30.3 32.8 30.6 30.0 32.5 32.7 29.3
33.9 29.2 32.6 32.1 33.1 28.9
29.9 31.7 30.9

6 28.2 30.1 30.4 28.5 27.1 29.2 31.0 34.0 31.1 31.3
27.6 33.5 29.8 30.9 31.4 32.8
26.9 31.2

7 30.4 31.5 31.6 31.0 31.3 29.1 30.9 31.7 31.2 36.5 31.8
28.7 29.2 32.6 28.4 31.9 32.0

8 30.2 31.0 32.9 32.2 31.6 34.5 31.3 31.1 32.0 31.7 35.8
31.9 38.1 31.2 32.7 33.0 34.6

31.5 31.4

9 31.6 30.1 34.5 31.0 31.2 32.3 33.8 33.1 34.3
31.7 30.8 31.5 32.4 32.8 32.5

10 31.0 35.3 32.3 31.6 34.2 31.7 33.5 31.8 32.5 32.2 31.1
32.1 33.1 32.7 33.4

32.8

The fertilizers were labelled from 1 to 5 in such a way that the producer has reasons to
assume that their effectiveness is increasing with the increasing label of the type. The
average yield in various areas may differ because of the soil and weather conditions,
but if the fertilizers have equal effect on the yield of wheat, then the distribution
of the yield in the particular area does not depend on the order in which the fields
are numbered, and the condition (1.8) is fulfilled. Thus the decision whether the
fertilizers do not have the same effect can be based on the testing by means of the
statistic (1.17).

The ranks (1.9) of the observations are as follows.

Area Type 1 Type 2 Type 3 Type 4 Type 5

1 1 8 6 2 5 3 7 4

2 10 11 5 7 9 3 6 8 2 12 1 4

3 2 9 3 1 8 12 7 6 4 5 11 10

4 4 10 8 5 3 9 1 2 11 7 12 6

5 6 14 7 5 16 2 12 4 11 13 3 10 15 1 9 8

6 4 8 9 5 2 6 11 3 17 7 1 13 18 12 14 10 15 16

7 5 10 11 7 9 2 3 6 12 4 16 8 17 13 1 14 15

8 1 2 14 12 8 16 5 3 10 19 4 11 9 18 13 15 17 7 6

9 6 1 15 3 4 8 7 2 5 13 12 14 9 11 10

10 1 16 8 3 15 4 14 5 6 9 7 2 12 10 13 11

There are no ties within the blocks and we shall use the test based on Theorem
1.1. The number of observations per cell is the same as in the simulation study.
Thus the covariance matrix from (1.14) and the norming variance (1.16) (here fk =
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(1, 2, 3, 4, 5)′)

ΣN =


162 −18 −37 −50 −57
−18 176 −35 −55 −68
−37 −35 260 −92 −96
−50 −55 −92 379 −182
−57 −68 −96 −182 403

, σ2
N = f ′kΣN fk = 3053.

The matrix of differences (Sir − nir ∗ (di. + 1)/2) is

−3.5 5.0 −1.5 0 0
3.5 3.0 0 0 −6.5

0 −4.5 −5.0 9.5 0
0 −2.5 3.5 0 −1

−2.5 0 0 0.5 2.0
0 −7 −5 −16 28

−3.0 0 −7.0 −4.0 14.0
−17.0 4.0 0 −3.0 16.0
−9.0 7.0 −19.0 0 21.0
−0.5 1.0 −5.0 4.5 0


.

Therefore the observed value of the statistic (1.12) is

A(N) =
(
A

(N)
1 , . . . , A

(N)
k

)′
=
(
− 26.6111, 6.3681, −33.5176, −4.9771, 58.7377

)′
and the test statistic (1.17)

T̃N =
1√

3053

5∑
j=1

jA
(N)
j = 2.8840 .

But the 95% quantile of N(0, 1) distribution u0.95 = 1.644854, hence T̃N > u0.95

and we reject at the significance level α = 0.05 the hypothesis of the equality of
the effectiveness of these types of fertilizers in favour of the alternative, that for
j = 1, 2, 3, 4 the average yield µj obtained by application of the jth type µj ≤ µj+1

and the inequality µj < µj+1 holds for some j.
For α = 0.05 the equality (1.35) holds with t(5, 0.95) = 3.8577 and since for the

quantity κjs =
√

2|A(N)
j − A

(N)
s |/

√
mjj + mss + 2mjs the inequality κjs > 3.8577

holds only for the pairs j = 1, s = 5 and j = 3, s = 5, the method of multiple
comparisons based on (1.37) detects as different the types 1 and 5 and the types 3
and 5.

2. PROOFS

Suppose that V =
(
vjs

)k

j,s=1
is a k × k matrix and

V[11] =
(
vjs

)k−1

j,s=1
(2.1)
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denotes its left upper (k − 1) × (k − 1) submatrix. In the proofs of this paper the
following Lemma will be useful. We remark that its assertions (I) and (II) have
already been used in [8].

Lemma 2.1. Let us assume that V is a symmetric positive semidefinite k×k matrix
and the sum of its columns is zero vector.

(I) Suppose that all off-diagonal elements of V are negative numbers. Then

rank(V) = rank(V[11]) = k − 1. (2.2)

(II) If (2.2) holds, then the matrix

V∗ =

( (
V[11]

)−1

0k−1×1

01×k−1 0

)
(2.3)

is the generalized inverse of the matrix V. Moreover, if x ∈ Rk and the sum of its
coordinates is zero, then the equality

x′V−x = x′V∗x = (x1, . . . , xk−1)
(
V[11]

)−1

(x1, . . . , xk−1)′ (2.4)

holds for any generalized inverse V− of the matrix V.

(III) If (2.2) is fulfilled then for the vector (1.15) the inequality

f ′kVfk > 0 (2.5)

holds.

P r o o f . (III) Since the matrix V is symmetric and positive semidefinite, there
exists a random vector ξ = (ξ1, . . . , ξk)′ having the normal Nk(0,V) distribution.
Suppose that

f ′kVfk = 0. (2.6)

Then obviously almost surely
k∑

j=1

jξj = 0. (2.7)

On the other hand, since the sum of the columns of the matrix V is the zero vector,

k∑
j=1

ξj = 0 (2.8)

almost surely. Combining (2.7) and (2.8) one obtains that almost surely

k∑
j=1

ξj =
1
k

k∑
j=1

jξj ,

k−1∑
j=1

(k − j)ξj = 0. (2.9)



670 F. RUBLÍK

Put g = (k−1, k−2, . . . , 1)′. Then (2.9) means that the equality g′V[11]g = 0 holds.
But this is a contradiction, because g is a non-zero vector and by (2.2) the matrix
V[11] is regular. Thus (2.6) cannot happen and since V is positive semidefinite, the
inequality (2.5) holds. �

P r o o f o f T h e o r e m 1.1. (I) Obviously

A(N) =
N∑

i=1

Bi, Bi =
√

12
di. + 1

(
Si1 − ni1

di. + 1
2

, . . . , Sik − nik
di. + 1

2

)′
. (2.10)

Since the null hypothesis (1.8) holds, by (C4) the random vector Ri is uniformly
distributed over the set R(di.) of all permutations of {1, . . . , di.}. Therefore making
use of Theorem 3 and Theorem 4 from Section 3.3 of Hájek, Šidák and Sen (1999)
one obtains the formula

V ar(Bi) = Ψi, (2.11)

where Ψi is the matrix (1.19). The independence of the blocks implies the formula
for ΣN .

Since the sum of coordinates of A(N) is zero vector, the sum of columns of its
covariance matrix ΣN is also zero vector. If all the numbers mjs defined in (1.4)
are positive, then ΣN is a symmetric positive semidefinite matrix with negative
off-diagonal elements and according to the Lemma 2.1 the number (1.16) is positive.

(II) Since (C5) and (1.14) hold and the sum of columns of ΣN is zero vector,
there exists a finite limit

W = lim
N→∞

ΣN

N
. (2.12)

Now we are going to prove that

A(N)

√
N

→ Nk(0,W) (2.13)

in distribution as N →∞. Taking into account (2.10), the independence of random
blocks and (2.12), one obtains the convergence

N∑
i=1

V ar

(
Bi√
N

)
=

ΣN

N
→ W .

Since E(Bi) = 0 and (2.10) holds, according to the multivariate Lindeberg theorem
from p. 390 of [6] the convergence (2.13) will be proved by showing that for every
fixed ε > 0

lim
N→∞

N∑
i=1

∫
{‖x‖>ε}

‖x‖2dFi,N (x) = 0 ,



Random blocks 671

where Fi,N denotes the distribution function of the random vector Bi/
√

N . This
condition is equivalent to

lim
N→∞

1
N

N∑
i=1

∫
{‖Bi‖>

√
Nε}

‖Bi‖2dP = 0 . (2.14)

It is obvious that there exists a positive constant K such that ‖Bi‖ ≤ Kd
3/2
i. . Hence

if ε > 0, then by (1.7) the set {‖Bi‖ >
√

Nε} is empty for i = 1, . . . , N and all N
sufficiently large. Thus (2.14) holds and (2.13) is proved.

As we have already mentioned, the matrix ΣN is symmetric, p.s.d. and the sum
of its columns is zero vector. This together with (2.12), (1.14), the condition (C5)
and Lemma 2.1 means that

f ′kWfk > 0. (2.15)

But f ′kA
(N)/

√
N → N(0, f ′kWfk) in distribution by (2.13) and fk′(ΣN/N)fk →

fk′Wfk by (2.12), which together with (2.15) and

TN =
1√

f ′k(ΣN/N)fk

f ′kA
(N)

√
N

means that the assertion (II) of Theorem 1.1 holds. �

The proof of Theorem 1.2 will be based on the following lemma.

Lemma 2.2. Suppose that the conditions (C1) – (C3), (C4∗) are fulfilled and the
null hypothesis (1.8) holds. Let τN =(τ (N)

1 , . . . , τ
(N)
N ) be such a vector that P (τ(Xi) =

τ
(N)
i ) > 0, i = 1, . . . , N .

(I) The conditional expectations and the conditional covariance matrices (cf.
(1.23))

E
(
B̃i | τ(Xi) = τ

(N)
i

)
= 0, V ar

(
B̃i | τ(Xi) = τ

(N)
i

)
= (1− δ0,σ̃i

)Ψi , (2.16)

where Ψi is the matrix (1.19). Therefore (1.25) holds.

(II) Suppose that also the condition (C5) is fulfilled. Let M+(k − 1) denote the
set of all symmetric positive definite (k − 1)× (k − 1) matrices and (cf. (1.24))

W̃N =
Σ̃N

N
, WN = E(W̃N ). (2.17)

Then

WN =
1
N

N∑
i=1

Ψiγi, γi = P (σ̃2
i > 0) (2.18)

and there exists a compact subset K ⊂ M+(k − 1) and an index N0 such that for
all integers N ≥ N0 and the upper left (k − 1) × (k − 1) submatrix of the matrix
WN the inclusion

WN [11] ∈ K (2.19)

holds.
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P r o o f . (I) Let the number σ̃2
i be positive. Since it is constant on the set {τ(Xi) =

τ
(N)
i }, taking into account (1.10) one obtains by the results from Section 4 of [1]

E
(
B̃(i)

r | τ(Xi) = τ
(N)
i

)
=

√
di.

σ̃2
i

nir∑
v=1

E
(
R

(v)
ij − di. + 1

2

)
= 0 ,

which proves the first formula in (2.16), the second one can be proved similarly.
If the sets Di ∈ Bk, i = 1, . . . , N , then

P
(
B̃i ∈ Di , i = 1, . . . , N

∣∣∣ τ(X1, . . . ,XN ) = τN

)

=
N∏

i=1

P
((

Si1 − ni1
di. + 1

2
, . . . , Sik − nik

di. + 1
2

)′
∈

√
σ̃2

i

di.
Di

∣∣∣τ(Xi) = τ
(N)
i

)

=
N∏

i=1

P
(
B̃i ∈ Di

∣∣∣ τ(X1, . . . ,XN ) = τN

)
(2.20)

which together with (2.16) and (1.22) yields (1.25).
(II) The equality (2.18) follows from (2.17) and (1.25). To prove (2.19) put

ΣN =
N∑

i=1

Ψi.

Since the sum of the columns of this matrix is zero vector, the validity of the condition
(C5) and Lemma 2.1 imply that there exists a finite limit

W = lim
N→∞

ΣN

N
(2.21)

and the equality
rank(W) = rank(W[11]) = k − 1 (2.22)

holds. Let x ∈ Rk. Then

x′WNx =
1
N

N∑
i=1

x′Ψixγi.

Since (1.20) holds, there exist positive numbers δ1, δ2 such that δ1 < γi < δ2 for all
i = 1, 2, . . .. However by (2.11) the matrix Ψi is positive semidefinite and therefore

δ2x′
( 1

N
ΣN

)
x ≥ x′WNx ≥ δ1x′

( 1
N

ΣN

)
x. (2.23)

But if G ⊂M+(k − 1) is a compact set, then the set

K = {V ∈M+(k − 1); there exists a W∗ ∈ G such that δ2W∗ � V � δ1W∗}
(2.24)
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is also compact. But by (2.21) and (2.22) the matrix W[11] is positive definite and
there exist a compact set G ⊂M+(k − 1) and a positive integer N0 such that

ΣN [11]

N
∈ G

for all integers N ≥ N0. This together with (2.23) and (2.24) means that the lemma
is true. �

P r o o f o f T h e o r e m 1.2. (I) Equality (1.25) follows from Lemma 2.2(I). Hence if
for each j 6= s belonging to {1, . . . , k} there exists i such that nijnis(1− δ0,σ̃i

) > 0,
then all off-diagonal elements of the matrix Σ̃N are negative and as this matrix is
p.s.d and the sum of its columns is zero vector, the number (1.26) is positive by
Lemma 2.1.

(II) Let {Nv}∞v=1 be an increasing sequence of positive integers. Taking into
account the previous lemma and the fact that the sum of columns of the matrix
WN from (2.17) is zero vector, we see, that there exists its subsequence {Nvu

}∞u=1

such that
WNvu

→ W, (2.25)

W is a symmetric p.s.d. matrix, the sum of its columns is zero vector and its upper
left submatrix W[11] is regular. This together with Lemma 2.1 means, that

f ′kWfk > 0. (2.26)

But for the matrix W̃N from (2.17) owing to the independence of σ̃2
1 , . . . , σ̃2

N we
have (the notation (j, s) denotes the position in the matrix)

var(W̃N (j, s)) =
1

N2
var(Σ̃N (j, s)) =

1
N2

N∑
i=1

Ψ2
i (j, s)var(δ0,σ̃2

i
)

≤ 1
N2

N∑
i=1

d4
i. ≤

D4
N

N
→ 0

because (1.27) holds. This together with Tchebychev’s inequality implies that the
difference W̃N −WN → 0 in probability as N →∞. But any sequence converging
to zero in probability contains a subsequence converging to zero almost surely. Thus
neglecting a set of probability 0 we see that there exists a subsequence {N∗} of the
sequence {Nvu}∞u=1 such that

W̃N∗ → W (2.27)

as N∗ →∞. Hence if we prove the convergence in distribution

Ã(N∗)/
√

N∗ → Nk(0,W), (2.28)

then by means of (2.26), (2.27) one can easily prove the convergence in distribution

1√
f ′kW̃N∗fk

k∑
j=1

jÃ
(N∗)
j → N(0, 1),



674 F. RUBLÍK

which means that the convergence in distribution T̃N → N(0, 1) holds.
To prove (2.28) put

Ci = {(z1, z2, . . . , zdi.
)′ ∈ Rdi. ; there exist j, j̃ such that zj 6= zj̃}. (2.29)

According to the assumptions P ((Xi1, . . . ,Xiki) ∈ Ci) ≥ δ > 0. Hence for the set

HN = {(x1, . . . ,xN ) ∈ Rd1. × . . .× RdN. ;
1
N

N∑
i=1

χ
Ci

(xi) >
δ

2
},

by the strong law of large numbers

lim
N→∞

χ
HN

((X1, . . . ,XN )) = 1 (2.30)

almost surely. Let FN (t|τ(X1, . . . ,XN ) = τN ) denotes the conditional distribution
function of the random vector A(N)

/
√

N given τ(X1, . . . ,XN ) = τN . Put

GN =
{

τN ; τN =τ(X1, . . . ,XN ), (X1, . . . ,XN )∈HN , P (τ(X1, . . . ,XN )=τN )>0
}

.

Let t ∈ Rk be an arbitrary fixed vector. If we prove that for each τN∗ ∈ GN∗

lim
N∗→∞

FN∗(t|τ(X1, . . . ,XN∗) = τN∗) = F (t), (2.31)

where F denotes the distribution function of the normal Nk(0,W) distribution, then
for the quantity

∆N∗(τN∗) =
∣∣∣FN∗(t | τ(X1, . . . ,XN∗) = τN∗)− F (t)

∣∣∣
almost surely

lim
N∗→∞

∆N∗

(
τ(X1, . . . ,XN∗)

)
χ

HN∗
(X1, . . . ,XN∗) = 0 (2.32)

(the events {(X1, . . .XN ∈ HN , τ(X1, . . . ,XN ) ∈ GN} and {(X1, . . . ,XN ∈ HN}
have the same probability). Thus by (2.30) for distribution function FN (t) of the
random vector Ã(N)/

√
N one obtains that

|FN∗(t)− F (t) | ≤
∫

HN∗

∆N∗

(
τ(x1, . . . ,xN∗)

)
dP∞(x∞) + o(1) → 0 (2.33)

because (2.32) and the Lebesgue theorem hold. Convergence (2.33) means that
(2.28) is proved.

Hence it is sufficient to prove (2.31). Suppose that τN∗ = (τ (N∗)
1 , . . . , τ

(N∗)
N∗ ) ∈

GN∗ . According to (2.20) the random vectors B̃1, . . . , B̃N∗ are independent under
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the probability P
(
.
∣∣∣ τ(X1, . . . ,XN∗) = τN∗

)
and by (1.22)

N∗∑
i=1

V ar

(
B̃i√
N∗

| τ(X1, . . . ,XN∗) = τN∗

)

= V ar

(
Ã(N∗)

√
N∗

| τ(X1, . . . ,XN∗) = τN∗

)
→ W

because the convergence (2.27) holds. Hence the multivariate Lindeberg theorem
implies that (2.31) will be proved by verifying for every ε > 0 the equality

lim
N∗→∞

N∗∑
i=1

∫
{‖x‖>ε}

‖x‖2dFi,N∗(x| τ(X1, . . . ,XN∗) = τN∗) = 0 ,

where Fi,N∗(x| τ(X1, . . . ,XN∗) = τN∗) stands for the conditional distribution func-
tion of the random vector B̃i/

√
N∗. Obviously it is sufficient to prove the equality

lim
N∗→∞

1
N∗

N∗∑
i=1

∫
{‖B̃i‖>

√
N∗ε}

‖B̃i‖2 dP (ω| τ(X1, . . . ,XN∗) = τN∗) = 0 , (2.34)

where P (·| τ(X1, . . . ,XN∗) = τN∗) denotes this conditional probability. Since the
function g(x) = x2 is convex, for nir = dij > 0

(
Sir − nir

di. + 1
2

)2

≤ nir

nir∑
v=1

(
R

(v)
ij − di. + 1

2

)2

≤ d2
i.σ̃

2
i .

Thus there exists a positive number M such that ‖B̃i‖ ≤ Md
3/2
i. for all i. This

together with (1.27) means that the set {‖B̃i‖ >
√

N∗ε} is empty if the integer N∗

is sufficiently large, and the convergence (2.34) is proved. �

P r o o f o f Th e o r e m 1.3. (I) This assertion is an immediate consequence of
Theorem 1.2(I) and Lemma 2.1.

(II) Since the model based on (C4) can be handled similarly, we shall prove
the assertion for the case with tied observations. The convergence in distribution
Q̃N → χ2

k−1 can be proved by means of (2.27) and (2.28), because the matrix W
is symmetric, p.s.d., the sum of its columns is zero vector, its upper left submatrix
W[11] is regular and Lemma 2.1 holds.

Now we are going to prove (1.34). Making use of the assumptions of the theorem
and of the fact that the sum of the columns of Σ̃N is zero vector, one can prove the
convergence

1
N

Σ̃N → W = kpV, V = Ik −
√

c(
√

c)′, (
√

c)′ = (
1√
k

, . . . ,
1√
k

), (2.35)
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where p is the number (1.33). Thus by (2.28)

Ã(N)/
√

N → Nk(0,W), (2.36)

and therefore
Ã(N)/

√
N = OP (1). (2.37)

But (1.33) holds and the sum of columns of Σ̃N is zero vector. Therefore

mjj

N
= (k − 1)p + o(1)

which together with (2.37), (2.36) and (2.35) means, that

max
j 6=s

√
2 |Ã(N)

j − Ã
(N)
s |√

mjj + mss + 2mjs

= max
j 6=s

|Ã(N)
j − Ã

(N)
s |

√
Nkp

+ oP (1) −→ max
1≤j<s≤k

|xj − xs|

(2.38)
in distribution, where the random vector (x1, . . . , xk)′ is Nk(0,V) distributed. Tak-
ing into account (2.35) it is easy to see that the normally distributed random vector
(xj − xs; 1 ≤ j < s ≤ k)′ has the same covariance matrix as the random vector
(yj − ys; 1 ≤ j < s ≤ k)′, where (y1, . . . , yk)′ is Nk(0, Ik) distributed. This together
with (2.38) implies (1.34). �

P r o o f o f Th e o r e m 1.4. (I) This assertion is an immediate consequence of
Lemma 2.1.

(II) Since the model based on (C4) can be handled similarly, we shall prove the
assertion for the case with tied observations. By (2.20) and (2.16)

V ar
(
ÂN | τ(Xi) = τ

(N)
i

)
= Σ̂N

is the matrix (1.39). Thus for

ŴN =
Σ̂N

N
, WN = E(ŴN )

the equality

WN =
1
N

N∑
i=1

Ψiγi, γi =
1
di.

E(σ̃2
i ) (2.39)

holds. Hence similarly as in the proof of Lemma 2.2 one can prove that there exist a
compact subset K ⊂M+(k− 1) and an index N0 such that for all integers N ≥ N0

the upper left (k − 1)× (k − 1) submatrix WN [11] ∈ K. Since

V ar(ŴN (j, s)) =
1

N2
var(Σ̂N (j, s)) =

1
N2

N∑
i=1

1
d2

i

Ψ2
i (j, s)V ar(σ̃2

i ) ≤ K

N
→ 0,

the convergence of hat statistics in distribution can be proved similarly as the con-
vergence in distribution of their tilde counterparts. �
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[5] J. Hájek, Z. Šidák, and P.K. Sen: Theory of Rank Tests. Academic Press, New York
1999.

[6] E. L. Lehmann: Nonparametrics. Statistical Methods Based on Ranks. Springer
Science and Business Media, New York 2006.

[7] E. B. Page: Ordered hypotheses for multiple treatments: A significance test for linear
ranks. J. Amer. Statist. Assoc. 58 (1963), 216–230.

[8] J. H. Skillings and G. A. Mack: On the use of a Friedman–type statistic in balanced
and unbalanced block designs. Technometrics 23 (1981), 171–177.
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