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Abstract

From the practical point of view the regression analysis and its Least
Squares method is clearly one of the most used techniques of statistics.
Unfortunately, if there is some problem present in the data (for exam-
ple contamination), classical methods are not longer suitable. A lot of
methods have been proposed to overcome these problematic situations.
In this contribution we focus on special kind of methods based on trim-
ming. There exist several approaches which use trimming off part of the
observations, namely well known high breakdown point method the Least
Trimmed Squares, Least Trimmed Absolute Deviation estimator or e.g.
regression L-estimate Trimmed Least Squares of Koenker and Bassett.
Our goal is to compare these methods and its properties in detail.

Key words: trimmed mean, least trimmed squares, least trimmed
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1 Motivation

We consider the linear regression model Yi =
∑p

j=1Xijβ
0
j + Zi, i = 1, . . . , n,

where β0 = (β0
1 , . . . , β

0
p)

′ is vector of unknown parameters, Z1, . . . , Zn are in-
dependent identically distributed random variables with distribution function
F and density f and EZi = 0. X = {Xij}n,pi=1,j=1 is the design matrix,
Xi = (X1i, . . . , Xni)

′ is i-th regressor. Suppose that X1 = (1, 1, . . . , 1)′. Denote
ri(β̂) = Yi −

∑p
j=1Xij β̂j the i-th residual (β̂ stays as estimate of β0).
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Let us focus first only simple location model, which means p = 1 and Yi =
β0
1+Zi, i = 1, . . . , n. The most-known estimator of β0

1 in that situation is sample
mean as the Least Squares estimator (LS) for the location model. Despite the
advantages and optimal properties under normal distributed Zi, it is well known
that sample mean is inefficient when F has heavy tails (see [1] or [10]) and also
sensitive to the presence of outliers (see e.g. [4]). Another classical estimate
is sample median as a solution argminβ∈R

∑n
i=1 |Yi − β|. Sample median is

less sensitive to heavy tailed distributions but also has its drawbacks, like the
sensitivity to the small change of the observation in the center of the data, etc.
To preserve good properties of the sample mean and to ensure good efficiency

under wider range of distributions and less sensitivity to outliers, the concept
of weighted mean is considered. We are interested especially at the special case
called α-trimmed mean (we want to study trimmed estimators) defined as

β̄α =
1

n− 2 [nα]

n−[nα]∑
i=[nα]+1

Y(i),

where Y(1) ≤ . . . ≤ Y(n), 0 < α < 1
2 . This means that we remove the α percent

smallest and the α percent largest observations from the data before we compute
the sample mean. α-trimmed mean was extensively studied for example in [4],
let us recall some of its properties: as the linear function of order statistics, it
belongs to the L-estimator class, the breakdown point is α (breakdown point
is the minimal fraction of changed observations (by arbitrary value) capable of
pulling the estimate out of all bounds). Asymptotic representation is

√
n(β̄α −

β0) = 1√
n

∑n
i=1 Ψq(Zi)+op(1), where q = F−1(1−α) and Ψk is Huber’s function

Ψk(x) =

⎧⎨
⎩

−k/(1− 2α) if x < −k
x/(1− 2α) if −k ≤ x ≤ k,
k/(1− 2α) if x > k

which is the same as the influence function for Huber’s M -estimate (recall that
influence function in point x describes the effect of infinitesimal contamination
with value x on the estimate—for more details see [4]). Asymptotic distribution
of

√
n(β̄α − β0) is normal, centered, with the variance

σ2(α, F ) = (1− 2α)−2

(
2αq2 +

∫ q

−q

x2dF (x)

)
.

As the sample mean has the Least Squares method (LS) as its direct gener-
alization for regression model and the sample median the Least Absolute Devi-
ation estimate (LAD), there was a great afford to find some regression analog
also for α-trimmed mean. We will see several proposals in the next section.

2 Estimators based on trimming

Before we define trimmed estimators we need to recall the concept of regression
quantiles. α-regression quantile β̂(α)=argminβ∈Rp

∑n
i=1 ri(β) (α−I{ri(β)<0}),
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where I denotes indicator. The most desirable property of α-regression quantile
is that exactly α percent of observations are under the regression hyperplane
based on β̂(α). The regression quantiles are therefore the generalization of quan-
tiles for regression (for more details about regression quantiles see [7] or [8]).
Now, we are ready to present methods based on trimming which we are going

to investigate in the rest of the paper. Simple representatives of trimmed esti-
mators are two-step procedures of Koenker and Bassett [7] (denoted as β̂α,RQ)
and Ruppert and Carroll’s proposal [10] (β̂α,PE(β̂

0)). Different and more com-
plicated approach is represented by well-known high breakdown point method
the Least Trimmed Squares (β̂α,LTS) proposed in [9]. The Least Trimmed Ab-
solute Deviation estimator (β̂α,LTA is also based on the same principle of the
implicit residual weighting, see e.g. [12].

Definition 1 The Trimmed Least Squares estimator of Koenker and Bassett
β̂α,RQ (in the following we will call this method shortly RQ as the method based
on regression quantiles) is the LS estimate calculated after the removal of all
observations that satisfy Yi −X ′

iβ̂(α) ≤ 0 or Yi −X ′
iβ̂(1− α) ≥ 0.

Definition 2 β̂α,PE(β̂
0) is the LS estimate from the data where the observa-

tions with the [nα] smallest and [nα] largest residuals based on the preliminary
estimate β̂0 are removed (we will use the shortcut PE for this method).

Definition 3 The Least Trimmed Squares estimator (LTS) is defined as

β̂α,LTS = argmin
β∈Rp

n−2[nα]∑
i=1

|r(β)|2(i) ,

where |r(β)|(1) ≤ |r(β)|(2) ≤ . . . ≤ |r(β)|(n).

Definition 4 The Least Trimmed Absolute Deviations estimator (LTA) is de-
fined as

β̂α,LTA = argmin
β∈Rp

n−2[nα]∑
i=1

|r(β)|(i) .

Remark 1 Notice please that RQ and PE method choose the observations
which are used by external rule, while LTS and LTA choose them in an im-
plicit way (the situation is much more complicated because the ordering may
be different for different β).

Remark 2 PE estimate depends on the preliminary estimate. We use in our
work 3 choices of β̂0, the same as in [10], i.e. LS estimate, LAD estimate and
β̂RQ = 1

2 (β̂(α) + β̂(1− α)).

Remark 3 An alternative of PE estimate with asymmetric trimming can be
defined in such way that we remove [2nα] observations with the largest absolute
value of residuals. Such proposal could be found in [10], for symmetric distri-
butions it has the same asymptotic properties as PE defined in Definition 2.
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3 Comparison of the methods

The comparison between the estimators β̂α,RQ and β̂α,PE(β̂
0) has been made

to some extend in paper [10]. Also some marginal comparisons of presented
methods with the LS method can be found in [10], [7], [3] and [12]. Nevertheless,
the comparison of β̂α,RQ or β̂α,PE(β̂

0) with β̂α,LTS and β̂α,LTA is still missing
in the literature. This is what we are going to investigate in the following part
of the paper.
Before we focus on asymptotic properties let us recall that all methods are

regression, scale and affine equivariant and the estimates are unbiased when the
distribution of Zi is symmetric.

3.1 Asymptotic properties

We start the comparison of introduced methods with their asymptotic prop-
erties. Under some regularity conditions (for more details see [10], [7], [3]
and [12]) all methods are

√
n-consistent. Only to sum up the very basic con-

ditions, we suppose continuous and symmetric distribution of Zi. We have√
n(β̂ − β0) = 1√

n
Q−1

∑n
i=1 xiψ(Zi) + op(1), where limn→∞n−1X ′X = Q is

supposed to be positive definite. The shape of ψ functions for each estimate1

can be seen in Table 2. These ψ functions are at the same time the influence
functions of corresponding estimators. We can see that LS and PE with pre-
liminary estimate LS have unbounded influence, other estimates have bounded
influence, LTS and LTA2 have even zero influence for large values. Compare the
shape of influence functions with corresponding M -estimation theory (see [4]).
We also notice that RQ method has the same asymptotic representation as α-
trimmed mean which makes from it the regression analog of α-trimmed mean
(β̂α,PE in location model has also the same asymptotic distribution, but for
regression it is only the case for β̂α,PE(β̂RQ) and only under symmetric f).
We can see from the formulas for asymptotic variances in Table 2 that some

direct comparison of variances or simple rules for describing the situations where
one estimate outperforms others are not possible. Therefore, we try to compare
asymptotic variances graphically. We tried classical symmetric continuous dis-
tributions and also two setups of symmetric contaminating distributions: the
first one F (x) = (1 − ε)Φ(x) + εΦ(x/b) (the same as in [10], Φ denotes the
distribution function of N(0, 1)) and the second mixture (used e.g. in [3]) where
F = (1 − 2ε)N(0, 1) + εN(c, 1) + εN(−c, 1). We have tried different choices
of constants b, c and ε. The comparison of these asymptotic variances gives
us several foundings about estimates (see examples for chosen distributions in
Figure 1):

• The performance of β̂PE strongly depends on preliminary estimate β̂0 (as
was already mentioned in [10]).

1β̂α,PE has different representations for location and slope parameters, see Table 2 or [10].
2Rigorous proofs for asymptotic representation of LTA method have only been given in the

location model, see [11] and [12].
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• Estimator β̂RQ outperforms other estimators when the trimming propor-
tion is high for almost all choices of F .

• With low contamination, LTS3 and LTA methods are inefficient for large
trimming proportion.

• LTS and LTA have feasible efficiency level with the trimming proportion
a bit higher than the proportion of contamination.

• There should be the same kind of relationship between LTA and LTS
variance as between LAD and LS (comparison of asymptotic variances
shows that LAD has greater statistical efficiency than LS if f(0) > 1

2σ ),
i.e. LTA is more efficient than LTS for more peaked distributions, see
also [6].

• Only LTA has reasonable variance if we choose lower trimming proportion
than the contamination percentage. LTA is based on absolute values of
residuals, therefore is not so much sensitive to normal contamination.

• Variance of LTA is hardly better than the classical β̂LAD. Rewriting the in-
equality for asymptotic variances σ2

LTA(α, F ) < σ2
LAD(F ) gives quadratic

inequality f2(q)−2f(0)f(q)+2αf2(0) > 0, for unimodal f it is equivalent
to f(q)

1−√
1−2α

< f(0), which means that LTA is better for distributions with
lighter tails, even lighter than normal.

Table 2: Asymptotic representation of estimates:
√
n(β̂ − β0) =

1√
n
Q−1

∑n
i=1 xiψ(Zi) + op(1) with its asymptotic variance Q−1σ2(α, F ), where

Q=lim 1
nX

′X, q=F−1(1−α), a=2qf(q), Iq =
∫ q

−q
xdF (x) and I2q =

∫ q

−q
x2dF (x).

estimator σ2(α, F ) ψ function

β̂LS σ2 = varZ1

β̂LAD = β̂(0.5) (2f(0))−2

β̂α,RQ (1− 2α)−2[2αq2 + I2q ]

β̂α,PE - location (1− 2α)−2[2αq2 + I2q ]

β̂α,PE(β̂LS) - slope (1− 2α)−2[a2σ2 + (1 + 2a)I2q ]

β̂α,PE(β̂LAD) - slope (1− 2α)−2[(a/f(0))2 + aIq/f(0) + I2q ]

β̂α,PE(β̂RQ) - slope (1− 2α)−2[2αq2 + I2q ]

β̂α,LTS (1− 2α− a)−2I2q

β̂α,LTA (1− 2α)[2(f(0)− f(q))]−2

3In [3] was pointed out that for unimodal symmetric distributions 1−2α−a>0 should hold.
We can prove this statement simply: 1−2α−a= ∫ q

−q [f(x)−f(q)]dx and f(x)>f(q), x∈ (−q, q).
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F standard normal F double exponential

F (z) = 0.8Φ(z) + 0.2Φ
(

z
10

)
F = 0.8N(0, 1) + 0.1N(10, 1) + 0.1N(−10, 1)

Figure 1: Several examples of theoretical asymptotic variances σ2(α, F ) in de-
pendence on 1− 2α. σ2(α, F ) for β̂α,PE(β̂RQ) is not depicted because it is the
same as for β̂α,RQ.

3.2 Simulation study and robustness properties

To show not only asymptotic variance but also bias and finite sample properties,
as well as the behaviour under asymmetric contamination in Y as well as in X
values, we run the simulation study. The setup is following: for simplicity two
regressors (intercept is one of them), 20 observations, β0 = (2,−1). We have
computed presented estimates for 100 runs for each setup and each choice of
distribution (constants: ε was chosen consequently 0.05, 0.1, 0.2, 0.25, c was 3
or 10, α was 0.05, 0.1, 0.2 or 0.25). Simulations are performed in R-software,
source code is available upon request.
We have performed the experiment for all symmetric distributions mentioned

above, it only verified the same relationship among variances as in the previous
section. We have tried the performance under asymmetric contamination in the
data as well. These results concern robustness properties (see Figure 2):
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10% outliers in Y , F = 0.9N(0, 1) + 0.1N(10, 1)

10% outliers in X2, distribution of Z is N(0, 1), with the probability 0.1 the value Xi2 is changed

by addition of the random variable N(10, 1)

Figure 2: Examples of contaminating distributions. Boxplots of estimates based
on 100 runs of simulated data sets (intercept coefficient—left pictures, slope
parameter—right pictures).



52 Tomáš Jurczyk

Table 3: Breakdown point properties

estimator location model regression (Xij random variable)

β̂LS 0 0
β̂LAD = β̂(0.5) 0.5 0
β̂α,RQ min{α, 0.25} 0
β̂α,PE(β̂LS) 0 0
β̂α,PE(β̂LAD) min{2α, 0.5} 0
β̂α,PE(β̂RQ) min{α, 0.25} 0
β̂α,LTS min{2α, 0.5} min{2α, 0.5}
β̂α,LTA min{2α, 0.5} min{2α, 0.5}

• Under asymmetric contamination (outliers in Y direction) represented by
model F (x) = (1 − 2ε)N(0, 1) + 2εN(c, 1), all methods except LTS and
LTA have biased estimates of intercept. Which is not so surprising because
other methods are based either on LS or on quantile regression, which are
biased.

• β̂PE estimates are biased under asymmetric contamination in X2 (outliers
in X2 direction are generated in the following way: original value Xi2 is
changed by addition of random variable N(c, 1) with the probability 2ε).

We did not think about presented estimates as about robust methods at the
first time but if we have the data where there are some amount of contaminating
points do not following the model, we clearly expect from the trimmed methods
not to use exactly these contaminating points. Therefore, we expect implicitly
the robustness of the methods. We have also talked about robustness properties
when we compared the influence functions. Another robustness characteristics,
which we have not discuss yet, is the breakdown point. Table 3 summarizes
breakdown points for our methods. For the location model or for the model when
we do not allow replacement of the regressor’s values, only β̂LS and β̂α,PE(β̂LS)
have zero breakdown point. But when regressor’s values are also expected to be
changed, then all methods except LTS and LTA fail already when small amount
of points is changed. This is caused by the fact that regression quantiles have
problems with bad leverage points (see [8]).

4 Conclusion

We have compared the asymptotic behaviour of presented trimmed estimates,
as well as finite sample behaviour through the simulation study. Robustness
properties have been shown as well. From these results we can make some
conclusions and recommendations about usage of the estimates.
At first we must recall that more complicated LTS and LTA methods are

more robust than other methods but with not correctly chosen trimming pro-
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portion can be quite inefficient (proposal of procedure for adaptive choice of h
can be found e.g. in [2]). The choice of large trimming proportion should be
avoided unless there is strong reason for it (trimming proportion near to the
2α = 0.5 can also cause unstable subsample behaviour and also high sensitiv-
ity to the small change of data (see [5]), which is negative consequence of high
breakdown point). Koenker and Bassett’s β̂RQ outperforms Ruppert and Car-
roll’s β̂PE and also is regression analog to α-trimmed mean. If we do not expect
gross errors but only the different distribution of the error therms, then β̂RQ is
a good choice.
We can continue with our comparison further but due to the limits on the

scope of this paper let us add only last remark about computational aspect. LTS
and LTA are computationally much more intensive than other methods (for more
details see e.g. [6]), which induces problems for large data sets, nevertheless such
one-step highly robust procedures can be used profitably as some preliminary
estimate for different robust approaches.
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