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Abstract

Orthogonal regression, also known as the total least squares method,
regression with errors-in variables or as a calibration problem, analyzes lin-
ear relationship between variables. Comparing to the standard regression,
both dependent and explanatory variables account for measurement er-
rors. Through this paper we shortly discuss the orthogonal least squares,
the least squares and the maximum likelihood methods for estimation
of the orthogonal regression line. We also show that all mentioned ap-
proaches lead to the same estimates in a special case.

Key words: linear regression model with type-II constraints, or-
thogonal regression, estimation
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1 Introduction

Orthogonal regression in the simplest form attempts to fit a line that explains
the n two-dimensional data points in such way that the sum of the orthogonal
squared distances from the data points to the fitted line is minimal. Section 2 is
devoted to this statistical problem, where estimators of the unknown regression
parameters as well as some of their properties are presented. The standard
approach to estimation in orthogonal regression, based on the orthogonal least
squares or the maximum likelihood method (e.g. [1, 2, 3, 10, 12]), can cause
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difficulties or even an impossibility of further statistical inference. Orthogonal
regression using a linear regression model with type-II constraints [5] gives an
opportunity to skip these problems. An iterative algorithm for estimation of
orthogonal regression line by linear models is proposed in [4].
The main aim of this paper is to point out that under some conditions

the iterative algorithm converges to the same estimates as those obtained by
the maximum likelihood method or by the orthogonal least squares method.
Details are discussed in Sections 2 and 3.
Finally, in Section 4 the theoretical considerations are applied on a real-data

set from anthropology.

2 Orthogonal regression

For the formulation of the orthogonal regression problem (or OR for short) in the
simplest form, we need to consider a linear relationship between two variables
νi and μi (given by n observations), i.e.,

νi = β1 + β2μi, i = 1, . . . , n, (1)

where β1, β2 are the unknown parameters, namely, β1 is the intercept and β2 is
the slope of the orthogonal regression line.
Measurements of the points (μi, νi)

′, i = 1, . . . , n, are corrupted by errors.
Thus, we observe (xi, yi)

′ instead of (μi, νi)
′, where

xi = μi + ε1i, yi = νi + ε2i. (2)

The unobserved variables μi and νi stand for true values of the explanatory
and response variables, respectively, and ε1i, ε2i, i = 1, . . . , n, represent mea-
surement errors of μi and νi, respectively. Errors are independent random
variables with zero mean value and with variances equal to var(ε1i) = σ2

1

and var(ε2i) = σ2
2 . As a consequence, the OR model is given by both rela-

tions (1) and (2). In this paper, we will assume that variances are equal, i.e.,
σ2
1 = σ2

2 = σ2.
In the statistical literature, the functional and structural cases of OR are

distinguished. The functional case is considered if μi, i = 1, . . . , n, are fixed
unknown constants, while for random variables μi we consider the structural
case of OR. In this paper we will focus on the functional OR [2, 3, 6, 7].
In contrast to the ordinary least squares, OR minimizes the sum of squared

distances from the observed points to the regression line, so that the deviations
are perpendicular (orthogonal) to the regression line. Hence, the estimator of
the line parameters β1 and β2 (in the orthogonal regression sense) represents an
optimum solution of the minimization problem

min
β1,β2

∑n
i=1 (yi − β1 − β2xi)

2

β2
2 + 1

.
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This minimization method is known as the orthogonal least squares or the total
least squares. Standard calculus gives the minimum and we find the estima-
tors [3]

β̂1 = y − β̂2x, (3)

β̂2 =
s2y − s2x +

√
(s2y − s2x)

2 + 4s2xy

2sxy
, (4)

where x, y are sample means, s2x, s
2
y are sample variances and sxy is sample

covariance. Consequently, under normality, the maximum likelihood method
gives the same estimators [1, 3, 10].
We have to point out that the maximum likelihood estimators and the or-

thogonal least squares solution are the same only in a considered special case,
i.e., xi and yi are independent normally distributed random variables with the
same variance. If the variances σ2

1 and σ2
2 are different such that σ

2
1 = λσ2

2 ,
where λ > 0 is known, the maximum likelihood estimators are given by the
expressions [3]

β̂1 = y − β̂2x, β̂2 =
λs2y − s2x +

√
(λs2y − s2x)

2 + 4λs2xy

2λsxy
.

It is shown in [10] that the estimators (3) and (4) are weakly consistent.
Conditions for strong consistency can be found in [14, 15]. General results on
consistency see, e.g., in [3, 6, 10].
In addition, if we consider that the variance σ2 is unknown, then its maxi-

mum likelihood estimator results in [1, 10]

σ̂2 =

∑n
i=1

[(
yi − β̂1 − β̂2μ̂i

)2
+ (xi − μ̂i)

2

]
2n

, (5)

where the estimator μ̂i, i = 1, . . . , n, is of the form

μ̂i =
xi + β̂2yi − β̂1β̂2

1 + β̂2
2

. (6)

The estimator σ̂2 converges in probability to σ2/2. This particular inconsis-
tency causes no difficulty, the consistent estimator of σ2 is simply 2nσ̂2/(n−2).
Further, the estimator μ̂i is also inconsistent. Finally, the estimator of νi,
i = 1, . . . , n, is

ν̂i = β̂1 + β̂2μ̂i. (7)

Hence, we have shown how to obtain the predicted values (μ̂i, ν̂i)
′ when the

observed values are (xi, yi)
′, i = 1, . . . , n.

There exists another possibility how to obtain the estimates of β1 and β2,
based on singular value decomposition technique. However, this approach is
often criticized from the numerical point of view [12].
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One of the possible disadvantages of the maximum likelihood estimators,
given in this section, are their asymptotic properties; therefore they are not
satisfactory when making statistical inference with finite samples. Nevertheless,
some approximate procedures can be found in e.g. [8, 9, 10, 13].

3 Orthogonal regression using linear models with type-II
constraints

In this section we show that OR can alternatively be handled by linear models
with type-II constraints [5], based on the calibration line approach [11, 16]. Sup-
pose that two measurement series on two different objects (substances, quanti-
ties), obtained, for example, from two different instruments, are given. Further,
let us consider that all measurements are independent with the same variance σ2.
Let us denote by x = (x1, . . . , xn)

′ the measurements on the first object, and by
y = (y1, . . . , yn)

′ the measurements on the second object from the second instru-
ment. Their errorless (true) values are μ = (μ1, . . . , μn)

′ and ν = (ν1, . . . , νn)
′,

respectively. In addition, let these unknown parameters be linearly related.
Indeed, the errorless measurements (μi, νi)

′ fulfill the relation (1), while
the measurements of the observations (xi, yi)

′, i = 1, . . . , n, satisfy (2). The
corresponding model can be expressed in the matrix form as(

x
y

)
=

(
μ
ν

)
+ ε, ν = β11n + β2μ, var(ε) = σ2I2n, (8)

where 1n stands for vector of n ones. The orthogonal regression line (calibration
line) (1) forms nonlinear type-II constraints. Using the Taylor series locally at

μ(0), β
(0)
1 and β

(0)
2 , when the second and higher derivatives are neglected, we

can linearize the model (8). The best linear unbiased estimators (BLUE) of μ,
ν, β1 and β2 in the linearized model and their covariance matrices are derived
in [4],

μ̂ = x+
β
(0)
2[

β
(0)
2

]2
+ 1

M(0)
[
y − ν(0) − β

(0)
2

(
x− μ(0)

)]
, (9)

ν̂ = y − 1[
β
(0)
2

]2
+ 1

M(0)
[
y − ν(0) − β

(0)
2

(
x− μ(0)

)]
, (10)

(
β̂1

β̂2

)
=

(
β
(0)
1

β
(0)
2

)
+

(
n, 1′μ(0)[

μ(0)
]′
1,
[
μ(0)

]′
μ(0)

)−1

×
⎛⎝ 1′

[
y − ν(0) − β

(0)
2

(
x− μ(0)

)][
μ(0)

]′ [
y − ν(0) − β

(0)
2

(
x− μ(0)

)]
⎞⎠ , (11)
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where

M(0) = In −
(
1,μ(0)

)( n, 1′μ(0)[
μ(0)

]′
1,
[
μ(0)

]′
μ(0)

)−1(
1′[

μ(0)
]′) . (12)

One can see that the estimators μ̂, ν̂, β̂1 and β̂2 depend on the unknown approx-
imate values μ(0),ν(0), β

(0)
1 and β

(0)
2 , therefore it is necessary to solve them on

an iterative manner. The variance σ2 is usually unknown and can be unbiasedly
estimated by [11]

σ̂2 =
(x− μ̂)′ (x− μ̂) + (y − ν̂)′ (y − ν̂)

n− 2
. (13)

In the following, we outline the standard iterative algorithm for estimating
the orthogonal regression line, described in four main steps [4]. The first step
consists of determining initial values of the intercept β1 and the slope β2 of
the orthogonal regression line and the errorless recordings μ and ν. In case
a specific prior information on the true values of these parameters occurs, we
should take it into account, otherwise the choice should satisfy the relation (1),
for example

β
(0)
1 =

xjyi − xiyj
xj − xi

, β
(0)
2 =

yj − yi
xj − xi

, (14)

μ(0) = x, ν(0) = β
(0)
1 1n + β

(0)
2 μ(0),

where xi = min {xk :k = 1, . . . , n}, xj = max {xk :k = 1, . . . , n} and yi, yj are
the corresponding y coordinates. The choice of the initial values does not have
any impact on convergence of this algorithm. In the second step, we calculate
β̂1, β̂2, μ̂ and ν̂ for every data point (xi, yi)

′, i = 1, . . . , n, using the equations
(9)-(12). Further, in the the third step we need to update the initial values by
the scheme

ν(0) = ν̂ + (β̂2 − β
(0)
2 )(μ̂− μ(0)), μ(0) = μ̂, β

(0)
1 = β̂1, β

(0)
2 = β̂2. (15)

We repeat steps 2 and 3 until estimates converge, i.e., until changes in estimates
at each iteration are less than some pre-set tolerance.
Estimates obtained from this iterative algorithm converge usually very quickly,

and they also preserve the prescribed condition (1). Thus, linear models ap-
proach represents an alternative technique for the orthogonal regression; how-
ever, the solution is only approximative due to linearization step. On the other
hand, this technique enables to provide further statistical inference. This means
that under the assumption of normality we can construct e.g. approximative
confidence domains or statistical tests.
In the following theorem we will point out the equivalence between the men-

tioned approaches to orthogonal regression estimation.

Theorem 1 Let us consider the orthogonal regression model (1) and (2), where
xi and yi, i = 1, . . . n, are independent random variables with the same vari-
ance σ2. The estimates of the orthogonal regression line coefficients, obtained
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from the iterative algorithm (11), converge to the orthogonal least squares es-
timates given by the relations (3) and (4). Moreover, under the assumption of
normality, the estimates from the iterative algorithm converge to the maximum
likelihood estimates.

Proof The estimators obtained from the iterative algorithm (11) are the BLUEs
in the linearized model (8). The nonlinear model (8) can also be expressed as(

x
y

)
=

(
μ

β11n + β2μ

)
+ ε, var(ε) = σ2I2n,

or simply as
Z = f (θ) + ε,

where Z = (x′,y′)′, θ = (β1, β2, μ1, · · · , μn)
′, ε = (ε′1, ε

′
2)

′ and finally f (θ)
is a nonlinear function of the unknown parameter θ. Hence, the least squares
minimization function is

2n∑
i=1

(Zi − fi(θ))
2 =

n∑
i=1

[
(xi − μi)

2 + (yi − β1 − β2μi)
2
]
. (16)

Since the model is nonlinear, we linearize the function f (θ) by the Taylor series
locally at θ(0), when the second and higher derivatives are neglected. Thus, the
resulting linearized model is given by

Z = f
(
θ(0)

)
+ϕ(0)�θ + ε,

where

ϕ(0) =
∂f (θ)

∂θ′

∣∣∣∣
θ=θ(0)

and �θ = θ − θ(0).

Now, the BLUE of �θ can be derived by the least squares method as

�̂θ =

([
ϕ(0)

]′
ϕ(0)

)−1 [
ϕ(0)

]′ [
Z− f

(
θ(0)

)]
.

Hence, θ̂ = �̂θ + θ(0). If �̂θ
(k)
is calculated in the kth iteration from the

iterative algorithm, the values of θ(0) are determined according to (15) when
the estimated values of θ from the (k − 1)th iteration are used. Thus, the
estimate in the kth iteration is

θ̂
(k)

= �̂θ
(k)

+ θ(0).

If the starting point θ(0) is sufficiently good chosen, then the iterative algo-

rithm converges, i.e., �̂θ
(k)
converges to zero and θ̂

(k)
converges to a point that

minimizes (16).
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The orthogonal least squares estimators minimize, over all β1 and β2, the
quantity

n∑
i=1

[
(xi − μ̂i)

2
+ (yi − ν̂i)

2
]
=

n∑
i=1

[
(xi − μ̂i)

2
+ (yi − β1 − β2μ̂i)

2
]
, (17)

where (μ̂i, ν̂i) given by (6) and (7) is the closest point to an observed point
(xi, yi) on the orthogonal regression line νi = β1 + β2μi.
The functions (16) and (17) minimize the same problem and, thus, if the

iterative algorithm converges, obtained estimates of the orthogonal regression
line coefficients converge to the orthogonal least squares estimates.
The rest of the proof follows from the fact that under normality the maximum

likelihood and the orhogonal least squares estimators are the same. �

4 Illustrative example

We demonstrate the above-mentioned theoretical results on a data set from
http://lib.stat.cmu.edu/datasets/bodyfat (Body Fat data), where 252 men were
inspected for 15 anthropological parameters. Here, the chest and hip circum-
ference measurements (in cm) are of interest, see Fig. 1.
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Fig. 1: Body Fat data and the regression line.
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Firstly, we computed the regression line using the formulas (3) and (4) for
orthogonal regression with results β̂1 = 23.0230 and β̂2 = 0.7617. The results
were compared with the iterative algorithm approach. At the beginning, it
was necessary to set the initial values, so we proceed on the way suggested in
the iterative algorithm and for that purpose we used the relations (14). As a
convergence criterion, the Euclidean norm of differences between the estimates
of β1, β2 from two consecutive steps was taken. Convergence was reached in
17 iterations, with accuracy higher than ε = 10−9 (see Tab. 1 for outputs from
chosen iteration steps); the obtained orthogonal regression line was displayed in
Fig. 1. Both algorithms really lead to the same results.

Iteration
(
β̂1, β̂2

)
1 (33.6800979761, 0.655861164078)
2 (24.0337941288, 0.751669575358)
3 (24.0811858971, 0.751198873823)
...

...
15 (23.0229810998, 0.761709108836)
16 (23.0229804890, 0.761709114902)
17 (23.0229804886, 0.761709114906)

Tab. 1: Iteration values of the parameters β1, β2 for Body fat data when
the initial values are calculated according to (14) as β(0)

1 = 19.29428571 and

β
(0)
2 = 0.8285714286.

Standard deviations of β̂1, β̂2, which are 3.079 and 0.031, respectively, show
high precision of both these estimates of the regression parameters. From Fig. 1
it is noticeable that the growth of chest circumference indicates increasing hip
circumference. Concretely, 1 cm growth of the chest circumference causes hip
circumference growth in average about 0.762 cm.

5 Conclusions

In the paper a useful alternative for modelling OR by linear models with type-II
constraints is proposed. It enables for further approximative statistical infer-
ence, even if only small samples are available. Satisfying the requirement of
independent random errors with equal variances leads to the equivalence be-
tween linear models approach (the least squares method) and the orthogonal
least squares method. Moreover, under normality, the equivalence is also ful-
filled for the maximum likelihood estimation. If variances of random errors are
different, say, σ2

1 , σ
2
2 such that σ

2
1 = λσ2

2 and λ > 0 is known, the resulting for-
mulas for the maximum likelihood estimators of the orthogonal regression line
parameters will include the ratio of these two different variances, and, thus, the
maximum likelihood estimators are different from the orthogonal least squares
estimators. Searching for equivalence here would lead to a generalization of
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covariance structure of the correponding linear model. We leave this problem
for future research.
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