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Disconnectedness properties of hyperspaces

Rodrigo Hernández-Gutiérrez, Angel Tamariz-Mascarúa

Abstract. Let X be a Hausdorff space and let H be one of the hyperspaces
CL(X), K(X), F(X) or Fn(X) (n a positive integer) with the Vietoris topology.
We study the following disconnectedness properties for H: extremal disconnect-
edness, being a F ′-space, P -space or weak P -space and hereditary disconnect-
edness. Our main result states: if X is Hausdorff and F ⊂ X is a closed subset
such that (a) both F and X −F are totally disconnected, (b) the quotient X/F
is hereditarily disconnected, then K(X) is hereditarily disconnected. We also
show an example proving that this result cannot be reversed.

Keywords: hyperspaces, Vietoris topology, F ′-space, P -space, hereditarily dis-
connected

Classification: 54B20, 54G05, 54G10, 54G12, 54G20

Given a T1 space X , let CL(X) be the hyperspace of nonempty closed subsets
of X with the Vietoris topology. Let us consider the following hyperspaces

K(X) = {A ∈ CL(X) : A is compact},
F(X) = {A ∈ CL(X) : A is finite},

Fn(X) = {A ∈ CL(X) : |A| ≤ n} for n a positive integer.

The study of the Vietoris topology on hyperspaces was first motivated by Ernest
Michael’s outstanding paper [M]. Concerning connectedness properties, Michael
stated the following:

0.1 Theorem ([M, Theorem 4.10]). Let X be a T1 space and F(X) ⊂ H ⊂
CL(X). If any of X , Fn(X) (n a positive integer) or H are connected, then the
following spaces are also connected: X , Fm(X) for each positive integer m and
every H′ satisfying F(X) ⊂ H′ ⊂ CL(X).

Recall that a space X is zero-dimensional if for every closed subset A ⊂ X and
x ∈ X −A, there is a clopen set O such that x ∈ O and O ∩A = ∅. We say that
X is totally disconnected if for every pair of points x, y ∈ X with x 6= y, there is
a clopen set O such that x ∈ O, y /∈ O.

This paper is part of the first author’s doctoral dissertation directed by the second author.
Research was supported by PAPIIT grant IN-102910 and CONACyT scholarship for Doctoral
Students.
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0.2 Theorem ([M, Proposition 4.13]). For a T1 space X we have:

• X is zero-dimensional if and only if K(X) is zero-dimensional,
• X is totally disconnected if and only if K(X) is totally disconnected,
• X is discrete if and only if K(X) is discrete,
• X has no isolated points if and only if CL(X) has no isolated points.

In this paper, we present similar results about other classes of disconnected
spaces. Most of our results will be in the realm of Hausdorff spaces. Tychonoff
spaces will be used when the classes of spaces considered require so.

First we will consider classes of highly disconnected spaces. If X is a space and
p ∈ X , we call p a P -point of X if p belongs to the interior of every Gδ set that
contains it. We say that X is a P -space if all its points are P -points of X . For
properties of P -spaces, see problem 1W of [PW]. Every regular P -space is zero-
dimensional, so being a P -space is a stronger condition than zero-dimensionality
in the realm of regular spaces. In Sections 2 and 3, we study when a hyperspace
can be a P -space using other classes of spaces such as F -spaces. After that, in
Section 4 we give remarks on spaces in which compact subsets are finite (P -spaces
are of this kind by Remark 3.4).

On the other hand, we consider a property roughly weaker than total dis-
connectedness. We call a space X hereditarily disconnected if every nonempty
connected subset of X is a singleton. Clearly, every totally disconnected space is
hereditarily disconnected but there are examples (given below) that show these
classes do not coincide. In [IN, 83.5], Illanes and Nadler ask whether CL(X)
or K(X) are hereditarily disconnected when X is hereditarily disconnected and
metrizable. In [P], E. Pol and R. Pol answer this in the negative and make some
interesting remarks. In Section 5, we extend the work of E. Pol and R. Pol and
give some examples. Our main result is

Main Theorem. Let X be a Hausdorff space. Assume that there is a closed
subset F ⊂ X such that

(a) both F and X − F are totally disconnected,
(b) the quotient X/F is hereditarily disconnected.

Then K(X) is hereditarily disconnected.

We also show that the statement of the Main Theorem cannot be reversed by
giving an example in Section 6.

1. Preliminaries

We denote by N the set of positive integers, ω = N ∪ {0}, the unit interval
I = [0, 1] and the set of rational numbers Q with the Euclidean topology. For any
space X , let CO(X) denote the collection of clopen subsets of X . The cardinality
of a set A will be denoted by |A|. A set A is countable if |A| ≤ ω.
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LetX be a T1 space. The Vietoris topology on CL(X) is the topology generated
by the sets of the form

U+ = {A ∈ CL(X) : A ⊂ U},
U− = {A ∈ CL(X) : A ∩ U 6= ∅},

where U is an open subset of X . It is easy to see that a basis of the Vietoris
topology consists of the collection of sets of the form

〈U0, . . . Un〉 = {A ∈ CL(X) : A ⊂ U0 ∪ · · · ∪ Un and if i ≤ n,Ui ∩A 6= ∅},

where n < ω and U0, . . . , Un are nonempty open subsets of X . For n ∈ N,
the hyperspace Fn(X) is called the n-th symmetric product of X . Notice that
F1(X) is homeomorphic to X under the map {x} 7→ x. We will use the following
straightforward generalization of [IN, 13.3] several times.

1.1 Lemma. Let X and Y be Hausdorff spaces and f : X → Y be a continuous
function. Define f∗ : K(X) → K(Y ) by f∗(T ) = f [T ]. Then f∗ is a continuous
function.

Let X be a Tychonoff space. A subset A of a space X is C∗-embedded if
every bounded real-valued continuous function defined on A can be extended to
X . A zero set of X is a set of the form f←(0), where f is a continuous real-valued
function defined on X ; a cozero set of X is the complement of a zero set of X . In
a Tychonoff space, cozero sets form a basis for its topology.

1.2 Lemma. If U is a cozero set of a Hausdorff space X , then U+ ∩K(X) and
U− ∩ K(X) are cozero sets of K(X).

Proof: Let f : X → I be such that U = f←[(0, 1]]. Consider the continuous
function f∗ : K(X) → K(I) from Lemma 1.1. The functions min : K(I) → I and
max : K(I) → I that take each closed subset of I to its minimal and maximal
elements, respectively, are easily seen to be continuous. Finally, notice that

U+ ∩K(X) = (min ◦ f∗)←[(0, 1]],

U− ∩K(X) = (max ◦ f∗)←[(0, 1]],

which completes the proof. �
Recall that a Tychonoff space is pseudocompact if every locally finite collection

of open sets is finite. Let X ⊂ Iκ for some cardinal κ ≥ 1 and let πA : Iκ → IA

be the projection for each ∅ 6= A ⊂ κ. We say that X is ω-dense in Iκ if whenever
N is a countable nonempty subset of κ it follows that πN [X ] = IN .

1.3 Lemma ([S, Proposition 1]). Let X be a dense subspace of Iκ for some
cardinal κ ≥ 1. Then X is pseudocompact if and only if X is ω-dense in Iκ.

1.4 Lemma ([Ke, Theorem 1.3]). Let X be a Tychonoff space and n ∈ N. Then
Fn(X) is pseudocompact if and only if Xn is pseudocompact.
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For each space X and p ∈ X , recall that the quasicomponent of X at p is the
closed subset

Q (X, p) =
⋂

{U ∈ CO(X) : p ∈ U}.
We can define by transfinite recursion the α-quasicomponent of X at p, Qα (X, p),
in the following way.

Q0 (X, p) = X,
Qα+1 (X, p) = Q (Qα (X, p) , p) , for each ordinal α,
Qβ (X, p) =

⋂
α<β Qα (X, p), for each limit ordinal β.

We call nc(X, p) = min{α : Qα+1 (X, p) = Qα (X, p)} the non-connectivity
index of X at p. If X is hereditarily disconnected and p ∈ X , then nc(X, p) =
min{α : Qα (X, p) = {p}}. Notice that if X is hereditarily disconnected and
|X | > 1, then X is totally disconnected if and only if nc(X, p) = 1 for every
p ∈ X .

If X is any space (no separation axioms required), we can define a quotient
space Q(X) by shrinking each quasicomponent of X to a point (that is, Q(X) =
{Q (X, p) : p ∈ X} with the quotient topology). Observe thatQ(X) is a Hausdorff
totally disconnected space.

Recall a space X is scattered if for every nonempty Y ⊂ X , the set of isolated
points of Y is nonempty.

1.5 Lemma. If X and Y are compact Hausdorff spaces, X is scattered and Y
is a continuous image of X , then Y is also scattered.

Proof: Let f : X → Y be continuous and onto. Assume K ⊂ Y is nonempty
and does not have isolated points. By taking closure, we may assume that K is
closed. Using the Kuratowski-Zorn lemma, we can find a closed subset T ⊂ X
that is minimal with the property that f [T ] = K. Since X is scattered, there
exists an isolated point t ∈ T of T . Notice that K − {f(t)} ⊂ f [T − {t}]. Also,
since K has no isolated points, K −{f(t)} is dense in K. But T −{t} is compact
so it follows that K ⊂ f [T − {t}]. This contradicts the minimality of T , so such
a K cannot exist. �

2. P -points in symmetric products

In this section we show how to detect P -points in symmetric products.

2.1 Lemma. Let X be a Hausdorff space, n < ω, A ∈ Fn+1(X) − Fn(X)
(where F0(X) = ∅) and U an open set in CL(X) such that A ∈ U . Then there
exist U0, . . . , Un pairwise disjoint nonempty open sets such that

A ∈ 〈U0, . . . , Un〉 ⊂ U .

Proof: Let A = {x0, . . . , xn}. Take V0, . . . , Vn pairwise disjoint open subsets of
X such that xk ∈ Vk for each k ≤ n. Consider now a basic open set

A ∈ 〈W0, . . . ,Ws〉 ⊂ U ∩ 〈V0 . . . , Vn〉.
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For each k ≤ n let Uk = Vk ∩ (
⋂{Wr : xk ∈ Wr}). Notice that U0, . . . , Un are

pairwise disjoint open sets such that

A ∈ 〈U0, . . . , Un〉 ⊂ 〈W0, . . . ,Ws〉 ⊂ U ,

which completes the proof. �
2.2 Proposition. Let X be a Hausdorff space and A ∈ F(X). The following
conditions are equivalent:

(a) A is a P -point of F(X),
(b) A is a P -point of Fn(X) for each n ≥ |A|,
(c) every x ∈ A is a P -point of X .

Proof: Let A = {x0, . . . , xm}. The implication (a)⇒(b) is clear because the
property of being a P -point is hereditary to subspaces. Assume A is a P -point
of Fm+1(X). Let {Ui : i < ω} be a collection of open subsets of X such that
x0 ∈ ⋂

i<ω Ui. Take W0, . . . ,Wm pairwise disjoint open subsets of X such that
xi ∈ Wi for j ≤ m. For each i < ω, define

Ui = 〈Ui ∩W0,W1, . . . ,Wm〉.

Since A is a P -point in Fm+1(X), by Lemma 2.1, there is a collection V0, . . . , Vm

consisting of pairwise disjoint open subsets of X such that

A ∈ 〈V0, . . . , Vm〉 ⊂
⋂

i<ω

Ui.

We may assume xj ∈ Vj for each j ≤ m. We now prove V0 ⊂ ⋂
i<ω Ui. Take

y ∈ V0 and consider the element B = {y, x1, . . . , xm} ∈ 〈V0, . . . , Vm〉. Since
B ∈ Ui for each i < ω, we get y ∈ ⋂

i<ω Ui. This proves that x0 is a P -point
of X and by similar arguments, each point of A is a P -point of X . This proves
(b)⇒(c).

Now, let {Ui : i < ω} be a collection of open subsets of F(X) that contain A
and assume each point of A is a P -point of X . Using Lemma 2.1, for each i < ω
one may define a collection U(0, i), . . . , U(m, i) consisting of pairwise disjoint open
subsets ofX such that for each j ≤ m, xj ∈ U(j, i) and 〈U(0, i), . . . , U(m, i)〉 ⊂ Ui.
Each point of A is a P -point so we may take, for each j ≤ m, an open subset Uj

of X such that x ∈ Uj ⊂
⋂

i<ω U(j, i). Thus,

A ∈ 〈U0, . . . , Um〉 ⊂
⋂

i<ω

Ui,

which proves (c)⇒(a). �
2.3 Example. We construct a homogeneous P -space with no isolated points
using hyperspaces. Let X = {α+1 : α < ω1}∪{0, ω1} as a subspace of the LOTS
ω1 + 1. So X is a P -space in which all its points except for ω1 are isolated. Let

Y = {A ∈ F(X) : ω1 ∈ A},
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which is a P -space (Proposition 2.2). Let A ∈ Y and let 〈U0, . . . , Uk〉 be a basic
open neighborhood of A. We may assume that U0, . . . , Uk are pairwise disjoint
(Lemma 2.1) and ω1 ∈ U0. Let α ∈ U0 − {ω1}, then A 6= A ∪ {α} ∈ 〈U0, . . . , Un〉.
Thus, Y has no isolated points.

To prove the homogeneity of Y it is sufficient to prove the following:

(1) if A,B ∈ Y are such that |A| = |B|, then there exists a homeomorphism
H : Y → Y such that H(A) = B,

(2) for every n ∈ N, there are A,B ∈ Y such that |A| + 1 = |B| = n+ 1 and
a homeomorphism H : Y → Y such that H(A) = B.

For (1), let h : X → X be a bijection such that h[A] = B and h(ω1) = ω1.
Define H(P ) = h[P ] for every P ∈ Y .

For (2), let H : Y → Y be defined by

H(P ) =

{
P − {0}, if 0 ∈ P,

P ∪ {0}, if 0 /∈ P.

Then H is a homeomorphism such that for each A ∈ Y with 0 /∈ P , |H(A)| =
|A|+ 1. It follows that Y is homogeneous. �

3. Hyperspaces that are F -spaces

An F -space is a Tychonoff space in which every cozero set is C∗-embedded.
See problem 6L in [PW] for properties of F -spaces. All Tychonoff P -spaces are
F -spaces but there are connected F -spaces (for example, β[0, 1)− [0, 1) by [PW,
6L(2)] and [PW, 6AA(2)]). We may also consider F ′-spaces, that is, Tychonoff
spaces in which each pair of disjoint cozero sets have disjoint closures (see Defini-
tion 8.12 in [GH]). Notice that every F -space is an F ′-space. The main result of
this section, Theorem 3.7, says that a hyperspace can only be an F ′-space when
it is a P -space and thus disconnected.

3.1 Fact. If X is an infinite Hausdorff space, then CL(X) contains a convergent
sequence.

Proof: Let N = {xn : n < ω} be an countable infinite subspace of X . If
Am = {xn : n ≤ m} for m < ω, then {Am : m < ω} is a sequence that converges
to clX(N). �
3.2 Fact. If X is an F ′-space, then X does not contain convergent sequences.

Proof: If N = {xn : n < ω} is a faithfully indexed sequence that converges
to x0, let U, V be disjoint cozero sets of X such that {x2n : n ∈ N} ⊂ U and
{x2n−1 : n ∈ N} ⊂ V . Then x0 ∈ clX(U) ∩ clX(V ). �

Thus, CL(X) is not an F ′-space unless X is finite. So it is left to know when
K(X), F(X) and the symmetric products can be F ′-spaces.

Along with F -spaces and F ′-spaces, we may consider other classes of spaces
between discrete spaces and F -spaces. A space is extremally disconnected if every
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open set has open closure. A basically disconnected space is a space in which every
cozero set has open closure. So we may consider discrete spaces, P -spaces, ex-
tremally disconnected spaces (ED), basically disconnected spaces (BD), F -spaces
and F ′-spaces. The diagram below (taken from [GH]) shows by an arrow which
of these properties implies another.

ED

""EE
EEE

EEE
F // F′

discrete

99tttttttttt

%%KKKKKKKKKK BD

::vvvvvvvvvv

$$II
III

II
II

P

<<xxxxxxxxx

0-dim

Theorem 3.7 implies that P -spaces, BD spaces, F -spaces and F ′-spaces coin-
cide for the hyperspaces K(X), F(X) and the symmetric products in the realm
of Tychonoff spaces. Before heading on to prove this, let us show that the hy-
perspaces we are considering are extremally disconnected if and only if they are
discrete, even in the realm of Hausdorff spaces.

3.3 Proposition. Let X be a Hausdorff space and F2(X) ⊂ H ⊂ K(X). Then
H is extremally disconnected if and only if X is discrete.

Proof: Clearly, X discrete implies H discrete. So assume that X is not discrete,
take a non-isolated point p ∈ X and consider the set Z of all collections G such
that the elements of G are pairwise disjoint nonempty open subsets of X and if
U ∈ G, then p /∈ clX(U). By the Kuratowski-Zorn Lemma, we can consider a
⊂-maximal element M ∈ Z. Since X is Hausdorff,

⋃M is dense in X .
Let U =

⋃{U+∩H : U ∈ M}. Let N be the filter of open neighborhoods of p.
For each W ∈ N , there must be UW , VW ∈ M such that UW 6= VW , W ∩UW 6= ∅
and W ∩ VW 6= ∅. Let V =

⋃{〈UW , VW 〉 ∩ H : W ∈ N}. Then, U and V are
pairwise disjoint nonempty open subsets of H but {p} ∈ clH(U) ∩ clH(V). �

We now return to F ′-spaces. It was shown by Michael (Theorem 4.9 of [M])
that K(X) is Tychonoff if and only if X is Tychonoff, so we may assume that X is
Tychonoff for the rest of this section. Alternatively, this follows from Lemma 1.2.

3.4 Remark. Let X be an infinite Tychonoff space. If K(X) is an F -space,
then K(X) = F(X).

Proof: If Y ∈ K(X) − F(X), then CL(Y ) ⊂ K(X) contains a convergent se-
quence by Fact 3.1. This contradicts Fact 3.2. �
3.5 Lemma ([PW, 1W(2)]). A Tychonoff space is a P -space if and only if every
zero set is clopen.

3.6 Proposition. Let X be a Tychonoff space and let F2(X) ⊂ H ⊂ K(X). If
H is an F ′-space, then X is a P -space.
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Proof: Let us assume that X is not a P -space. By Lemma 3.5, we may assume
there is a continuous function f : X → I such that Z = f←(0) is not clopen. Let
p ∈ Z − intX(Z) and consider the following two statements.

(E) There is a neighborhood U of p with f [U ] ⊂ {0} ∪ { 1
2m : m ∈ N}.

(O) There is a neighborhood V of p with f [V ] ⊂ {0} ∪ { 1
2m−1 : m ∈ N}.

Notice that since p /∈ intX(Z), we cannot have (E) and (O) simultaneously.
Assume without loss of generality that (E) does not hold. For each m ∈ N, let
Um = f←[( 1

2m+2 ,
1

2m )]. Then {Um : m ∈ N} is a collection of pairwise disjoint
cozero sets. Observe that every neighborhood of p intersects some Um. Also,
f←[[0, 1

2m+2 )] is a neighborhood of p that misses Um. Thus,

(∗) p ∈ clX

(⋃
{Um : m ∈ N}

)
−
⋃

{clX(Um) : m ∈ N}.

Consider the sets:

U =
⋃

{U+
m ∩H : m ∈ N},

V =
⋃

{〈Um, Uk〉 ∩ H : m, k ∈ N,m 6= k},

these are nonempty pairwise disjoint cozero sets by Lemma 1.2. By (∗), it follows
that {p} ∈ clH(U) ∩ clH(V), so H is not an F ′-space. �

This allows us to give the next result.

3.7 Theorem. Let X be a Tychonoff space and F2(X) ⊂ H ⊂ K(X). Then the
following are equivalent:

(a) X is a P -space,
(b) H is a P -space,
(c) H is an F ′-space.

Proof: First, assume (a). By Lemma 2.2, F(X) is a P -space and by Remark 3.4,
K(X) = F(X) so H ⊂ K(X) is a P -space. So (b) holds. That (b) implies (c) is
well-known and (c) implies (a) by Proposition 3.6. �

4. Some spaces such that K(X) = F(X)

We can generalize the techniques for F ′-spaces to another class of spaces X
such that K(X) = F(X). We consider the case of weak P -spaces.

We call a point p in a space X a weak P -point of X if for every countable set
N ⊂ X − {p} we have p /∈ clX(N). A weak P -space is a space X in which all its
points are weak P -points of X .

4.1 Fact. If X is a weak P -space, then K(X) = F(X).

Proof: If X is a weak P -space, then every countable subset of X is closed
and discrete. If K ⊂ X is compact and infinite, it contains a countable infinite
discrete subset N ⊂ K and if x ∈ clX(N)−N , then N ∪{x} is countable but not
discrete. �



Disconnectedness properties of hyperspaces 577

4.2 Remark. The property of being a weak P -space does not imply disconnect-
edness. Shakhmatov gave in [S] an example of a connected, pseudocompact, weak
P -space in which all its countable subsets are C∗-embedded.

We have the following results for weak P -spaces, analogous to those of P -spaces.

4.3 Proposition. Let X be a Hausdorff space and A ∈ F(X). The following
conditions are equivalent:

(a) A is a weak P -point in F(X),
(b) A is a weak P -point in Fn(X) for each n ≥ |A|,
(c) every x ∈ A is a weak P -point of X .

Proof: Let A = {x0, . . . , xm}. Notice (a)⇒(b) because being a weak P -point is
hereditary to subspaces.

To prove (b)⇒(c), assume x0 is not a weak P -point of X . Let D = {yk :
k < ω} ⊂ X − {x0} be such that x0 ∈ clX(D). Define Bk = {yk, x1, . . . , xm} ∈
Fm+1(X) for each k < ω. Then, {Bk : k < ω} ⊂ Fm+1(X) − {A} and A ∈
clFm+1(X)({Bk : k < ω}).

Now we prove (c)⇒(a). Assume (c) and take {Bk : k < ω} ⊂ F(X) − {A}.
For each k < ω, choose t(k) ∈ {0, . . . ,m} such that xt(k) /∈ Bk. Define Er = {k <
ω : t(k) = r} for each r ≤ m. So given r ≤ n, xr /∈ ⋃{Bk : k ∈ Er}. Since⋃{Bk : k ∈ Er} is countable, there exists an open subset Ur with xr ∈ Ur and
Ur ∩ (

⋃{Bk : k ∈ Er}) = ∅. Finally, let U = 〈U0, . . . , Un〉. Then A ∈ U and
U ∩ {Bk : k < ω} = ∅. �
4.4 Theorem. Let X be a Hausdorff space. Then the following are equivalent:

(a) X is a weak P -space,
(b) K(X) is a weak P -space,
(c) F(X) is a weak P -space,
(d) Fn(X) is a weak P -space for some n ∈ N.

Proof: If we assume (a), by Fact 4.1 we have K(X) = F(X), which is a weak
P -space by Proposition 4.3. Clearly, (b) implies (c) and (c) implies (d). Finally,
(d) and (a) are equivalent by Proposition 4.3. �
4.5 Example. Call a Tychonoff space a Shakhmatov space if it is a pseudocom-
pact, connected weak P -space. In [S], Shakhmatov gave an example of a subspace
S ⊂ Ic, where c = 2ω, that is a Shakhmatov space. Moreover, S is ω-dense in Ic.

Let H be either a symmetric product of S or one of the hyperspaces K(S) or
F(S). By Theorem 4.4, H is also a weak P -space and by Theorem 0.1, it is also
connected. It is interesting to ask whether H is a Shakhmatov space. Notice that
K(X) = F(X) for every Shakhmatov space X (Fact 4.1).

Since S is ω-dense in Ic, it is easy to see that for any cardinal κ, Sκ is ω-dense
in (Ic)κ = Ic×κ. By Lemmas 1.3 and 1.4, Fn(S) is a Shakhmatov space for every
n ∈ N. However, F(X) is pseudocompact if and only if X is finite by Lemma 4.6
below. Thus, K(X) is never a Shakhmatov space. �
4.6 Lemma. If X is an infinite Tychonoff space, F(X) is not pseudocompact.
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Proof: Let {Un : n < ω} be a family of pairwise disjoint nonempty open subsets
of X . If Un = 〈U0, . . . , Un〉, then {Un ∩ F(X) : n < ω} is an infinite locally finite
family of open nonempty subsets of F(X). �

For sake of completeness, we show that condition K(X) = F(X) behaves well
under the operation of taking hyperspace in the following way.

4.7 Proposition. If X is a Hausdorff space, then K(X) = F(X) if and only if
every compact subset of K(X) is finite (that is, K(K(X)) = F(K(X))).

Proof: First, assume K(X) = F(X), and let C ⊂ K(X) be compact. Write
C =

⋃
n∈N Cn where Cn = C ∩ Fn(X). Notice each Cn is compact because Fn(X)

is closed in F(X).

Claim. Each Cn is finite.

Fix n ∈ N. To prove the claim, consider the natural identification π : nX →
Fn(X) that sends each n-tuple to the set of its coordinates. Also, consider πk :
nX → X the projection onto the kth-coordinate. Since π is perfect, the set Kn =
πk[π

←[Cn]] is a compact subset ofX and thus, finite. Now, π←[Cn] ⊂ K1×· · ·×Kn

so Cn must also be finite. This proves the Claim.
By the Claim, C is a compact Hausdorff countable space. Since the weight of an

infinite compact Hausdorff space is less or equal to its cardinality ([E1, 3.1.21]),
C is a compact metric space. Assume C is infinite, then we can find a faithfully
indexed sequence {An : n < ω} ⊂ C such that A0 = limAn.

Let A0 = {x0, . . . , xs} and take U0, . . . , Us pairwise disjoint open sets such that
xi ∈ Ui for i ≤ s. We may thus assume that for every n < ω, An ∈ 〈U0, . . . , Us〉.
For each n ∈ N, let kn ≤ s be such that An ∩ Ukn 6= {xkn}, we may assume
without loss of generality that kn = 0 for every n ∈ N. Let

Y =
⋃

{An ∩ U0 : n < ω}.

First, if Y is finite, there is an open set V such that V ∩ Y = {x0}, so the
neighborhood 〈V ∩U0, U1, . . . , Us〉 intersects the sequence only in A0, which con-
tradicts the convergence of the An. Thus, Y is infinite. We now prove that Y
converges to x0. Let V be an open set such that x0 ∈ V . Let k < ω be such that
An ∈ 〈V ∩ U0, U1, . . . , Us〉 for each n ≥ k. From this it follows that the set

Y −
⋃

{An ∩ U0 : n < k}

is a cofinite subset of Y contained in V . Thus, Y is a nontrivial convergent
sequence in X . This contradiction implies C is finite.

The other implication follows from the fact thatX is homeomorphic to F1(X) ⊂
K(X). �

We end the discussion by showing that weak P -spaces are not the only ones in
which the equality compact=finite holds.
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4.8 Example. Let X = ω ∪ P , where P is the set of weak P -points of ω∗. It is
a famous result of Kunen ([Ku]) that P is a dense subset of ω∗ of cardinality 22

ω

.
We claim that K(X) = F(X). Every infinite compact space contains a separable
compact subspace, so it is sufficient to show that the closure of every infinite
countable subset N ⊂ X is not compact. Since P is a weak P -space closed in
X , clX(N ∩ P ) = clP (N ∩ P ) = N ∩ P that is compact if and only if it is finite.
Thus, we may assume N ⊂ ω. Since ω∗−P is also dense in ω∗, clβω(N)−X 6= ∅.
It easily follows that clX(N) is not compact. Notice that X is not a weak P -space
because N is dense in X . �

Observe that the space X from Example 4.8 is extremally disconnected be-
cause it is a dense subspace of βω. We now present an example of a space whose
compact subspaces are finite but it is not an F ′-space. Recall a space has count-
able cellularity if every collection of pairwise disjoint nonempty open subsets is
countable. For the proof of the following fact follow the hint in [PW, 6L(8)].

4.9 Fact. Every F ′-space of countable cellularity is extremally disconnected.

4.10 Example. Let ω =
⋃{An : n < ω} be a partition in infinite subsets. Let

F0 be the Frechet filter (or any filter that contains it) and

F = {B ⊂ ω : {n < ω : An −B is finite} ∈ F0}.

Define the space X = ω ∪ {F} where every point of ω is isolated and the
neighborhoods of F are of the form {F} ∪A with A ∈ F.

Any infinite compact subspace of X must be a convergent sequence. Let S ⊂ ω
be infinite. If there exists m < ω such that S ∩ Am is infinite, let R = ω − Am.
If for each n < ω, |S ∩ An| < ω holds, let R = ω − S. In both cases R ∈ F and
S −R is infinite, so S cannot converge to F.

Also, notice that X is an F ′-space if and only if it is extremally disconnected
(X has countable cellularity, use Fact 4.9) and it is easy to see this happens if
and only if F is an ultrafilter. To see F is not an ultrafilter, for each n < ω, let
An = Pn ∪ Qn be a partition in infinite subsets. Then P =

⋃{Pn : n < ω} /∈ F
and Q =

⋃{Qn : n < ω} /∈ F but ω = P ∪Q. Thus, F is not prime so it is not an
ultrafilter.

Thus, X is a space in which all compact subsets are finite but it is not an
F ′-space. �

5. Hereditary disconnectedness

Our first result gives a method to locate connected sets in a hyperspace.

5.1 Lemma. Let X be a Hausdorff space. Assume there is a K ∈ K(X) such
that for every U ∈ CO(X) with K ⊂ U we have X = U . Then

C = {K ∪ {x} : x ∈ X}

is a connected subset of K(X).
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Proof: Let U and V be open subsets of K(X) such that K ∈ U , C ⊂ U ∪ V and
C ∩U ∩V = ∅. Let U = {x ∈ X : K ∪{x} ∈ U} and V = X −U . Clearly, K ⊂ U ,
we now prove that U is clopen.

First, we prove every point x ∈ U is in the interior of U , we have two cases. If
x ∈ K, let n < ω and U0, . . . , Un be open subsets of X such that

K ∈ 〈U0 . . . , Un〉 ⊂ U .

Notice that x ∈ K ⊂ U0 ∪ . . . ∪ Un ⊂ U . If x /∈ K, let V0, . . . , Vm,W be open
subsets of X such that K ⊂ V0 ∪ . . . ∪ Vm, x ∈ W , W ∩ (V0 ∪ . . . ∪ Vm) = ∅ and
K ∪ {x} ∈ 〈V0, . . . , Vm,W 〉 ⊂ U . Then, x ∈ W ⊂ U .

Now let x ∈ V , then K ∪ {x} ∈ C − U ⊂ V . Let V0, . . . , Vm,W be open
subsets of X such that K ⊂ V0 ∪ . . . ∪ Vm, x ∈ W , W ∩ (V0 ∪ . . . ∪ Vm) = ∅ and
K ∪ {x} ∈ 〈V0, . . . , Vm,W 〉 ⊂ V . Then x ∈ W ⊂ V . This proves V is open and
thus, U is closed.

Therefore, U is clopen and contains K so by hypothesis U = X . But this
implies that C ⊂ U . Then C is connected. �

Using Lemma 5.1, we give a modification of Example 1.1 of [P] showing there
was no need to add a Cantor set to the original space.

5.2 Example. Let C ⊂ I be the Cantor set constructed by removing middle-
thirds of intervals in the usual way, let Q ⊂ C be the set of endpoints of the
Cantor set and P = C −Q. For each c ∈ C, let

Lc =

{
{c} × ([0, 1) ∩Q), if c ∈ Q,

{c} × ([0, 1)−Q), if c ∈ P.

Let F =
⋃{Lc : c ∈ C}. Notice F is homeomorphic to the Knaster-Kuratowski

fan with its top point removed (see [E2, 1.4.C]). It is easy to see that F is hered-
itarily disconnected. Let π : F → C be the projection to the first coordinate (in
the plane). We now prove:

Claim 1. There is a compact G ⊂ F such that if c ∈ C, |π←(c) ∩G| = 1.

To prove Claim 1, let D = Q∪ [Q∩ (I −C)] which is a countable dense subset
of I. It is a well-known fact that there is a homeomorphism h : I → [0, 1

2 ] such

that f [D] = Q ∩ [0, 12 ]. Let G = f ↾C⊂ C × [0, 12 ], the graph of the function f
restricted to the Cantor set. Claim 1 follows.

Claim 2. Let A,B closed sets of the plane such that A ∩B ∩F = ∅, G ⊂ A and
F ⊂ A ∪B. Then F ∩B = ∅.

To prove Claim 2, let Q ∩ [0, 1) = {qn : n < ω} be an enumeration. For each
n < ω, let Pn = C × {qn} and Kn = π[A ∩B ∩ Pn]. Notice that Kn is a compact
subset of P because A ∩B ∩ F = ∅ and F ∩ Pn = Q× {qn}.

Moreover, Kn is nowhere dense in P . To see this, assume W is a nonempty
regular open subset of C with W ∩ P ⊂ Kn. We have clC(W ∩ P ) = clC(W )
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because P is dense in C. Let x ∈ W ∩ Q, then x ∈ W ⊂ clC(W ∩ P ) ⊂ Kn.
So (x, qn) is a point of F whose first coordinate is in Kn, this implies (x, qn) ∈
A ∩B ∩ F, a contradiction.

Since P is completely metrizable, it is a Baire space and the set Z = P −
(
⋃

n<ω Kn) is a dense open subset of P . Fix c ∈ Z. Then for each n < ω,
(c, qn) /∈ A ∩ B. Since Lc is dense in {c} × I, {c} × I ⊂ A ∪ B. Now, {c} × I
is connected so either {c} × I ⊂ A or {c} × I ⊂ B. Since (c, f(c)) ∈ G ⊂ A, we
necessarily have {c} × I ⊂ A. But this implies that

⋃{Lc : c ∈ Z} is a dense
subset of F contained in A. Then F ⊂ A so F ∩B = ∅. This proves Claim 2.

By Claim 2 and Lemma 5.1, C = {G ∪ {x} : x ∈ F} is a connected subset of
K(F) with more than one point. We have proved that K(F) is not hereditarily
disconnected. �

A question one may ask is if K(X) is hereditarily disconnected when X is
an hereditarily disconnected space that is the union of two totally disconnected
subspaces. Consider the space F from Example 5.2: we can write F as the
union of two totally disconnected subspaces F = [F ∩ Q2] ∪ [F − Q2] and K(F)
is not hereditarily disconnected. So we need more conditions that ensure that
K(X) is hereditarily disconnected. Our Main Theorem shows that under certain
conditions K(X) is hereditarily disconnected. Before proving it, we isolate two
technical lemmas we will use often.

5.3 Lemma. Let X be a T1 space, T ⊂ X such that

(a) for every x ∈ X − T there is a W ∈ CO(X) such that x ∈ W and
W ∩ T = ∅,

(b) X − T is totally disconnected.

Let C ⊂ K(X) be connected. Then the following holds

(∗) if Y1, Y2 ∈ C, then Y1 − T = Y2 − T .

Proof: For the sake of producing a contradiction, let us assume (∗) does not
hold for some Y1, Y2 ∈ C. Let, without loss of generality, y ∈ Y2 − T be such
that y /∈ Y1. For each x ∈ Y1 − T , let Ux ∈ CO(X) be such that x, y ∈ Ux and
Ux ∩T = ∅, this can be done by (a). Since Ux ⊂ X −T is totally disconnected by
(b), let Vx ∈ CO(Ux) be such that x /∈ Vx and y ∈ Vx. Let Wx = X −Vx, observe
that both Vx,Wx ∈ CO(X).

Notice that T ∪ {x} ⊂ Wx and y /∈ Wx. By compactness, there is a finite set
{x0, . . . , xn} ⊂ Y1−T such that Y1∪T ⊂ Wx0∪· · ·∪Wxn . So W = Wx0∪. . .∪Wxn

is a clopen subset of X such that Y1 ∈ W+ and Y2 /∈ W+. But this contradicts
the connectedness of C so (∗) holds. �

5.4 Lemma. Let X be a T1 space, T ⊂ X a closed subset and ∅ 6= C ⊂ K(X)
such that

(a) if Y1, Y2 ∈ C, then Y1 − T = Y2 − T ,
(b) if Y ∈ C, then Y ∩ T 6= ∅.
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Define Φ : C → K(T ) by Φ(Y ) = Y ∩ T . Then Φ is a well-defined, injective and
continuous function.

Proof: The function Φ is well-defined by (b) and is injective by (a), we only
have to prove the continuity. Let Y0 ∈ C. Define Z = Y0 − T . Notice that by (a),
Z = Y − T for every Y ∈ C. If Z = ∅, Φ is an inclusion that is clearly continuous
so assume Z 6= ∅.

Let U be an open subset of K(T ) with Φ(Y0) ∈ U . We now prove there is an
open subset V of K(X) such that Y0 ∈ V and Φ[V ∩C] ⊂ U . We may assume that
U = 〈U1, . . . , Un〉 where U1, . . . , Un are nonempty open subsets of T .

Let V0 = X − T . For 1 ≤ m ≤ n, let Vm be an open subset of X such
that Vm ∩ T = Um and if Um ∩ clX(Z) = ∅, then also Vm ∩ clX(Z) = ∅. Let
V = 〈V0, V1, . . . , Vn〉, clearly Y0 ∈ V .

Let Y ∈ V ∩C. First, if y ∈ Φ(Y ), then y ∈ Vm ∩T for some 1 ≤ m ≤ n. Thus,
Φ(Y ) ⊂ U1∪ . . . Un. Now, let 1 ≤ m ≤ n. If there is a point y ∈ Um∩clX(Z) 6= ∅,
then since clX(Z) ⊂ Y , y ∈ Um ∩ Φ(Y ). If Um ∩ clX(Z) = ∅, let y ∈ Y ∩ Vm so
that y ∈ Um ∩ Φ(Y ). In both cases, Um ∩ Φ(Y ) 6= ∅. This shows Φ(Y ) ∈ U and
completes the proof. �

The Main Theorem will be proved in two steps. The first step is to add just
one point to a totally disconnected space.

5.5 Proposition. Let X be a Hausdorff hereditarily disconnected space and
p ∈ X be such that X − {p} is totally disconnected. Then K(X) is hereditarily
disconnected.

Proof: Start with a connected subset C ⊂ K(X). By considering iterated qua-
sicomponents, we shall prove that |C| = 1.

For each ordinal α, let Tα = Qα (X, p) and Γ = nc(X, p). Notice that {Tα :
α < Γ} is a strictly decreasing family of closed subsets of X that contain p and
TΓ = {p}. We prove the following two properties by transfinite induction on α:

If Y1, Y2 ∈ C, then Y1 − Tα = Y2 − Tα.(∗)α
If there exists Y0 ∈ C such that Y0 ∩ Tα = ∅, then C = {Y0}.(⋆)α

To prove (∗)0, just apply Lemma 5.3 to the pair of spaces T0 ⊂ X . Now, let
Y0 be as in (⋆)0, so one can find W ∈ CO(X) such that Y0 ⊂ W and T0 ∩W = ∅.
But then W+ is a clopen set so Y ∈ W+ for all Y ∈ C. By (∗)0, we get (⋆)0.

Now assume (∗)γ and (⋆)γ for every γ ≤ β. We now prove (∗)β+1 and (⋆)β+1.
We first consider (∗)β+1. If there exists Y0 ∈ C such that Y0 ∩ Tβ = ∅, by

(⋆)β , we have C = {Y0} and (∗)β+1 is clearly true. So assume that every Y ∈ C
intersects Tβ. By Lemma 5.4, the function Φβ : C → K(Tβ) defined by Φβ(Y ) =
Y ∩ Tβ is continuous and injective. Let Cβ = Φβ[C]. Using Lemma 5.3 for the
pair of spaces Tβ+1 ⊂ Tβ and the connected subset Cβ we get for every Y1, Y2 ∈ C,
(Y1 ∩ Tβ)− Tβ+1 = (Y2 ∩ Tβ)− Tβ+1. By (∗)β , this implies (∗)β+1.

Notice that if there is a Y0 ∈ C such that Y0 ∩Tβ = ∅, then (⋆)β implies (⋆)β+1

so assume for every Y ∈ C, Y ∩ Tβ 6= ∅. Again we may consider Φβ and Cβ as in
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the former paragraph. Let Y0 ∈ C be such that Y0 ∩ Tβ+1 = ∅. Then one can find
W ∈ CO(Tβ) such that Φβ [Y0] ⊂ W and W ∩ Tβ+1 = ∅. So W+ is a clopen set
that intersects the connected set Cβ , therefore, Φβ [Y ] ∈ W+ for every Y ∈ C. By
(∗)β+1 we conclude (⋆)β+1.

We have left to prove (∗)β and (⋆)β for β a limit ordinal but these proofs follow
from (∗)γ and (⋆)γ for each γ < β using that Tβ =

⋂
γ<β Tγ .

Observe that (∗)Γ means that if Y1, Y2 ∈ C, then Y1 −{p} = Y2 −{p}. By (⋆)Γ
it easily follows that |C| = 1. So K(X) is hereditarily disconnected. �

We now proceed to prove the main result.

5.6 Proof of the Main Theorem. Let C ⊂ K(X) be a connected subset.

Denote by π : X → X/F the quotient map and denote by F̃ the unique point
in π[F ]. Let D = {π[C] : C ∈ C}, this set is connected because D = π∗[C] where
π∗ : K(X) → K(X/F ) is the continuous function defined in Lemma 1.1. Using

Proposition 5.5 for F̃ ∈ X/F it follows that D = {T } for some T ∈ K(X/F ). If

F̃ /∈ T , since π is injective in X − F , |C| = 1. If F̃ ∈ T , then Y ∩ F 6= ∅ for every
Y ∈ C. Thus, by Lemma 5.4, the function Φ : C → K(F ) given by Φ(Y ) = Y ∩ F
is continuous and injective. But F is totally disconnected, so by Theorem 0.2,
K(F ) is totally disconnected. Thus, |C| = |D| = 1. �

A natural question here is if the converse to the Main Theorem is true. That
is, assume X = Y ∪ F where both Y, F are totally disconnected, F is closed
and K(X) is hereditarily disconnected, is it true that the quotient X/F must
also be hereditarily disconnected? When F is compact, the answer is in the
affirmative (Corollary 5.7) but it may not be in general (Case 2 of the Example
from Section 6).

5.7 Corollary. Let X be a Hausdorff space. Assume X = Y ∪ T where both
Y and T are totally disconnected and T is compact. Then K(X) is hereditarily
disconnected if and only if the quotient space X/T is hereditarily disconnected.

Proof: Let π : X → X/T be the quotient and T̃ the unique point in π[T ].
If X/T is hereditarily disconnected, then K(X) is hereditarily disconnected by
the Main Theorem. If X/T is not hereditarily disconnected, let R ⊂ X/T be a

connected subset with more than one point. Clearly T̃ ∈ R. Let F = π←[R],
notice T ⊂ F . Define C = {T ∪ {x} : x ∈ F} which is connected by Lemma 5.1.

Moreover, |C| > 1 because R 6= {T̃}. �
Let us prove that if K(X) has a connected subset with more than one point,

then it must also contain a cannonical one in some sense.

5.8 Proposition. Let X be a Hausdorff hereditarily disconnected space. If
C ⊂ K(X) is a connected set with more than one point and K ∈ C, then there is
a closed subset F ⊂ X with K ( F such that the set D = {K ∪ {x} : x ∈ F} is
connected and |D| > 1.
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Proof: Consider the set

Z = {Z ⊂ X : Z is closed and for every Y ∈ C, Y ⊂ Z}.

By the Kuratowski-Zorn lemma, there exists a ⊂-minimal element F ∈ Z. Notice
K ⊂ F . Let D = {K ∪ {x} : x ∈ F}.

Assume K = F . Since K is compact, it is zero-dimensional and K(K) is also
zero-dimensional (Theorem 0.2). Then C is a connected subset of K(K), this
implies |C| = 1. This is a contradiction so we have K ( F , which implies |D| > 1.

Let q : F → Q(F ) be the quotient map onto the space of quasicomponents of F .
Consider the continuous function q∗ : K(F ) → K(Q(F )) from Lemma 1.1. Since
K(Q(F )) is totally disconnected (Theorem 0.2), q∗[C] = {T } for some compact
T ⊂ Q(F ). Then G = q←[T ] is such that G ⊂ F and C ⊂ K(G). By minimality
of F , F = G. Thus, q[K] = q∗(K) = T = q[F ] = Q(F ) so K intersects every
quasicomponent of F . From this and Lemma 5.1 it easily follows that D is a
connected subset of K(X). �

To finish this section, we generalize the “countable” in Theorem 1.3 of [P] to
“scattered”. We start with a useful remark that will help with the proof.

5.9 Remark. If F is hereditarily disconnected and K ⊂ F is a compact subset
such that {K∪{x} : x ∈ F} is connected, then K intersects every quasicomponent
of F .

5.10 Theorem. Let X be a Hausdorff hereditarily disconnected space. If C ⊂
K(X) is connected and there exists T ∈ C that is scattered, then |C| = 1.

Proof: Assume that C ⊂ K(X) is connected and |C| > 1. By Proposition 5.8,
we may assume C = {T ∪ {x} : x ∈ F} for some closed subset F ⊂ X such that
T ⊂ F .

We now define a descending transfinite sequence of closed sets Fα (α an ordinal)
in the following way. We first take F0 = F . Assume we have already defined Fα.
Let qα : Fα → Q(Fα) be the quotient map and let Uα ⊂ Q(Fα) be the set of
isolated points of Q(Fα). Define Fα+1 = Fα − q←α [Uα]. Finally, if β is a limit
ordinal, let Fβ =

⋂
α<β Fα.

We also define for each ordinal α, Tα = Fα ∩ T (so that T0 = T ) and

Cα = {Tα ∪ {x} : x ∈ Fα}.

By transfinite induction on α we shall prove the following properties.

(0)α If for each β < α we have Fβ 6= ∅, then for each β < α, Fα ( Fβ .
(1)α (a) For every Y1, Y2 ∈ C, Y1 − Fα = Y2 − Fα,

(b) For each Y ∈ C, Tα ⊂ Y ,
(c) If Fα 6= ∅, the function Φα : C → K(Fα) given by Φα(Y ) = Y ∩Fα is

well-defined, continuous and injective. Moreover, Cα = Φα[C].
(2)α qα[Tα] = Q(Fα).
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First, notice that (1)α implies (2)α. To see this, observe that (1c)α implies Cα
is connected. By Remark 5.9, we get (2)α.

Clearly, (0)0 and (1)0 are true. Assume (0)α, (1)α and (2)α hold.
Since Tα is a compact Hausdorff scattered space, it must be 0-dimensional so

by (2)α and Lemma 1.5, Q(Fα) is a compact 0-dimensional scattered space. Thus,
if Fα 6= ∅, then also Uα 6= ∅ and since qα is onto, Fα+1 ( Fα. From this (0)α+1

follows.
Observe that for each x ∈ Uα, q

←
α (x) is a clopen quasicomponent of Fα, so it

must be an isolated point {y}. By (2)α, y ∈ Tα. We have obtained

(⋆)α q←α [Uα] ⊂ Tα.

So we can write

(∗)α Cα = {Tα ∪ {x} : x ∈ Fα+1} ∪ {Tα}.

We now prove (1)α+1.
First, let Y1, Y2 ∈ C and x ∈ Y1 − Fα+1. If x /∈ Fα, by (1a)α, x ∈ Y2 − Fα ⊂

Y2 − Fα+1. If x ∈ Fα, by (∗)α, we get Tα ∪ {x} = Tα ∪ {y} for some y ∈ Fα+1

or Tα ∪ {x} = Tα. Notice x 6= y so it must be that x ∈ Tα. Thus, x ∈ T ⊂ Y2.
We have obtained that Y1 − Fα+1 ⊂ Y2 − Fα+1 and by a similar argument,
Y2 − Fα+1 ⊂ Y1 − Fα+1. This proves (1a)α+1.

Condition (1b)α+1 is true because of (1b)α and the fact that Tα+1 ⊂ Tα.
Assume Fα+1 6= ∅. Notice that by (2)α, Tα+1 = Tα ∩Fα+1 6= ∅. Then, (1b)α+1

implies that for each Y ∈ C, Y ∩ Fα+1 6= ∅. Using this, (1a)α+1 and Lemma 5.4
it can be shown that Φα+1 is a well-defined, continuous and injective function.
By similar arguments and (1c)α, we may define a function Ψ : Cα → K(Fα+1)
by Ψ(Y ) = Y ∩ Fα+1 which is continuous and injective. Moreover, the following
diagram commutes:

C
Φα

��

Φα+1

$$HH
HH

HH
HH

HH

Cα
Ψ

// K(Fα+1)

From equation (∗)α, we deduce Φα+1[C] = Ψ[Cα] = Cα+1. This proves (1c)α+1.
Now, let us assume (0)α, (1)α and (2)α for all α < γ for some limit ordinal γ.

Assume Fα 6= ∅ for each α < γ. Fix α < γ. From Fγ ⊂ Fα+1 ⊂ Fα we see that
Fγ 6= Fα. Otherwise, Fα+1 = Fα, which contradicts (0)α+1. Thus, we get (0)γ .

From Fγ =
⋂

α<γ Fα, Tγ =
⋂

α<γ Tα and (1a)α, (1b)α, one can easily deduce

(1a)γ and (1b)γ . Assume Fγ 6= ∅. By (2)α, Tα 6= ∅ for each α < γ. Then by (0)α,
the Tα, with α < γ, form a strictly descending chain of compact nonempty sets,
this implies Tγ =

⋂
α<γ Tα 6= ∅. By (1a)γ and (1b)γ , we can apply Lemma 5.4 to

conclude that Φγ is well-defined, continuous and injective. Then, it is easy to see
that Φγ [C] = Cγ . This proves (1c)γ .
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This completes the induction. Notice that by (0)α, one can define

Γ = min{α : Fα = ∅}.

One can show, using (2)α and the compactness of the Tα, that Γ = Λ + 1 for
some ordinal Λ. Observe that FΓ = FΛ− q←Λ [UΛ], so every point of FΛ is isolated.
Then, TΓ is a discrete compact set and thus finite. By (2)Λ, Q(FΛ) must be finite
and since it is a space of quasicomponents, FΛ = Q(FΛ). Thus, CΛ = {TΛ}. But
CΛ is the injective image of C under ΦΛ. This contradicts |C| > 1. Therefore,
|C| = 1. �

It is immediate that the following holds

5.11 Corollary. Let X be a Hausdorff space. Then the following are equivalent:

(a) X is hereditarily disconnected,
(b) for some (equivalently, for each) n ∈ N, Fn(X) is hereditarily discon-

nected,
(c) F(X) is hereditarily disconnected.

6. An example for the Main Theorem

In this section, we present two examples related to the Main Theorem. Notice
that the statement of Corollary 5.7 contains a converse of the statement of the
Main Theorem for the case that T is a compact space. The first example (Case 1
below) is an example of this inverse implication. The second example (Case 2
below) shows that one cannot obtain an inverse of the statement of the Main
Theorem relaxing the requirement of compactness of T to that of being a closed
subset of X .

Consider ω2, the Cantor set as a product (where 2 = {0, 1} is a discrete space),
and [0,∞] with the interval topology (that is, the Euclidean topology extended
with a supremum ∞). Let π : ω2 × [0,∞] → ω2 and h : ω2 × [0,∞] → [0,∞] be
the first and second projections, respectively. For each i < ω, let ρi :

ω2 → 2 be
the projection onto the i-th coordinate. We will say that a subset A ⊂ ω2× [0,∞]
is bounded if suph[A] < ∞ and unbounded if it is not bounded (thus, h denotes
the “height”). Let φ : ω2 → [0,∞] be the function

φ(t) =
∑

m<ω

tm
m+ 1

.

We will consider the spaces X = {x ∈ ω2 : φ(x) < ∞} and X0 = {(x, φ(x)) : x ∈
X}. In [D, p. 600], Dijkstra shows that X0 is homeomorphic to complete Erdös
space. Moreover, this space has the following property

(∇) every nonempty clopen subset of X is unbounded.

We will use the basis of ω2 formed by the clopen subsets of the form

[a0, . . . , an] = {x ∈ ω2 : ρm(x) = am for all m ≤ n},



Disconnectedness properties of hyperspaces 587

where {a0, . . . , an} ⊂ {0, 1}.
Observe that both X and ω2 − X are dense: for every open set of the form

[a0, . . . , an] we may choose x, y ∈ [a0, . . . , an] such that xm = 0 = 1− ym for each
m > n; then x ∈ X and y ∈ ω2−X .

For each K ⊂ ω2 we define K0 = K × {∞} and Y = X0 ∪ K0. Notice that
since π ↾Y is ≤2-to-1 and π[Y ] ⊂ ω2 is 0-dimensional, Y is hereditarily dis-
connected. By a similar argument, X0 and K0 are totally disconnected. We
now analyze whether K(Y ) is hereditarily disconnected for two specific examples
for K.

Case 1. K = ω2.

First, Y/K0 is connected: if U ∈ CO(Y ) is such that K0 ⊂ U , using the com-
pactness of K we get that X−U is bounded, so Y = U by (∇). By Corollary 5.7,
K(Y ) is not hereditarily disconnected. Notice that in this case, Y/K0 is home-
omorphic to the space of Example 1.4.8 of [E2]. By [D, p. 600], Y/K0 is also
homeomorphic to the set of non-ordinary points of the Lelek fan.

Case 2. K = X

First, we see that Y/K0 is connected. Observe that since K0 is not compact,
Y/K0 is not the same quotient as in Case 1 (it is not even first countable at
the image of K0). If U ∈ CO(Y ) is such that K0 ⊂ U and (x,∞) ∈ K0, there
exists W ∈ CO(ω2) and t ∈ [0,∞) such that (x,∞) ∈ W × (t,∞] ⊂ U . Thus,
V = (W × [0,∞])− U is a bounded clopen subset. By (∇), V = ∅. Since (x,∞)
was arbitrary, we get U = Y . Thus, Y/K0 is connected. However, we cannot
use Corollary 5.7 because K0 is not compact. In fact, we will show that K(Y )
is hereditarily disconnected. Observe that the proof that Y/K0 is connected can
be modified to show that Y is not totally disconnected, so it is not obvious that
K(Y ) is hereditarily disconnected.

A first attempt to prove that K(Y ) is hereditarily disconnected could be show-
ing that any compact subset of Y is scattered and use Theorem 5.10. However,

this is false. Recall that
∑∞

m=0
1

m+1 = π2

6 < ∞, thus the subset

P = {(x, t) ∈ Y : for each square-free n ∈ N, ρn−1(x) = 0}

is bounded. As it is pointed out in [D, p. 600], P is homeomorphic to the Cantor
set. Fortunately, every compact subset of Y will be “almost everywhere bounded”
in the sense of (0)′α below. We will follow the technique of Theorem 5.10 to prove
that K(Y ) is hereditarily disconnected.

Assume that K(Y ) contains a connected subset C with more than one point.
We may assume by Proposition 5.8 that C = {T ∪ {x} : x ∈ F} for some closed
F ⊂ Y and some compact T ( F . We now construct a decreasing sequence of
closed subsets Fα ⊂ Y for each ordinal α. Start with F0 = F . If Fα has already
been defined, let
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Uα = {x ∈ Fα : there is an open subset U ⊂ ω2 and r ∈ (0,∞) with
π(x) ∈ U such that if y ∈ Fα ∩ π←[U ], then h(y) < r or h(y) = ∞}.

Notice that Uα is open in Fα. Moreover, if x ∈ Fα and U is like in the definition
above for x, then Fα ∩ π←[U ] ⊂ Uα. Thus:

Let x, y ∈ Fα be such that π(x) = π(y). Then x ∈ Uα if and(⋆)α

only if y ∈ Uα.

So let Fα+1 = Fα − Uα, which is closed. Finally, if β is a limit ordinal, let
Fβ =

⋂
α<β Fα. We also define for each ordinal α, Tα = T ∩ Fα and Cα =

{Tα ∪ {x} : x ∈ Fα}.
We now prove the following properties by transfinite induction.

(1)α (a) For every Y ∈ C, Tα ⊂ Y .
(b) If Y1, Y2 ∈ C, Y1 − Fα = Y2 − Fα.
(c) If Fα 6= ∅, the function Φα : C → K(Fα) given by Φ(Y ) = Y ∩ Fα is

well-defined, continuous and injective. Moreover, Cα = Φα[C].
(2)α For each x ∈ X , Fα ∩ π←(x) 6= ∅ implies Tα ∩ π←(x) 6= ∅.
(3)α If x ∈ π[Uα], Fα ∩ π←(x) = Tα ∩ π←(x).

We will proceed in the following fashion.

• Step 1: (1)0 is true.
• Step 2: (1c)α implies (2)α and (3)α for each ordinal α.
• Step 3: (1)α implies (1)α+1 for each ordinal α.
• Step 4: If β is a limit ordinal, (1)α for each α < β implies (1)β .

This proof is very similar to that of Theorem 5.10, so we will omit some argu-
ments when they follow in a similar way. Step 1 is clear, observe that Φ0 is the
identity function.

Proof of Step 2: Notice that if Fα = ∅, (2)α and (3)α are true, so we may
assume Fα 6= ∅. Thus, (1c)α implies Cα is connected.

First, we prove (2)α. Let x ∈ X and

(•) Y ∩ π←(x) = {(x, t0), (x, t1)}.

Aiming towards a contradiction, assume (x, t0) ∈ Fα and Tα ∩ π←(x) = ∅. Since
x is not in the compact set π[Tα], there is a W ∈ CO(ω2) such that x ∈ W and
W ∩π[Tα] = ∅. Since Tα ∪{(x, t0)} ∈ (π←[W ])− and Tα /∈ (π←[W ])−, the clopen
set (π←[W ])− separates Cα. This contradiction shows that (2)α holds.

Next, we prove (3)α. Let x ∈ π[Uα] be such that π←(x) ∩ Fα 6= ∅. Let us use
equation (•) above. By (2)α and the fact that Tα ⊂ Fα, we only have to show
that the case when π←(x)∩Fα = π←(x) and π←(x)∩Tα = {(x, t0)} is impossible.
We will analyze when t0 < ∞, the other possibility being similar.

Since x ∈ π[Uα], there is an open subset U ⊂ ω2 and r ∈ (0,∞) such that
if y ∈ Fα and π(y) ∈ U , then h(y) /∈ [r,∞). Since Tα ∩ (ω2 × [0, r]) = R is
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a nonempty compact set and x /∈ π[R], there exists W0 ∈ CO(ω2) such that
x ∈ W0 and W0 ∩ π[R] = ∅. We may assume that W0 ⊂ U . Let

W1 = (W0 × [0, r]) ∩ Fα = (W0 × [0, r)) ∩ Fα

which is a clopen subset of Fα. Further, Tα ∪ {(x, t0)} ∈ W−1 and Tα /∈ W−1 , this
gives a separation of Cα. This is a contradiction so (3)α follows.

Proof of Step 3: Assume (1)α. By Step 2, (2)α and (3)α hold. We may also
assume that Fα+1 6= ∅, otherwise (1)α+1 is clearly true. First we prove that

(∗)α Cα = {Tα ∪ {x} : x ∈ Fα+1} ∪ {Tα}.

The right side of (∗)α is clearly contained in the left side. Let Tα ∪ {x} ∈ Cα
with x ∈ Fα. If x /∈ Fα+1, by (3)α, x ∈ Tα. Thus, Tα ∪ {x} = Tα that is in the
right side of (∗)α. Thus, (∗)α follows.

We also need that Tα+1 6= ∅. Let x ∈ π[Fα+1], by (2)α there are x1, x2 ∈
Fα ∩ π←(x) such that x1 ∈ Fα+1 and x2 ∈ Tα. By (⋆)α, x2 ∈ Tα+1.

The remaining part of the argument is similar to that of Theorem 5.10, in the
part where it is shown that (1)α+1 is a consequence of (0)α, (1)α and (2)α.

The proof of Step 4 is also similar to the part of Theorem 5.10 where it is
shown (1)β is the consequence of (0)α,(1)α and (2)α for all α < β when β is a
limit ordinal so we omit it. This completes the induction.

The key to this example is the following statement:

(0)α If Fα 6= ∅, then Uα 6= ∅.

We shall use the technique Erdös used for the proof of (∇) (for the original
Erdös space, see [Er]) to prove (0)α. Assume Fα 6= ∅ but Uα = ∅ for some α.
We now use induction to find elements {xn : n < ω} ⊂ Fα, a strictly increasing
sequence {sn : n < ω} ⊂ ω, y ∈ ω2−X and a decreasing sequence of open subsets
{Un : n < ω}. For each n < ω, call tn = π(xn) and yn = ρn(y). We find all these
with the following properties

(i) tn ∈ Un,
(ii) for each m ≤ n and r ≤ sn, ρr(tm) = yr,
(iii) if m < n, then m+ h(xm) < h(xn) < ∞,

(iv) if m < n, then m+ h(xm) <
∑n+1

m=0
ym

m+1 < ∞,

(v) Un = [y0, . . . , ysn ].

For n = 0 define s0 = 0 and choose x0 ∈ Fα arbitrarily. Assume that we have
the construction up to n. Since xn /∈ Uα, there exists xn+1 ∈ Fα ∩ π←[Un] such
that n+ h(xn) < h(xn+1) < ∞. Since

∑

m<ω

ρm(tn+1)

m+ 1
= h(xn+1) < ∞,
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by the convergence of this series, there exists sn+1 > sn such that

n+ h(xn) <

sn+1∑

m=0

ρm(tn+1)

m+ 1
.

Define ym = ρm(tn+1) for m ∈ {sn + 1, . . . , sn+1}. Clearly, conditions (i)–(v)
hold. Notice that by (iv), φ(y) = ∞ so in fact y ∈ ω2−X .

By (ii), {tn : n < ω} converges to y. Moreover, by (iii), {xn : n < ω} converges
to (y,∞) /∈ Y . Since Tα is compact, there exists N < ω such that for each
N ≤ n < ω, xn ∈ Fα − Tα.

Let zn = (tn,∞) for each n < ω. If N ≤ n < ω then by (2)α, zn ∈ Tα. But
{zn : N ≤ n < ω} converges to (y,∞) /∈ Tα, which is a contradiction. Thus, (0)α
follows.

Observe that one may also use a similar argument to prove:

(0)′α Uα is dense in Fα.

We are now ready to produce a contradiction to the assumption that K(Y ) is
not hereditarily disconnected. By (0)α, we know that if Fα 6= ∅, then Fα+1 ( Fα.
Thus, there exists

Γ = min{α : Fα = ∅}.
By (2)α and a compactness argument, it can be proved that Γ = Λ+1 for some Λ.
Then UΛ = FΛ, by (3)Λ this implies FΛ = TΛ. Thus CΛ = {TΛ}. But ΦΛ is an
injective function by (1c)Λ so we have a contradiction. This contradiction proves
that K(Y ) is hereditarily disconnected.

7. Final remarks

A substantial part of this paper was focused on giving conditions on X so that
K(X) is hereditarily disconnected. The Main Theorem and its Corollary 5.7 are
examples of this. We can also infer a little more by considering Theorem 5.10,
Example 5.2 and Case 2 from Section 6. It is clear that none of this results gives
a complete solution to this problem. However, according to Proposition 5.8 and
Remark 5.9, we have the following characterization.

7.1 Proposition. Let X be a hereditarily disconnected space. Then K(X)
contains a connected set with more than one point if and only if there exists a
closed subset F ⊂ X and a compact subset K ( F such that K intersects every
quasicomponent of F .

However, this result is not something tangible in the following sense. Corol-
lary 5.7 says that if we want to know whether K(X) is hereditarily disconnected
we just have to examine a specific space X/T . However, Proposition 7.1 says we
must look for some undetermined subsets K and F .

7.2 Question. Give tangible conditions on X so that K(X) is hereditarily dis-
connected.
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7.3 Question. Let X be a homogeneous (topological group, perhaps) heredi-
tarily disconnected space. Can one give some characterization of hereditarily dis-
connectedness of K(X) in terms of (iterated) quasicomponents and/or the space
of quasicomponents Q(X)?

References

[D] Dijkstra J.J., A criterion for Erdös spaces, Proc. Edinburgh Math. Soc. (2) 48 (2005),
no. 3, 595–601.

[E1] Engelking R., General Topology , translated from the Polish by the author, second edition,
Sigma Series in Pure Mathematics, 6, Heldermann, Berlin, 1989.

[E2] Engelking R., Theory of Dimensions Finite and Infinite, Sigma Series in Pure Mathe-
matics, 10, Heldermann, Lemgo, 1995.

[Er] Erdös P., The dimension of the rational points in Hilbert space, Ann. of Math. (2) 41
(1940), 734–736.

[GH] Gillman L., Henriksen M., Rings of continuous functions in which every finitely generated
ideal is principal , Trans. Amer. Math. Soc. 82 (1956), 366–391.

[IN] Illanes A., Nadler S.B., Jr., Hyperspaces. Fundamentals and Recent Advances, Mono-
graphs and Textbooks in Pure and Applied Mathematics, 216, Marcel Dekker, Inc., New
York, 1999.

[Ke] Keesling J., On the equivalence of normality and compactness in hyperspaces, Pacific J.
Math. 33, 1970, 657–667.

[Ku] Kunen K., Weak P -points in N∗, Topology, Vol. II (Proc. Fourth Colloq., Budapest,
1978), pp. 741–749, Colloq. Math. Soc. János Bolyai, 23, North-Holland, Amsterdam-
New York, 1980.

[M] Michael E., Topologies on spaces of subsets, Trans. Amer. Math. Soc. 71, (1951), 152–
182.

[P] Pol E., Pol R., A few remarks on connected sets in hyperspaces of hereditarily discon-
nected spaces, Bol. Soc. Mat. Mexicana (3) 6 (2000), no. 2, 243–245.

[PW] Porter J.R., Woods R.G., Extensions and Absolutes of Hausdorff Spaces, Springer, New
York, 1988.

[S] Shakhmatov D.B., A pseudocompact Tychonoff space all countable subsets of which are
closed and C∗-embedded , Topology Appl. 22 (1986), no. 2, 139–144.
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