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Abstract. We consider the Sturm-Liouville problem with symmetric boundary conditions
and an integral condition. We estimate the first eigenvalue λ1 of this problem for different
values of the parameters.
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1. Introduction

Consider the Sturm-Liouville problem

y′′(x) − q(x)y(x) + λy(x) = 0,(1.1)
{

y′(0) − k2y(0) = 0,

y′(1) + k2y(1) = 0,
(1.2)

where q(x) is a non-negative bounded summable function on [0, 1] such that

(1.3)

∫ 1

0

qγ(x) dx = 1, γ 6= 0.

By Aγ we denote the set of all such functions.

A function y(x) is called a solution of problem (1.1)–(1.2) if it is defined on [0, 1],

satisfies conditions (1.2), its derivative y′(x) is absolutely continuous, and equation

(1.1) holds almost everywhere on (0, 1).
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We estimate the first eigenvalue λ1(q) of this problem for different values of γ

and k.

According to the variation principle λ1(q) = inf
y(x)∈H1(0,1)\{0}

R(q, y), where

(1.4) R(q, y) =

∫ 1

0 y′2(x) dx +
∫ 1

0 q(x)y2(x) dx + k2
(

y2(0) + y2(1)
)

∫ 1

0 y2(x) dx
.

Put mγ = inf
q(x)∈Aγ

λ1(q), Mγ = sup
q(x)∈Aγ

λ1(q).

R em a r k. The problem for the equation y′′ + λq(x)y = 0, q(x) ∈ Aγ , with

conditions y(0) = y(1) = 0 was considered in [1]. The problem for equation (1.1),

q(x) ∈ Aγ , with conditions y(0) = y(1) = 0 was considered in [2], [3]. In [4] the

problem for the equation y′′ + λq(x)y = 0, q(x) ∈ Aγ , with conditions (1.2) was

considered.

2. Results

Theorem 2.1.

(1) If γ ∈ (−∞, 0) ∪ (0, 1), then Mγ = +∞.
(2) If γ > 1, then Mγ 6 π

2 + 2;

(3) if γ > 1 and k = 0, then Mγ = 1.

(4) If γ = 1 and k 6= 0, then M1 = ξ∗, where ξ∗ is the solution to the equation

arctan
k2

√
ξ

=
ξ − 1

2
√

ξ
;

M1 ∈ (1; 1
2π

2 + 1 + 1
2π

√
π
2 + 4) for all k 6= 0.

Theorem 2.2.

(1) If k = 0, γ > 1, then mγ = 0;

(2) if k = 0, γ 6 1, then mγ > 1/4.

(3) If 0 < k2 < (−1 +
√

3)/2, then mγ > k2/(2k2 + 2) for all γ 6= 0;

(4) if k2 ∈ [(−1 +
√

3)/2; π/2), then mγ > k4 for all γ 6= 0;

(5) if k2 = π/2, then mγ > π
2/4 for all γ 6= 0;

(6) if k2 > π/2, then mγ > π
2/4 for all γ 6= 0.
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3. Proofs

Proposition. If γ > 1, then Mγ 6 1 + 2k2.

P r o o f. Put y1(x) = ε, then for any q ∈ Aγ we have

λ1(q) = inf
y(x)∈H1(0,1)\{0}

R(q, y) 6 R(q, y1)

=

∫ 1

0
y′
1
2
dx +

∫ 1

0
q(x)y2

1 dx + k2
(

y2
1(0) + y2

1(1)
)

∫ 1

0 y2
1 dx

=
ε2

∫ 1

0
q(x) dx + 2k2ε2

ε2
=

∫ 1

0

q(x) dx + 2k2.

If γ = 1, then
∫ 1

0 q(x) dx = 1. For γ > 1, using the Hölder inequality, we obtain

∫ 1

0

q(x) dx 6

(
∫ 1

0

qγ(x) dx

)1/γ(
∫ 1

0

1γ/(γ−1) dx

)1−1/γ

= 1.

Hence λ1(q) 6 1 + 2k2, and it follows that

Mγ = sup
q(x)∈Aγ

λ1(q) 6 sup
q(x)∈Aγ

(1 + 2k2) = 1 + 2k2.

�

Proposition. If γ > 1 and k = 0, then Mγ = 1.

P r o o f. If q(x) ≡ 1, then problem (1.1)–(1.2) has the form

y′′ − y + λy = 0,(3.1)

y′(0) = y′(1) = 0.(3.2)

Note that λ = 1 is an eigenvalue of this problem. For λ < 1 the solution to

equation (3.1) is y = C1 cosh
(√

1 − λx
)

+C2 sinh
(√

1 − λx
)

. Under condition (3.2)

we have C2 = 0, and C1 = 0 or λ = 1. This means that problem (3.1)–(3.2) has no

eigenvalues λ < 1. So λ1 = 1 is the minimal eigenvalue of problem (1.1)–(1.2) with

q(x) ≡ 1 and k = 0.

It now follows that Mγ = sup
q(x)∈Aγ

λ1(q) > 1. For γ > 1 we already got that

Mγ 6 1 + 2k2, which means Mγ 6 1 for k = 0. Combining these, we have the

accurate estimate Mγ = 1. �
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Proposition. If γ = 1 and k 6= 0, then M1 = ξ∗, where ξ∗ is the solution to the

equation arctan(k2/
√

ξ) = (ξ − 1)/(2
√

ξ).

P r o o f. 1. Consider the continuous function

yξ(x) =



































√
ξ

k2
cos

√
ξx + sin

√
ξx, 0 6 x < τ,

√
ξ

k2
cos

√
ξτ + sin

√
ξτ, τ 6 x < 1 − τ,

√
ξ

k2
cos

√
ξ(1 − x) + sin

√
ξ(1 − x), 1 − τ 6 x 6 1.

If τ =
√

ξ−1 arctan(k2/
√

ξ), then y′
ξ(x) is continuous too, and yξ(x) can be a solution

to problem (1.1)–(1.2).

2. Now consider

(3.3) L(y) =

∫ 1

0 y′2 dx + max
x∈[0,1]

y2(x) + k2
(

y2(0) + y2(1)
)

∫ 1

0
y2(x) dx

.

Since
∫ 1

0

q(x)y2(x) dx 6 max
x∈[0,1]

y2(x)

∫ 1

0

q(x) dx = max
x∈[0,1]

y2(x),

we have

λ1(q) = inf
y∈H1(0,1)\{0}

R(q, y) 6 inf
y∈H1(0,1)\{0}

L(y).

By ξ∗ denote the solution to the equation

L(yξ) = ξ.

Substituting yξ(x) into (3.3), we obtain

(1) yξ(0) = yξ(1) =
√

ξ/k2, yξ(x) =
√

ξ + k4/k2 for τ 6 x < 1 − τ ;

(2) since yξ(x) is increasing for x ∈ [0, τ ] and decreasing for x ∈ [1 − τ, 1], we have

max
x∈[0,1]

y2
ξ (x) = (ξ + k4)/k4;

(3)
∫ 1

0

(y′
ξ(x))2 dx

=

∫ τ

0

(

− ξ

k2
sin

√

ξx +
√

ξ cos
√

ξx
)2

dx

+

∫ 1

1−τ

( ξ

k2
sin

√

ξ(1 − x) −
√

ξ cos
√

ξ(1 − x)
)2

dx
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= 2

∫ τ

0

( ξ2

k4

1 − cos(2
√

ξx)

2
+ ξ

1 + cos(2
√

ξx)

2
− ξ

√
ξ

k2
sin(2

√

ξx)
)

dx

=
ξ2

k4

(

x − sin(2
√

ξx)

2
√

ξ

)
∣

∣

∣

τ

0
+ ξ

(

x +
sin(2

√
ξx)

2
√

ξ

)
∣

∣

∣

τ

0
+

ξ

k2
cos(2

√

ξx)
∣

∣

∣

τ

0

=
ξ2

k4

(

τ − k2

ξ + k4

)

+ ξ
(

τ +
k2

ξ + k4

)

+
ξ

k2

(ξ − k4

ξ + k4
− 1

)

=
1√
ξ

arctan
k2

√
ξ

( ξ2

k4
+ ξ

)

− ξ

k2
;

(4)
∫ 1

0

y2
ξ (x) dx

=

∫ τ

0

(

√
ξ

k2
cos

√

ξx + sin
√

ξx
)2

dx +

∫ 1−τ

τ

ξ + k4

k4
dx

+

∫ 1

1−τ

(

√
ξ

k2
cos

√

ξ(1 − x) + sin
√

ξ(1 − x)
)2

dx

=
ξ

k4

(

x +
sin(2

√
ξx)

2
√

ξ

)∣

∣

∣

τ

0
+

(

x − sin(2
√

ξx)

2
√

ξ

)∣

∣

∣

τ

0
− 1

k2
cos(2

√

ξx)
∣

∣

∣

τ

0

+
( ξ

k4
+ 1

)

(1 − 2τ) = − 1√
ξ

arctan
k2

√
ξ

( ξ

k4
+ 1

)

+
1

k2
+

ξ

k4
+ 1.

Finally, we have that ξ∗ is a solution to the equation arctan(k2/
√

ξ) = 1
2 (ξ − 1)/

√
ξ.

Put t =
√

ξ > 0 and consider the equation arctan(k2/t) = 1
2 (t2 − 1)/t for t ∈

(0, +∞).

The function arctan(k2/t) is decreasing for t > 0, tends to π/2 as t → 0 + 0, to 0

as t → +∞ (see Fig. 1). The function 1
2 (t2 − 1)/t is increasing for t > 0, tends to

−∞ as t → 0 + 0, to +∞ as t → +∞, is equal to 0 for t = 1. It follows that this

equation has a unique positive solution t∗, and t∗ > 1.

π/2

1 t∗

Figure 1.
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Besides, though the solution depends on k2, it is possible to indicate the interval

which t∗ belongs to, where the bounds do not depend on k2, and to estimate t∗ on

these bounds. According to the behaviour of arctan(k2/t), we get:

(1) if k2 → 0, then t∗ → 1 + 0;

(2) if k2 → +∞, then arctan(k2/t) → π/2, and t∗ tends to the positive solution of

the equation 1
2 (t2 − 1)/t = π/2, which means t∗ → (π +

√
π
2 + 4)/2;

(3) t∗ ∈ (1, (π +
√

π
2 + 4)/2) for all k 6= 0.

For ξ∗ = t2∗ we obtain:

(1) if k2 → 0, then ξ∗ → 1 + 0;

(2) if k2 → +∞, then ξ∗ → 1
2π

2 + 1 + 1
2 π

√
π
2 + 4;

(3) ξ∗ ∈ (1, 1
2π

2 + 1 + 1
2π

√
π
2 + 4) for all k 6= 0.

3. Consider y∗(x) = yξ∗(x). This function is a solution to the problems

y′′ + λy = 0, y′(0) − k2y(0) = 0 for 0 6 x < τ,

y′′ − ξ∗y + λy = 0, for τ 6 x < 1 − τ,

y′′ + λy = 0, y′(1) + k2y(1) = 0 for 1 − τ 6 x 6 1

where λ = ξ∗. It follows that y∗(x) is a solution to problem (1.1)–(1.2), where

q(x) = q∗(x) =











0, 0 6 x < τ,

ξ∗, τ 6 x < 1 − τ,

0, 1 − τ 6 x < 1

(note that q∗(x) satisfies condition (1.3)). Since y∗(x) > 0 on (0, 1), it is the first

eigenfunction of problem (1.1)–(1.2), and ξ∗ is the first eigenvalue of this problem.

Finally, the following conditions hold:

ξ∗ = λ1(q∗) 6 M1 = sup
q∈Aγ

inf
y∈H1(0,1)\{0}

R(q, y) 6 inf
y∈H1(0,1)\{0}

L(y) 6 L(y∗) = ξ∗.

Therefore M1 = ξ∗. �

Proposition. If k = 0, γ > 1, then mγ = 0.

P r o o f. Substituting k = 0 in (1.2), we have y′(0) = y′(1) = 0; similarly, from

(1.4) we get

R(q, y) =

∫ 1

0
y′2(x) dx +

∫ 1

0
q(x)y2(x) dx

∫ 1

0 y2(x) dx
.

Put

y1 = 1, qε(x) =

{

ε−1/γ , 0 < x < ε,

0, ε < x < 1.
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Then, since γ > 1, we have

mγ = inf
q∈Aγ

(

inf
y∈H1(0,1)\{0}

R(q, y)
)

6 R(qε, y1) = ε1−1/γ → 0 as ε → 0.

Thus we conclude that mγ = 0. �

Proposition. If k = 0, γ 6 1, then mγ > 1/4.

P r o o f. Put ∆ = {y(x) : y(x) ∈ H1(0, 1) \ {0},
∫ 1

0 y2(x) dx = 1, y(x) > 0}.
Note that λ1 = inf

y∈H1(0,1)\{0}
R(q, y) = inf

y∈∆
R(q, y).

Put α =
∫ 1

0 y′2(x) dx, β = min
y∈[0,1]

y = y(ξ), where ξ ∈ [0, 1].

Using y(x) = y(ξ) +
∫ x

ξ y′(s) ds and the Hölder inequality, we obtain

y2(x) 6 2β2 + 2

(
∫ x

ξ

y′(s) ds

)2

6 2β2 + 2

∫ x

ξ

y′2(s) ds 6 2β2 + 2α.

For y(x) ∈ ∆ we get 2β2 + 2α > 1. If follows that one of the following cases takes

place: (a) 2α > 1/2; (b) 2β2 > 1/2.

(a) Suppose α > 1/4. Hence for y(x) ∈ ∆ and q(x) ∈ Aγ we get

R(q, y) =
α +

∫ 1

0 q(x)y2 dx

1
>

1

4
.

(b) Suppose β > 1/2. Since y(x) > β for all y(x) ∈ [0, 1], for y(x) ∈ ∆ and

q(x) ∈ Aγ we get

R(q, y) =

∫ 1

0
y′2(x) dx +

∫ 1

0
q(x)y2 dx

1
>

∫ 1

0

q(x)y2 dx >
1

4

∫ 1

0

q(x) dx.

Using the Hölder inequality, we have

1 =

∫ 1

0

qγ/(γ−1)qγ/(1−γ) dx 6

(
∫ 1

0

q(x) dx

)γ/(γ−1)( ∫ 1

0

qγ dx

)1/(1−γ)

=

(
∫ 1

0

q(x) dx

)γ/(γ−1)

for γ < 0,

and

∫ 1

0

qγ(x) dx 6

(
∫ 1

0

q(x) dx

)γ(
∫ 1

0

11/(1−γ) dx

)1−γ

for γ ∈ (0, 1],

whence
∫ 1

0
q(x) dx > 1.
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Hence, R(q, y) > 1/4 in both cases, and

mγ = inf
q∈Aγ

(

inf
y∈H1(0,1)\{0}

R(q, y)
)

= inf
q∈Aγ

(

inf
y∈∆

R(q, y)
)

>
1

4
.

�

References

[1] Yu.Egorov, V.Kondratiev: On Spectral Theory of Elliptic Operators. Birkhäuser, Basel,
1996.

[2] O.V.Muryshkina: On estimates for the first eigenvalue of the Sturm-Liouville prob-
lem with symmetric boundary conditions. Vestnik Molodyh Uchenyh. – 3’2005. Series:
Applied Mathematics and Mechanics. – 1’2005, 36–52.

[3] V.A.Vinokurov, V.A. Sadovnichii: On the range of variation of an eigenvalue when
the potential is varied. Dokl. Math. 68 (2003), 247–252; Translation from Dokl. Akad.
Nauk, Ross. Akad. Nauk 392 (2003), 592–597.

[4] S. S. Ezhak: On the estimates for the minimum eigenvalue of the Sturm-Liouville problem
with integral condition. J. Math. Sci., New York 145 (2007), 5205–5218 (In English.);
Translation from Sovrem. Mat. Prilozh. 36 (2005), 56–69.

Author’s address: Elena Karulina, Moscow State University of Economics, Statistics
and Informatics, Moskva, 119501, Russia, e-mail: KarulinaES@yandex.ru.

384


		webmaster@dml.cz
	2020-07-01T17:52:48+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




