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Abstract

Existence principles for solutions of singular differential systems
(φ(u′))′ = f(t, u, u′) satisfying nonlocal boundary conditions are stated.
Here φ is a homeomorphism RN onto RN and the Carathéodory func-
tion f may have singularities in its space variables. Applications of the
existence principles are given.
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1 Introduction

Nonlocal singular boundary value problems with φ-Laplacian are discussed in
the literature above all for scalar second-order differential equations (see, e.g.,
[1, 2, 3, 6, 23, 24, 27, 28] and references therein). Existence principles for solving
such problems were given in [3, 22, 23, 24].
Regular systems of differential equations with φ-Laplacian were investigated

together with two-point boundary conditions (Dirichlet, Neumann, periodic and
nonlinear) in many papers (see, e.g., [4, 8, 10, 11, 13, 15, 16, 17, 18, 19, 32] and
references therein) and in [20] with nonlocal boundary conditions u(0) = 0,
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100 Svatoslav Staněk

|u′(T )|p−2
∗ u′(T ) =

∫ T

t0

|u′(s)|p−2
∗ u′(s) dg(s),

where |u|∗ is the Euclidean norm in RN .
The φ-Laplacian like operator is discussed for p-Laplacian φp(u) = |u|p−2

∗ u

([16, 17, 18, 19, 20, 32]), for p(t)-Laplacian φp(t)(u) = |u|p(t)−2
∗ u ([10, 11]),

for (p1, . . . , pN )-Laplacian φ(p1,...,pN )(u) = (φp1
(u1), . . . , φpN

(uN )) ([8, 13, 15,
32]), where φpi

is a one-dimensional pi-Laplacian, and for a strictly monotone
homeomorphism φ : RN → RN ([4, 17]).
Singular problems for second-order differential systems have received less

attention. We refer to [7, 14, 21, 33], where the solvability of singular periodic,
Dirichlet and mixed boundary value problems was studied for systems of two
second-order differential equations.
The aim of this paper is to give existence principles for solving regular and

singular nonlocal boundary value problems for systems of differential equations
with φ-Laplacian and show their applications. The existence principles are
proved by the combination of the Leray–Schauder degree theory ([9]) with reg-
ularization and sequential techniques. We note that our existence principles
are closely related to that given in [29] for n-order differential equations and in
[3, 22, 23, 24] for second-order differential equations.
The following notation is used throughout the paper. N ∈ N, R+ = (0,∞),

R0 = R \ {0}, T ∈ R+.
RN is the space of N -dimensional vectors x = (x1, . . . , xN ) with xj ∈ R and

the norm ‖x‖ = max{|xj | : 1 ≤ j ≤ N}.
If x, y ∈ RN and λ ∈ R, then

y > x⇐⇒ y − x ∈ RN
+ , y ≥ x⇐⇒ y − x ∈ [0,∞)N

and
λx = (λx1, . . . , λxN ), |x| = (|x1|, . . . , |xN |).

C([0, T ];RN ) is the space of continuous vector-functions x : [0, T ] → RN

with the norm ‖x‖∞ = max{‖x(t)‖ : t ∈ [0, T ]}, and if N = 1, then ‖x‖∞ =
max{|x(t)| : t ∈ [0, T ]}.

L1([0, T ];RN ) is the space of Lebesgue integrable vector-functions x : [0, T ] →
RN with the norm ‖x‖L =

∫ T

0
‖x(t)‖ dt, and if N = 1, then ‖x‖L =

∫ T

0
|x(t)| dt.

AC([0, T ];RN ) is the space of vector-functions x : [0, T ] → RN which are
absolutely continuous on [0, T ].

C1([0, T ];RN ) and AC1([0, T ];RN ) is the space of vector-functions x : [0, T ] →
RN having continuous derivatives on [0, T ] and absolutely continuous derivatives
on [0, T ], respectively.
We note that a vector-function is said to be continuous, integrable, etc., if

such are all its elements. Similarly, sup, max for vectors functions is understood
componentwise.
In order to precede a confusion, if we work with sequences of N -dimensional

vector-functions, then we denote such sequences by {x(n)}, {f(n)} . . . , where
x(n) = (xn1, . . . , xnN ), f(n) = (fn1, . . . , fnN ).
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We recall that a function h : [0, T ] × D → RN , D ⊂ RN × RN , satisfies the
local Carathéodory conditions on the set [0, T ]×D if
(i) h(·, x, y) : [0, T ] → RN is measurable for each (x, y) ∈ D,
(ii) h(t, ·.·) : D → RN is continuous for a.e. t ∈ [0, T ],
(iii) for each compact setM ⊂ D there is a ρM ∈ L1([0, T ];R+) such that

‖h(t, x, y)‖ ≤ ρM(t) for a.e. t ∈ [0, T ] and all (x, y) ∈ M.

In this case we write h ∈ Car([0, T ]×D;RN ).

Let D ⊂ RN ×RN is not closed and let (x0, y0) ∈ D. We say that h : [0, T ]×
D → RN has a singularity at (x0, y0) if

lim
D�(x,y)→(x0,y0)

‖h(t, x, y)‖ = ∞ for a.e. t ∈ [0, T ]. (1)

Here D denotes the closure of D. In this case we also say that h has a singularity
at the point (x0, y0) of its space variables x, y. If (1) holds only for such (x0, y0) ∈
D, x0 = (x01, . . . , x0N ), y0 = (y01, . . . , y0N ) that min{|x0j |, |y0j | : 1 ≤ j ≤ N} =
0, then we say that h has a singularity only at zero value of components its
space variables.
In order to give nonlocal boundary conditions, we introduce a set A. A is

the set of operators α : C1([0, T ];RN ) → RN which are
(j) continuous,
(jj) bounded, that is, α(Ω) is bounded for any bounded Ω ⊂ C1([0, T ];RN ).

Example 1.1 Let a ∈ RN , p ∈ R+, 0 ≤ t1 < · · · < tm ≤ T and let ξj ∈ [0, T ]
(j = 1, . . . , N). Then the operators

α1(x) = (max{x1(t) : t ∈ [0, T ]}, . . . ,max{xN (t) : t ∈ [0, T ]})− a,

α2(x) = (min{x1(t) : t ∈ [0, T ]}, . . . ,min{xN (t) : t ∈ [0, T ]})− a,

α3(x) =

m∑
j=1

ajx(tj), α4(x) =

∫ T

0

|x′(t)|pdt, α5(x) = (x′1(ξ1), . . . , x
′
N (ξN ))

belong to the set A.

Let f ∈ Car([0, T ] × D;RN ), where D ⊂ RN × RN is not necessary closed,
and let f(t, x, y) admit singularities in its space variables x, y. We consider the
system of differential equations

(φ(u′))′ = f(t, u, u′), (2)

where φ satisfies the condition

(H1) φ ∈ C(RN ;RN ) is injective and such that lim‖x‖→∞ ‖φ(x)‖ = ∞.

It is known that under condition (H1) the function φ is a homeomorphism RN

onto RN and that lim‖x‖→∞ ‖φ−1(x)‖ = ∞ (see [9, 30, 31]).
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Together with system (2) we investigate the (generally nonlinear and nonlo-
cal) boundary conditions

α(u) = 0, β(u) = 0, α, β ∈ A. (3)

We say that α, β ∈ A satisfy the compatibility condition if for each μ ∈ [0, 1]
the system

α(a+ tb)− μα(−a− tb) = 0,

β(a+ tb)− μβ(−a− tb) = 0,

}
(4)

has a solution (a, b) ∈ RN × RN .
A function u ∈ C1([0, T ];RN ) is called a solution of problem (2), (3) if

φ(u′) ∈ AC([0, T ];RN), u satisfies the boundary conditions (3) and (φ(u′(t)))′ =
f(t, u(t), u′(t)) holds almost everywhere on [0, T ].
The paper is organized as follows. Section 2 contains two existence principles.

The first principle concerns with the solvability of regular functional-differential
problems (φ(u′(t)))′ = (Fu)(t), (3), and the second one deals with the solvabil-
ity of singular problem (2), (3). Applications of both the principles are given in
Section 3. Here we discuss system (2) together with nonlocal boundary condi-
tions, which include as the special cases the Dirichlet conditions and multipoint
boundary conditions.

2 Existence principles

We first investigate the regular functional-differential system

(φ(u′(t)))′ = (Fu)(t), (5)

where the function φ satisfies condition (H1) and the operator F satisfies the
condition

(H2)

⎧⎪⎨
⎪⎩
F : C1([0, T ];RN ) → L1([0, T ];RN ) is continuous, and for any r > 0,

sup
{
‖(Fx)(t)‖ : x ∈ C1([0, T ];RN ), ‖x‖∞ ≤ r, ‖x′‖∞ ≤ r

}
∈ L1([0, T ];R).

Remark 2.1 If f ∈ Car([0, T ]×(RN ×RN );RN ) and (Fx)(t) = f(t, x(t), x′(t))
for x ∈ C1([0, T ];RN ), then F fulfils condition (H2).

By a solution of problem (5), (3) we mean a function u ∈ C1([0, T ];RN )
such that φ(u′) ∈ AC([0, T ];RN ), u satisfies the boundary conditions (3) and
(5) holds for almost all t ∈ [0, T ].

The existence result for problem (5), (3) is given in the following theorem.

Theorem 2.2 (existence principle for regular problems). Let (H1) and (H2)
hold. Let ϕ ∈ L1([0, T ];RN ). Suppose that there exist positive constants S0 and
S1 such that

‖u‖∞ < S0, ‖u′‖∞ < S1 (6)
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for all solutions u of the equations

(φ(u′(t)))′ = λϕ(t), λ ∈ [0, 1],

(φ(u′(t)))′ = λ(Fu)(t) + (1− λ)ϕ(t), λ ∈ [0, 1],

}
(7)

satisfying the boundary conditions (3). Also assume that α, β in (3) satisfy the
compatibility condition and there exist positive constants Λ0 and Λ1 such that
the estimates

‖a‖ < Λ0, ‖b‖ < Λ1,

are fulfilled for each μ ∈ [0, 1] and all solutions (a, b) ∈ RN ×RN of system (4).
Then problem (5), (3) has a solution u satisfying inequality (6).

Proof Let

Ω =
{
x ∈ C1([0, T ];RN ) : ‖x‖∞ < max{S0,Λ0+Λ1T}, ‖x′‖∞ < max{S1,Λ1}

}
.

Then Ω is an open, bounded and symmetric with respect to 0 ∈ C1([0, T ];RN )
subset of the Banach space C1([0, T ];RN ). Define operators

Q : [0, 1]× Ω → L1([0, T ];RN ), F : [0, 1]× Ω → C1([0, T ];RN )

by the formulas

Q(λ, x)(t) = λ(Fx)(t) + (1− λ)ϕ(t),

F(λ, x)(t) = x(0) + α(x) +

∫ t

0

φ−1
(
φ(x′(0) + β(x)) +

∫ s

0

Q(λ, x)(τ ) dτ
)
ds.

The fact that F is a continuous operator follows from condition (H2), ϕ ∈
L1([0, T ];RN ), the continuity of φ, α, β, and from the Lebesgue dominated con-
vergence theorem. In order to prove that F is a compact operator it remains
to verify that F([0, 1] × Ω) is relatively compact in C1([0, T ];RN ). Since Ω is
bounded in C1([0, T ];RN ) we have

‖α(x)‖ ≤ r, ‖β(x)‖ ≤ r, ‖(Fx)(t)‖ ≤ 
(t)

for a.e. t ∈ [0, T ] and all x ∈ Ω, where r is a positive constant and 
 ∈
L1([0, T ];R+). Set K = max{S1,Λ1} + r. Then, for x ∈ Ω, the inequalities
‖x′(0) + β(x)‖ ≤ K and

‖φ(x′(0) + β(x))‖ ≤ sup{‖φ(y)‖ : ‖y‖ ≤ K} =:M

hold. Hence

∥∥∥φ−1
(
φ(x′(0) + β(x)) + λ

∫ t

0

Q(λ, x)(s) ds
)∥∥∥

≤ sup{‖φ−1(y)‖ : ‖y‖ ≤M + ‖
‖L + ‖ϕ‖L} =: V,
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and consequently,

‖F(λ, x)(t)‖ ≤ max{S0,Λ0 + Λ1T}+ r + V T, ‖F(λ, x)′(t)‖ ≤ V,

‖φ(F(λ, x)′(t2))− φ(F(λ, x)′(t1))‖ ≤
∣∣∣ ∫ t2

t1

(
(t) + ‖ϕ(t)‖) dt
∣∣∣

for t, t1, t2 ∈ [0, T ] and (λ, x) ∈ [0, 1] × Ω. Here F(λ, x)′(t) = d
dtF(λ, x)(t).

Therefore F([0, 1]× Ω) is bounded in C1([0, T ];RN ) and the set{
φ(F(λ, x)′) : (λ, x) ∈ [0, 1]× Ω

}
is equicontinuous on [0, T ]. Using the fact that φ−1 is uniformly continuous on
compact subsets of RN and

‖F(λ, x)′(t2)−F(λ, x)′(t1)‖ =
∥∥φ−1

(
φ(F(λ, x)′(t2))

)
− φ−1

(
φ(F(λ, x)′(t1))

)∥∥,
we conclude that the set {F(λ, x)′ : (λ, x) ∈ [0, 1]×Ω} is equicontinuous on [0, T ].
Now the Arzelà–Ascoli theorem gives that F([0, 1]×Ω) is relatively compact in
C1([0, T ];RN ). Hence F is a compact operator.
Suppose that x0 is a fixed point of the operator F(1, ·). Then

x0(t) = x0(0) + α(x0) +

∫ t

0

φ−1
(
φ(x′0(0) + β(x0)) +

∫ s

0

(Fx0)(τ ) dτ
)
ds.

Hence α(x0) = 0, β(x0) = 0 and x0 is a solution of (5). Therefore, x0 is a
solution of problem (5), (3). In order to prove our theorem it suffices to show
that

deg(I − F(1, ·),Ω, 0) �= 0, (8)

where “deg” stands for the Leray–Schauder degree and I is the identity operator
on C1([0, T ];RN ). For this end, let us define a compact operator K : [0, 2]×Ω →
C1([0, T ];RN ) as

K(μ, x)(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x(0) + α(x)− (1− μ)α(−x) + t[x′(0) + β(x)− (1− μ)β(−x)]
if μ ∈ [0, 1],

x(0) + α(x) +

∫ t

0

φ−1
(
φ(x′(0) + β(x)) + (μ− 1)

∫ s

0

ϕ(τ ) dτ
)
ds

if μ ∈ (1, 2].

Then K(0, ·) is odd (that is, K(0,−x) = −K(0, x) for x ∈ Ω) and

K(2, ·) = F(0, ·). (9)

If K(μ1, x̂) = x̂ for some (μ1, x̂) ∈ [0, 1]× Ω, then

x̂(t) = x̂(0) + α(x̂)− (1− μ1)α(−x̂) + t
[
x̂′(0) + β(x̂)− (1− μ1)β(−x̂)

]



Existence principles for singular vector nonlocal boundary value. . . 105

for t ∈ [0, T ]. Hence x̂(t) = â + tb̂, where â = x̂(0) + α(x̂) − (1 − μ1)α(−x̂)
and b̂ = x̂′(0) + β(x̂) − (1 − μ1)β(−x̂). Since x̂(0) = â and x̂′(0) = b̂, we have
α(x̂)− (1− μ1)α(−x̂) = 0, β(x̂)− (1− μ1)β(−x̂) = 0, which means that

α(â+ tb̂)− (1− μ1)α(−â− tb̂) = 0,

β(â+ tb̂)− (1− μ1)β(−â− tb̂) = 0.

Therefore, (â, b̂) ∈ RN × RN is a solution of system (4) (with μ replaced by
1 − μ1), and consequently, ‖â‖ < Λ0, ‖b̂‖ < Λ1 by the assumption. Then
‖x̂‖∞ < Λ0 + Λ1T and ‖x̂′‖∞ < Λ1, which gives x̂ �∈ ∂Ω. If K(μ2, x̃) = x̃ for
some (μ2, x̃) ∈ (1, 2]× Ω, then

x̃(t) = x̃(0) + α(x̃) +

∫ t

0

φ−1
(
φ(x̃′(0) + β(x̃)) + (μ2 − 1)

∫ s

0

ϕ(τ ) dτ
)
ds

for t ∈ [0, T ]. Hence x̃ fulfils the boundary conditions (3) and x̃ is a solution of
the equation (φ(u′))′ = (μ2−1)ϕ(t). So ‖x̃‖∞ < S0, ‖x̃′‖∞ < S1, which implies
x̃ �∈ ∂Ω. We have shown that K(μ, x) �= x for all (μ, x) ∈ [0, 2] × Ω. Now, by
the Borsuk antipodal theorem and the homotopy property (see, e.g., [9]),

deg(I − K(0, ·),Ω, 0) �= 0,

deg(I − K(0, ·),Ω, 0) = deg(I − K(2, ·),Ω, 0).

}
(10)

Finally, assume that F(λ, x) = x for some (λ, x) ∈ [0, 1]× Ω. Then x fulfils (3)
and x is a solution of the second equation in (7). By assumption (6), ‖x‖∞ < S0

and ‖x′‖∞ < S1. Hence x �∈ ∂Ω, and the homotopy property gives

deg(I − F(0, ·),Ω, 0) = deg(I − F(1, ·),Ω, 0).

This equality together with (9) and (10) show that (8) holds. We have proved
that problem (5), (3) has a solution u. The fact that u fulfils (6) follows from
our a priori estimate (6) for solutions of problem (7), (3). �

In order to obtain an existence result for singular problem (2), (3), we use
regularization and sequential techniques. For this end we discuss the regular
differential system associated to (2)

(φ(u′(t)))′ = f(n)(t, u(t), u
′(t)), (11)

where f(n) ∈ Car([0, T ] × (RN × RN );RN ) and n ∈ N. The following result is
an existence principle for problem (2), (3).

Theorem 2.3 (existence principle for singular problems). Let (H1) hold. Let
f ∈ Car([0, T ]×D;RN ), where D ⊂ RN × RN , and f(t, x, y) have singularities
only at zero value of components its space variables x, y. Let ν ∈ {−1, 1},
f(n) ∈ Car([0, T ]× (RN × RN );RN ) and f(n) satisfy the inequality

0 ≤ νf(n)(t, x, y) ≤ Q(t, |x|, |y|)
for a.e. t ∈ [0, T ] and all x, y ∈ RN

0 × RN
0 , n ∈ N,

}
(12)
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where Q ∈ Car([0, T ] × (RN
+ × RN

+ );RN
+ ). Suppose that the regular problem

(11), (3) has a solution u(n) for each n ∈ N, and there exists a subsequence
{u(kn)} of {u(n)} converging in C1([0, T ];RN ) to some u = (u1, . . . , uN ).
Then u is a solution of the singular problem (2), (3) if uj and u′j have a

finite number of zeros, j = 1, . . . , N , and

lim
n→∞ f(kn)(t, u(kn)(t), u

′
(kn)

(t)) = f(t, u(t), u′(t)) for a.e. t ∈ [0, T ]. (13)

Proof Assume that (13) holds and that 0 ≤ ξ1 < · · · < ξm ≤ T are all zeros
of uj and u′j , j = 1, . . . , N . Since {u(kn)} is convergent in C1([0, T ];RN ) there
exists L > 0 such that ‖u(kn)‖∞ ≤ L, ‖u′(kn)

‖∞ ≤ L for n ∈ N. It follows from
the equality

φ(u′(kn)
(T ))− φ(u′(kn)

(0)) =

∫ T

0

f(kn)(t, u(kn)(t), u
′
(kn)

(t)) dt

that, cf. (12),

ν

∫ T

0

f(kn)(t, u(kn)(t), u
′
(kn)

(t)) dt ≤ S for n ∈ N, (14)

where S = 2 sup{|φ(z)| : ‖z‖ ≤ L} ∈ RN
+ . Now, by (12)–(14) and the Fatou

lemma (see, e.g., [5, 12]), f(t, u(t), u′(t)) ∈ L1([0, T ];RN ).
Set ξ0 = 0 and ξm+1 = T . We claim that for all j ∈ {0, 1, . . . ,m} such that

ξj < ξj+1, the equality

φ(u′(t)) = φ(u′(τj)) +
∫ t

τj

f(s, u(s), u′(s)) ds (15)

is satisfied for t ∈ [ξj , ξj+1], where τj =
ξj+ξj+1

2 . Indeed, let j ∈ {0, 1, . . . ,m}
and ξj < ξj+1. Let us take an arbitrary δ ∈ (0,

ξj+1−ξj
2 ) and look at the interval

[ξj + δ, ξj+1− δ]. We know that |u| > 0 and |u′| > 0 on (ξj , ξj+1), and therefore,
|u(t)| ≥ ρ, |u′(t)| ≥ ρ for t ∈ [ξj + δ, ξj+1− δ], where ρ ∈ RN

+ . Hence there exists
n0 ∈ N such that |u(kn)(t)| ≥

ρ
2 , |u′(kn)

(t)| ≥ ρ
2 for t ∈ [ξj + δ, ξj+1 − δ] and

n ≥ n0. Taking into account (12) we have

νf(kn)(t, u(kn)(t), u
′
(kn)

(t)) ≤ ψ(t) for a.e. t ∈ [ξj + δ, ξj+1 − δ] and all n ≥ n0,

where ψ ∈ L1([ξj + δ, ξj+1 − δ];RN
+ ),

ψ(t) = sup
{
Q(t, x, y) :

ρ

2
≤ x ≤ L∗,

ρ

2
≤ y ≤ L∗

}
with L∗ = (L, . . . , L) ∈ RN

+ . Letting n→ ∞ in

φ(u′(kn)
(t)) = φ(u′(kn)

(τj)) +

∫ t

τj

f(kn)(s, u(kn)(s), u
′
(kn)

(s)) ds
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yields (15) for t ∈ [ξj + δ, ξj+1 − δ] by the Lebesgue dominated convergence
theorem. Since δ ∈ (0,

ξj+1−ξj
2 ) is arbitrary, (15) holds on the interval (ξj , ξj+1).

Now, using the fact that f(t, u(t), u′(t)) ∈ L1([0, T ];RN ), we conclude that (15)
is true also at t = ξj and t = ξj+1. Consequently, φ(u′) ∈ AC([0, T ];RN)
and (φ(u′(t)))′ = f(t, u(t), u′(t)) for a.e. t ∈ [0, T ]. Finally, α(u) = 0 and
β(u) = 0, which follows from the continuity of α and β, from limn→∞ u(kn) = u
in C1([0, T ];RN ) and from α(u(kn)) = 0, β(u(kn)) = 0 for n ∈ N. Hence u is a
solution of problem (2), (3). �

3 An application of existence principles

In this section we investigate a nonlocal singular problem. This problem is
solved by regularization and sequential techniques. We construct a sequence of
auxiliary regular problems and prove their solvability by Theorem 2.2. The ex-
istence of a solution to the nonlocal singular problem is proved by Theorem 2.3.

3.1 Formulation of nonlocal singular problems

We first define a set B of operators γ which is used in the formulation of our
nonlocal boundary conditions. We say that γ ∈ B if γ : C1([0, T ];RN ) → RN

and if there exists a continuous, even functional τj : C1([0, T ];RN ) → [0, T ),
j = 1, . . . , N , such that

γ(x) = (x1(τ1(x)), . . . , xN (τN (x))) for x ∈ C1([0, T ];RN ).

It is easy to check that B ⊂ A. We note that the set A is introduced in Section 1.

Example 3.1 Let tj ∈ [0, T ), j = 1, . . . , N . Then the operators

γ1(x) = x(0),

γ2(x) = (x1(t1), . . . , xN (tN )),

γ3(x) =

(
x1

(
‖x′(t1)‖
1 + ‖x′‖∞

T

)
, . . . , xN

(
‖x′(tN )‖
1 + ‖x′‖∞

T

))
,

γ4(x) =

(
x1

(
‖x‖L

1 + ‖x‖∞

)
, . . . , xN

(
‖x‖L

1 + ‖x‖∞

))

belong to the set B.

Consider system (2) together with the boundary conditions

u(0) = 0, u(T ) = γ(u), γ ∈ B. (16)

We see that (16) is the special case of (3) with α(x) = x(0) and β(x) =
x(T )− γ(x). The boundary conditions (16) include as special cases the Dirich-
let conditions (if γ(x) = x(0)) and multipoint boundary conditions (if, e.g.,
γ(x) = (x1(t1), . . . , xN (tN ))).
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Throughout this section we work with the following conditions on the func-
tions φ and f = (f1, . . . , fN ) in (2).

(S1) φ : R
N → RN , φ(x) = (φ1(x1), . . . , φN (xN )), where φj : R → R is an

increasing and odd homeomorphism such that φj(R) = R, j = 1, . . . , N .

(S2) f ∈ Car([0, T ]×D;RN), D = RN
+×RN

0 , and there exists a positive constant
c such that

fj(t, x, y) ≤ −c for a.e. t ∈ [0, T ] and all (x, y) ∈ D, j = 1, . . . , N .

(S3) f fulfils the estimate

−fj(t, x, y) ≤ hj(t, ‖x‖, ‖y‖) +
N∑

k=1

(ajk(xk) + bjk(|yk|))

for a.e. t ∈ [0, T ] and all (x, y) ∈ D, j = 1, . . . , N , where

hj ∈ Car([0, T ]× ([0,∞)× [0,∞));R+)

is nondecreasing with respect to the second and third variable, ajk, bjk : R+ →
R+ are nonincreasing and such that∫ d

0

ajk(s) ds <∞,

∫ d

0

bjk(φ
−1
k (s)) ds <∞

for each d ∈ R+, j, k = 1, . . . , N , and

lim sup
v→∞

1

φj(v)

∫ T

0

hj(t, 1 + Tv, 1 + v) dt < 1 for j = 1, . . . , N . (17)

We say that a function u ∈ C1([0, T ];RN ) is a solution of problem (2), (16)
if u(t) > 0 for t ∈ (0, T ), φ(u′) ∈ AC([0, T ];RN), u fulfils (16) and

(φ(u′(t)))′ = f(t, u(t), u′(t)) for a.e. t ∈ [0, T ].

3.2 Auxiliary regular problems

For n ∈ N, define ϕn ∈ C0(R;R+), χn ∈ C0(RN ;RN
+ ) and Rn ⊂ R by

ϕn(s) =

{
|s| for |s| ≥ 1

n ,

1
n for |s| <

1
n ,

χn(x) = (ϕn(x1), . . . , ϕn(xN )),

Rn = R \
[
− 1

n
,
1

n

]
.

Let f satisfy (S2) and let f(n) : [0, T ] × (RN × RN ) → RN be defined by the
following procedure

f0(n)(t, x, y) = f(t, χn(x), y) for (x, y) ∈ RN × RN
n ,
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f1(n)(t, x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

f0(n)(t, x, y) for y ∈ RN
n ,

n

2

[(
y1 +

1

n

)
f0(n)

(
t, x,

(
1

n
, y2, . . . , yN

))

−
(
y1 −

1

n

)
f0(n)

(
t, x,

(
− 1

n
, y2, . . . , yN

))]
for y ∈

[
− 1

n ,
1
n

]
× RN−1

n ,

f2(n)(t, x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1(n)(t, x, y) for y ∈ R× RN−1
n ,

n

2

[(
y2 +

1

n

)
f1(n)

(
t, x,

(
y1,

1

n
, y3, . . . , yN

))

−
(
y2 −

1

n

)
f1(n)

(
t, x,

(
y1,−

1

n
, y3, . . . , yN

))]
for y ∈ R×

[
− 1

n ,
1
n

]
× RN−2

n ,

...

fN(n)(t, x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

fN−1
(n) (t, x, y) for y ∈ RN−1 × Rn,

n

2

[(
yN +

1

n

)
fN−1
(n)

(
t, x,

(
y1, , . . . , yN−1,

1

n

))

−
(
yN − 1

n

)
fN−1
(n)

(
t, x,

(
y1, . . . , yN−1,−

1

n

))]
for y ∈ RN−1 ×

[
− 1

n ,
1
n

]
.

Let

f(n)(t, x, y) = fN(n)(t, x, y) for t ∈ [0, T ], (x, y) ∈ RN × RN .

Then f(n) = (fn1, . . . , fnN ) ∈ Car([0, T ]× (RN × RN );RN ) and

fnj(t, x, y) ≤ −c
for a.e. t ∈ [0, T ] and all (x, y) ∈ RN × RN , j = 1, . . . , N , n ∈ N.

}
(18)

It follows from (S3) that

−fnj(t, x, y) ≤ hj(t, 1 + ‖x‖, 1 + ‖y‖) +
N∑

k=1

(ajk(|xk|) + bjk(|yk|))

for a.e. t ∈ [0, T ] and all (x, y) ∈ RN
0 × RN

0 , j = 1, . . . , N , n ∈ N.

⎫⎪⎪⎬
⎪⎪⎭ (19)

We discuss the auxiliary regular system

(φ(u′))′ = f(n)(t, u, u
′), n ∈ N. (20)
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In order to prove that problem (20), (16) has a solution we use Theorem 2.2.
We need a priori bounds for solutions of the systems

(φj(u
′
j))

′ = −λc, λ ∈ [0, 1], j = 1, . . . , N, (21)

(φj(u
′
j))

′ = λfnj(t, u, u
′)− (1− λ)c, λ ∈ [0, 1], j = 1, . . . , N, (22)

satisfying the boundary condition (16), where c is from (S2).
We give a priori bounds for solutions of problems (21), (16) and (22), (16)

in Lemma 3.3, beginning to the useful lemma.

Lemma 3.2 Let (S1) hold. Let u ∈ C1([0, T ];RN ), φ(u′) ∈ AC([0, T ];RN) and
let u = (u1, . . . , uN ) fulfil (16). If

(φj(u
′
j(t)))

′ < 0 for a.e. t ∈ [0, T ] and j = 1, . . . , N, (23)

then

(i) u′j is decreasing on [0, T ] and there exist t1, . . . , tN ∈ (0, T ) such that

u′j(tj) = 0 for j = 1, . . . , N,

(ii) u(t) > 0 for t ∈ (0, T ).

Proof Let (23) hold. Since φj is increasing and φj(0) = 0 by (S1), u′j is
decreasing on [0, T ]. In addition, by (16), uj(T ) = uj(τj(u)), and consequently,
u′j(tj) = 0 for some tj ∈ (τj(u), T ). This tj is unique in [0, T ] since u′j is
decreasing. Therefore, u′j > 0 on [0, tj) and u′j < 0 on (tj , T ]. Using the fact
that uj(0) = 0 by (16), we have uj > 0 on (0, tj ] and uj is decreasing on [tj , T ].
Consequently, uj(T ) = uj(τj(u)) ≥ uj(0) = 0, and so uj(T ) ≥ 0. We have
uj(t) > 0 for t ∈ (0, T ) and j = 1, . . . , N , which means that u > 0 on (0, T ).

�

Lemma 3.3 Let (S1)–(S3) hold. Then there exists a positive constant S inde-
pendent of λ and n such that any solution u of problems (21), (16) and (22), (16)
fulfils the estimates

‖u‖∞ < ST, ‖u′‖∞ < S. (24)

Proof Let u be a solution of problem (21), (16). If λ = 0, then u = 0. Let
λ ∈ (0, 1]. Then u′j(tj) = 0, j = 1, . . . , N , by Lemma 3.2, where tj ∈ (0, T ).
Hence φj(u′j(t)) = −λc(t−tj), and consequently, u′j(t) = −φ−1

j (λc(t−tj)) for t ∈
[0, T ]. Therefore |u′j(t)| < φ−1

j (cT ) for t ∈ [0, T ], j = 1, . . . , N , and so |uj(t)| <
φ−1
j (cT )T for these t and j since uj(0) = 0. Put S1 = max{φ−1

j (cT ) : 1 ≤ j ≤ N}.
Then ‖u‖∞ < S1T and ‖u′‖∞ < S1 for all solutions u of problem (21), (16).
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Now, let u be a solution of problem (22), (16). By (18), (φj(u′j(t)))
′ ≤ −c

for a.e. t ∈ [0, T ] and for j = 1, . . . , N . Besides, Lemma 3.2 guarantees that
u′j is decreasing on [0, T ], u′j(tj) = 0 for a tj ∈ (0, T ) and uj > 0 on (0, T ).
Integrating (φj(u′j(t)))

′ ≤ −c over [t, tj ] and [tj , t] we get

u′j(t) ≥ φ−1
j (c(tj − t)) for t ∈ [0, tj ],

u′j(t) ≤ −φ−1
j (c(t− tj)) for t ∈ (tj , T ].

}
(25)

Since uj(0) = 0 by (16), we have

uj(t) =

∫ t

0

u′j(s) ds ≥
∫ t

0

φ−1
j (c(tj − s)) ds =

1

c

∫ ctj

c(tj−t)

φ−1
j (s) ds, t ∈ [0, tj ],

uj(T )− uj(t) =

∫ T

t

u′j(s) ds ≤ −
∫ T

t

φ−1
j (c(s− tj)) ds

= −1

c

∫ c(T−tj)

c(t−tj)

φ−1
j (s) ds, t ∈ [tj , T ].

In particular, t = tj gives

uj(tj) ≥ 1

c

∫ ctj

0

φ−1
j (s) ds, (26)

uj(T )− uj(tj) ≤ −1

c

∫ c(T−tj)

0

φ−1
j (s) ds. (27)

Due to uj(T ) ≥ 0, inequality (27) yields

uj(tj) ≥
1

c

∫ c(T−tj)

0

φ−1
j (s) ds. (28)

Now, we conclude from (26) and (28) that

uj(tj) ≥
1

c

∫ (cT )/2

0

φ−1
j (s) ds =: αj , j = 1, . . . , N. (29)

Let α = min{αj : 1 ≤ j ≤ N}. Keeping in mind that u′j is decreasing, we see
that uj is concave on [0, T ], and therefore, it follows from 0 ≤ uj(t) ≤ uj(tj) for
t ∈ [0, T ] and from (29) that

uj(t) ≥

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
αt

T
for t ∈

[
0,
T

2

]
,

α(T − t)

T
for t ∈

(
T

2
, T

]
,

j = 1, . . . , N. (30)

Since

φj(u
′
j(t)) =

∫ t

tj

[λfnj(s, u(s), u
′(s))− (1− λ)c] ds,
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inequalities (18) and (19) imply that

|u′j(t)| =
∣∣∣∣φ−1

j

(∫ t

tj

[λfnj(s, u(s), u
′(s))− (1− λ)c] ds

)∣∣∣∣
≤ φ−1

j

(∫ T

0

|fnj(s, u(s), u′(s))| ds
)

≤ φ−1
j

(∫ T

0

[hj(s, 1 + ‖u‖∞, 1 + ‖u′‖∞) +Wj(s)] ds

)
(31)

for t ∈ [0, T ] and j = 1, . . . , N , where

Wj(t) =

N∑
k=1

(ajk(uk(t)) + bjk(|u′k(t)|)).

By (S3), the functions ajk and bjk are nonincreasing on R+. Therefore, by (25)
and (30),∫ T

0

ajk(uk(s)) ds ≤
∫ T/2

0

ajk

(αs
T

)
ds+

∫ T

T/2

ajk

(
α(T − s)

T

)
ds

=
2T

α

∫ α/2

0

ajk(s) ds,

∫ T

0

bjk(|u′k(s)|) ds ≤
∫ tk

0

bjk(φ
−1
k (c(tk − s))) ds

+

∫ T

tk

bjk(φ
−1
k (c(s− tk))) ds

=
1

c

(∫ ctk

0

bjk(φ
−1
k (s)) ds+

∫ c(T−tk)

0

bjk(φ
−1
k (s)) ds

)

<
2

c

∫ cT

0

bjk(φ
−1
k (s)) ds

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(32)

for j = 1, . . . , N . Put

Λ =
2T

α

N∑
j,k=1

∫ α/2

0

ajk(s) ds+
2

c

N∑
j,k=1

∫ cT

0

bjk(φ
−1
k (s)) ds.

Then Λ <∞ by (S3), and (31), (32) yield

|u′j(t)| < φ−1
j

(∫ T

0

hj(s, 1+ ‖u‖∞, 1+ ‖u′‖∞) ds+Λ

)
, t ∈ [0, T ], j = 1, . . . , N.

Since ‖u‖∞ ≤ T‖u′‖∞, we have

‖u′‖∞ < max

{
φ−1
j

(∫ T

0

hj(s, 1+T‖u′‖∞, 1 + ‖u′‖∞) ds+ Λ

)
: 1 ≤ j ≤ N

}
.

(33)
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By condition (17), there exists S2 > 0 such that

φ−1
j

(∫ T

0

hj(s, 1 + Tv, 1 + v) ds+ Λ

)
< v for v ≥ S2 and j = 1, . . . , N .

Hence

max

{
φ−1
j

(∫ T

0

hj(s, 1 + Tv, 1 + v) ds+ Λ

)
: 1 ≤ j ≤ N

}
< v for v ≥ S2.

This inequality together with (33) give ‖u′‖∞ < S2, and then ‖u‖∞ < S2T . To
summarize, the lemma is true for S = max{S1, S2}. �

We are now in the position to give the existence result for problem (20),
(16).

Lemma 3.4 Let (S1)–(S3) hold. Then for each n ∈ N there exists a solution u
of problem (20), (16) and

‖u‖∞ < ST, ‖u′‖∞ < S, (34)

where S is a positive constant independent of n.

Proof We apply Theorem 2.2 with ϕ(t) and (Fu)(t) replaced by −(c, . . . , c) ∈
RN and f(n)(t, u(t), u′(t)), respectively. Let S be a positive constant in Lemma
3.3. Then any solution u of problems (21), (16) and (22), (16) fulfils estimate
(24) by Lemma 3.3, and u > 0 on (0, T ) by Lemma 3.2. We note that the
boundary conditions (16) can be written in the form (3) with α(x) = x(0) and
β(x) = x(T ) − γ(x), and that α, β ∈ A. Since, by the definition, γ(x) =
(x1(τ1(x)), . . . , xN (τN (x))), where τj : C1([0, T ];RN ) → [0, T ) is a continuous
and even functional, we have

γ(a+ tb) = (a1 + τ1(a+ tb)b1, . . . , aN + τN (a+ tb)bN )

and τj(a+tb) = τj(−a−tb) for a = (a1, . . . , aN ), b = (b1, . . . , bN ) in RN . Hence,
we can write system (4) as

(1 + μ)a = 0,

(1 + μ)(T − τj(a+ tb))bj = 0, j = 1, . . . , N.

}
(35)

Then a = 0, and consequently, (T − τj(tb))bj = 0 for j = 1, . . . , N . In view of
τj(tb) < T , we have b = 0. Therefore, (a, b) = (0, 0) ∈ RN × RN is the unique
solution of system (35) for each μ ∈ [0, 1]. We have shown that the assumptions
of Theorem 2.2 are satisfied. Hence problem (20), (16) has a solution u satisfying
inequality (34). �

For the solvability of the singular problem (2), (16) we need the following
result concerning solutions of problem (20), (16).



114 Svatoslav Staněk

Lemma 3.5 Let (S1)–(S3) hold. Let u(n) be a solution of problem (20), (16).
Then {u′(n)} is equicontinuous on [0, T ].

Proof By Lemmas 3.3 and 3.4, there exists a positive constant S such that

‖u(n)‖∞ < ST, ‖u′(n)‖∞ < S for n ∈ N. (36)

Keeping in mind u(n) = (un1, . . . , unN ) by our notation, it follows from the
proof of Lemma 3.3 that (cf. (30)),

unj(t) ≥

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
αt

T
for t ∈

[
0,
T

2

]
,

α(T − t)

T
for t ∈

(
T

2
, T

]
,

n ∈ N, j = 1, . . . , N , (37)

where α is a positive constant. Next, by Lemma 3.2, there exists tnj ∈ (0, T )
such that

u′nj(tnj) = 0 for n ∈ N and j = 1, . . . ,N,

and it follows from the proof od Lemma 3.3 (cf. (25)) that

u′nj(t) ≥ φ−1
j (c(tnj − t)) if t ∈ [0, tnj ],

u′nj(t) ≤ −φ−1
j (c(t− tnj)) if t ∈ [tnj , T ],

for n ∈ N, j = 1, . . . , n.

⎫⎪⎪⎬
⎪⎪⎭ (38)

Let 0 ≤ t1 < t2 ≤ T . Then

∫ t2

t1

ajk(unk(s)) ds ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ t2

t1

ajk

(αs
T

)
ds =

T

α

∫ (αt2)/T

(αt1)/T

ajk(s) ds

if t2 ≤ T
2 ,∫ t2

t1

ajk

(
α(T − s)

T

)
ds =

T

α

∫ (α(T−t1))/T

(α(T−t2))/T

ajk(s) ds

if t1 > T
2 ,∫ T/2

t1

ajk

(αs
T

)
ds+

∫ t2

T/2

ajk

(
α(T − s)

T

)
ds

=
T

α

(∫ α/2

(αt1)/T

ajk(s) ds+

∫ α/2

(α(T−t2))/T

ajk(s) ds

)

if t1 < T
2 < t2,
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∫ t2

t1

bjk(|u′nk(s)|) ds ≤

≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ t2

t1

bjk(φ
−1
j (c(tnk − s))) ds =

1

c

∫ c(tnk−t1)

c(tnk−t2)

bjk(φ
−1
j (s)) ds

if t2 ≤ tnk,

∫ t2

t1

bjk(φ
−1
j (c(s− tnk))) ds =

1

c

∫ c(t2−tnk)

c(t1−tnk)

bjk(φ
−1
j (s)) ds

if t1 ≥ tnk,

∫ tnk

t1

bjk(φ
−1
j (c(tnk − s))) ds+

∫ t2

tnk

bjk(φ
−1
j (c(s− tnk))) ds

=
1

c

(∫ c(tnk−t1)

0

bjk(φ
−1
j (s)) ds+

∫ c(t2−tnk)

0

bjk(φ
−1
j (s)) ds

)

if t1 < tnk < t2.

Hence, for j, k = 1, . . . , N and n ∈ N, the inequalities

∫ t2

t1

ajk(unk(s)) ds <

<
2T

α
sup

{∫ ξ2

ξ1

ajk(s) ds : 0 ≤ ξ1 < ξ2 ≤ T, ξ2 − ξ1 ≤ α

T
(t2 − t1)

}
,

∫ t2

t1

bjk(|u′nk(s)|) ds <

<
2

c
sup

{∫ ν2

ν1

bjk(φ
−1(s)) ds : 0 ≤ ν1 < ν2 ≤ T, ν2 − ν1 ≤ c(t2 − t1)

}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(39)

are satisfied. Integrating (φj(u
′
nj(t)))

′ = fnj(t, u(n)(t), u
′
(n)(t)) over [t1, t2] ⊂

[0, T ] and using (19) and (36), we get

|φj(u′nj(t2))− φj(u
′
nj(t1))| ≤

∫ t2

t1

[
hj(s, 1 + TS, 1 + S)) + Vj(s)

]
ds (40)

for j = 1, . . . , N and n ∈ N, where Vj(t) =
∑N

k=1(ajk(unk(t)) + bjk(|u′nk(t)|)).
Since hj(t, 1 + TS, 1 + S) ∈ L1([0, T ];R+) and ajk, bjk(φ−1) are locally in-
tegrable on [0,∞) by (S3), we conclude from inequalities (39) and (40) that
{φj(u′nj)} is equicontinuous on [0, T ] for j = 1, . . . , N . In view of the equality
|u′nj(t2) − u′nj(t1)| = |φ−1

j (φj(u
′
nj(t2))) − φ−1

j (φj(u
′
nj(t1)))| and the fact that

φ−1
j is continuous and increasing, we see that {u′nj} is equicontinuous on [0, T ]
for j = 1, . . . , N , which means that {u′(n)} is equicontinuous on [0, T ]. �
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3.3 The main result and an example

Theorem 3.6 Let (S1)–(S3) hold. Then problem (2), (16) has a solution u,
u ∈ C1([0, T ];RN ), u(t) > 0 for t ∈ (0, T ), and φ(u′) ∈ AC([0, T ];RN ).

Proof By Lemma 3.4, for each n ∈ N, there is a solution u(n) = (un1, . . . , unN )
of problem (20), (16) satisfying inequality (36), where S is a positive constant.
Lemma 3.5 guarantees that {u′(n)} is equicontinuous on [0, T ] and it follows
from its proof that inequalities (37) and (38) are true, where α is a positive
constant and tnj ∈ (0, T ) is the unique zero of u′nj . Hence, by the Arzelà–
Ascoli theorem and the Bolzano–Weierstrass theorem, there exist convergent
subsequences {u(kn)}, {tknj}, and u ∈ C1([0, T ];RN ), ξj ∈ [0, T ] such that
limn→∞ u(kn) = u in C1([0, T ];RN ) and limn→∞ tknj = ξj in R, j = 1, . . . , N .
Letting n → ∞ in (37) and (38) (with unj and tnj replaced by uknj and tknj)
yields

uj(t) ≥

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
αt

T
for t ∈

[
0,
T

2

]
,

α(T − t)

T
for t ∈

(
T

2
, T

]
,

(41)

u′j(t) ≥ φ−1
j (c(ξj − t)) for t ∈ [0, ξj ],

u′j(t) ≤ −φ−1
j (c(t− ξj)) for t ∈ [ξj , T ],

⎫⎬
⎭ (42)

for j = 1, . . . , N . Hence, uj has at most two zeros on [0, T ], u′j vanishes only at
ξj and equality (13) holds. Besides, by (19),

0 ≤ −f(n)(t, x, y) ≤ Q(t, |x|, |y|)
for a.e. t ∈ [0, T ] and all (x, y) ∈ RN

0 × RN
0 , n ∈ N,

}

where Q(t, x, y) = (Q1(t, x, y), . . . , QN (t, x, y)) ∈ Car([0, T ]× (RN
+ × RN

+ );RN
+ ),

Qj(t, x, y) = hj(t, 1 + ‖x‖, 1 + ‖y‖) +
N∑
j=1

(ajk(xk) + bjk(yk)).

Hence the assumptions of Theorem 2.3 are satisfied, and consequently, u is a
solution of problem (2), (16), u ∈ C1([0, T ];RN ) and φ(u′) ∈ AC([0, T ];RN).
The inequality u > 0 on (0, T ) follows from (41). �

Example 3.7 Let p1, p2 ∈ (1,∞), αj , βj , ρj , νj be positive constants, j = 1, 2,
max{α1, α2} < p1 − 1, max{ρ1, ρ2} < p2 − 1, β1 + β2 < min{1, p1 − 1}, ν1 < 1
and ν2 < p2 − 1. Consider the problem

(|u′1|p1−2u′1)
′ +

1√
t
(1 + uα1

1 + |u′2|α2) +
1

|u′1|β1uβ2

2

= 0,

(|u′2|p2−2u′2)
′ +

1√
t(T − t)

(1 + (u′1)
ρ1 + |u2|ρ2) +

1

uν1
1

+
1

|u′2|ν2
= 0,

⎫⎪⎪⎬
⎪⎪⎭ (43)
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u(0) = 0, u(T ) = (u1(t1), u(t2)), (44)

where t1, t2 ∈ [0, T ). System (43) satisfies conditions (S1)–(S3) with

φ(v) = (|v|p1−2v, |v|p2−2v), c = min

{
1√
T
,
2

T

}
,

h1(t, x, y) =
1√
t
(1 + xα1 + yα2),

h2(t, x, y) =
1√

t(T − t)
(1 + xρ2 + yρ1),

a11 = a22 = b12 = b21 = 0,

a12(x) =
β2

β1 + β2

1

xβ1+β2
, b11(x) =

β1
β1 + β2

1

xβ1+β2
,

a21(x) =
1

xν1
, b22(x) =

1

xν2

since
1

|u′1|β1uβ2

2

≤ β1
β1 + β2

1

|u′1|β1+β2
+

β2
β1 + β2

1

uβ1+β2

2

by the Young inequality. Therefore, Theorem 3.6 guarantees that there exists
a solution u ∈ C1([0, T ];R2) of problem (43), (44), u > 0 on (0, T ) and φ(u′) ∈
AC([0, T ];R2).
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[16] Manásevich, R., Mawhin, J.: Periodic solutions for nonlinear systems with p-Laplacian
like operators. J. Differential Equations 8 (1998), 367–393.
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