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Abstract. In this paper, sharp a priori estimate of the periodic solutions is obtained
for the discrete analogue of the continuous time ratio-dependent predator-prey system,
which is governed by nonautonomous difference equations, modelling the dynamics of the
n−1 competing preys and one predator having nonoverlapping generations. Based on more
precise a priori estimate and the continuation theorem of the coincidence degree, an easily
verifiable sufficient criterion of the existence of positive periodic solutions is established.
The result obtained in this paper greatly improves the existing results.
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1. Introduction

The traditional Lotka-Volterra type predator-prey model has received great atten-

tion from both theoretical and mathematical biologists, and has been well studied [9].

Recently, models with the prey-dependent-only response function have been facing

challenges from biology and physiology communities [1]. Basing on growing biologi-

cal and physiological evidence some biologists have argued that, in many situations,

especially when predators have to search for food (and therefore, have to share or

compete for food), the functional response in a prey-predator model should be ratio-

dependent, which can be roughly stated as that the per capita predator growth rate

*This work is partly supported by the Hunan Science and Technology Plan under Grant
No. 2011FJ6037, The Teaching and Research Award Program for Outstanding Young
Teachers in Higher Education Institutions, Hunan province, China, The Front Research
Foundation of Zhong Nan Da Xue under grant No 2010QZZD015, and the Humani-
ties and Social Science Foundation of the Ministry of Education, China, under Grant
No. 06JA790120.

577



should be a function of the ratio of prey to predator abundance. This has been

strongly supported by numerous field and laboratory experiments and observations.

Starting from this argument and the traditional prey-dependent-only model, Arditi

and Ginzburg [1] first studied the ratio-dependent predator-prey model.

Ratio-dependent models have not been well studied yet in the sense that most

results are for models with constant environment [5]. This means that the models

have been assumed to be autonomous, that is, all biological or environmental pa-

rameters have been assumed to be constant in time. However, this is rarely the case

in real life, because many biological and environmental parameters do vary in time

(e.g., naturally subject to seasonal fluctuations). When this is taken into account,

a model must be nonautonomous, which is, of course, more difficult to analyze in

general. But, in doing so, one can and should also take advantage of the properties of

those varying parameters. For example, one may assume the parameters are periodic

or almost periodic for seasonal reasons [2].

Though much progress has been seen in the ratio-dependent predator-prey the-

ories, such systems are not well studied in the sense that most results concern the

continuous time cases (see, for example, [7], [10]–[14]). Many authors have argued

that the discrete time models governed by difference equations are more appropriate

than the continuous ones when the populations have nonoverlapping generations.

Discrete time models can also provide efficient computational models of continuous

models for numerical simulations. It is well known that, compared to the continuous

time systems, the discrete time ratio-dependent predator-prey systems are more dif-

ficult to deal with. It is highly nontrivial to attack the existence of positive periodic

solutions of this type systems. However, few works have been done for discrete time

ratio-dependent predator-prey systems. With the help of differential equations with

piece constant arguments, Fan et al. ([4], [6]) proposed first a discrete analogue of

the continuous time ratio-dependent predator-prey system and gave some new suffi-

cient conditions for the existence of a positive periodic solution. In order to improve

and extend the results in [4], Ding and Lu [3] proposed the ratio-dependent n-species

predator-prey system

(1)











































x′
i(t) = xi(t)[ai(t) − aii(t)xi(t)] −

n−1
∑

j=1,j 6=i

aij(t)xj(t)xi(t)

−
ain(t)xi(t)xn(t)

min(t)xn(t) + xi(t)
,

x′
n(t) = xn(t)

{

−an(t) +

n−1
∑

l=1

anl(t)xl(t)

min(t)xn(t) + xl(t)

}

,

where xn(t), living on x1(t), x2(t), . . . , xn−1(t), represents the predator density at t;
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xi(t), ai(t) stand for the densities and intrinsic growth rate of the ith prey, respec-

tively; aii(t) and aij(t) denote the intra-specific competition rates of the ith prey and

the inter-specific competition rates of ith prey to the jth prey, respectively; ain(t) is

the maximal predator per capita consumption rate, i.e., the maximum number of the

ith prey that can be eaten by a predator in each time unit andmin(t) is the number of

the ith prey necessary to achieve one-half of the maximum rate ain(t); ani(t)/ain(t)

is the measure of the food quality that the ith prey provides for the conversion

into the predator birth; an(t) is the death rate of the predator; The predator con-

sumes the ith prey according to the functional response xi(t)/[min(t)xn(t) + xi(t)],

i = 1, 2, . . . , n − 1. Furthermore, Ding and Lu in [3] established some sufficient cri-

teria for the existence of a positive periodic solution of the following discrete time

analogue of system (1):

(2)































xi(k + 1) = xi(k) exp

{

ai(k) −

n−1
∑

j=1

aij(k)xj(k) −
ain(k)xn(k)

min(k)xn(k) + xi(k)

}

,

i = 1, 2, . . . , n − 1,

xn(k + 1) = xn(k) exp

{

−an(k) +

n−1
∑

l=1

anl(k)xl(k)

mln(k)xn(k) + xl(k)

}

,

where k ∈ Z+; aii : Z → R+ (i = 1, 2, 3, . . . , n − 1); anj : Z → R+ (j = 1, 2, 3, . . . ,

n − 1); mln : Z → R+ (l = 1, 2, 3, . . . , n − 1); aij(k) > 0 (i 6= j and i, j = 1, 2, 3, . . . ,

n − 1) and āi > 0 (i = 1, 2, 3, . . . , n); aij(k) and ai(k) are ω-periodic functions.

Let Z, Z+, R+ and R
n denote the sets of all integers, positive integers, positive

real numbers and n-dimensional Euclidean vector space, respectively.

For convenience, throughout the paper we will use the notation

ω ∈ Z+, g =
1

ω

ω−1
∑

k=0

g(k), G =
1

ω

ω−1
∑

k=0

|g(k)|, Iω = {0, 1, . . . , ω − 1},

where g(k) is an ω-periodic sequence of real numbers defined for k ∈ Z. For a given

ω-periodic function yi, denote

yi(ξi) = min
k∈Iω

yi(k), yi(ηi) = max
k∈Iω

yi(k).

In this paper, by using some analysis skill, an important inequality is first proved

and applied to obtain the improved a priori estimate of the periodic solution. Based

on sharp a priori estimate and the related continuation theorem of the coincidence

degree, a verifiable sufficient condition is established for the existence of positive peri-

odic solutions of a discrete time nonautonomous ratio-dependent n-species predator-

prey system. This sufficient condition improves the main result obtained in [3]. The

paper also corrects some mistakes in [3].
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2. Existence of positive periodic solution

Let X , Y be normed vector spaces, L : DomL ⊂ X → Y a linear mapping,

and N : X → Y a continuous mapping. The mapping L will be called a Fredholm

mapping of index zero if dimKerL = codim Im L < ∞ and Im L is closed in Y .

If L is a Fredholm mapping of index zero and there exist continuous projectors

P : X → X and Q : Y → Y such that Im P = KerL, KerQ = Im L = Im(I − Q),

then L|Dom L∩KerP : (I − P )X → Im L is invertible, so we denote the inverse of this

map by KP . If Ω is an open bounded subset of X , the mapping N will be called

L-compact on Ω if QN(Ω̄) is bounded and KP (I −Q)N : Ω̄ → X is compact. Since

Im Q is isomorphic to KerL, there exists an isomorphism J : Im Q → KerL.

Lemma 1 ([8]). Let L be a Fredholm mapping of index zero and let N be L-

compact on Ω̄. Suppose

(a) for each λ ∈ (0, 1), every solution x of Lx = λNx is such that x /∈ ∂Ω,

(b) QNx 6= 0 for each x ∈ ∂Ω ∩ KerL and deg{JQN, Ω ∩ KerL, 0} 6= 0.

Then the equation Lx = Nx has at least one solution lying in Dom L ∩ Ω̄.

Ding and Lu in [3] proved the following important lemmas.

Lemma 2 ([3]). Rn
+ = {(x1, x2, . . . , xn)⊤ : xi > 0, i = 1, 2, 3, . . . , n} is positive

invariant with respect to equation (2).

Lemma 3 ([3]). If ān1 > ān, then the system of algebraic equations

(3)











āi − āiivi = 0, i = 1, 2, . . . , n − 1,

ān −
1

ω

ω−1
∑

k=0

n−1
∑

j=1

anj(k)vj

mjn(k)vn + vj
= 0

has a unique solution (v∗1 , v∗2 , . . . , v∗n) with v∗l > 0, l = 1, 2, . . . , n.

Considering the biological significance of system (2), we specify (x1(0), x2(0), . . . ,

xn(0))⊤ ∈ R
n
+.

Lemma 4. Suppose g : Z → R, g(k + ω) = g(k), ω ∈ Z+. Then for any fixed

k1 ∈ Iω = {0, 1, 2, . . . , ω − 1} and any k ∈ Z, we have

(4) g(k1) −
1

2

ω−1
∑

s=0

|g(s + 1) − g(s)| 6 g(k) 6 g(k1) +
1

2

ω−1
∑

s=0

|g(s + 1) − g(s)|.
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P r o o f. Since g is ω-periodic, we only need to show that inequality (4) is valid

for any k ∈ Iω .

If k = k1, then inequality (4) is clearly true.

If k > k1, then

(5) g(k) − g(k1) =

k−1
∑

s=k1

[g(s + 1) − g(s)].

So

(6) |g(k) − g(k1)| =

∣

∣

∣

∣

k−1
∑

s=k1

[g(s + 1) − g(s)]

∣

∣

∣

∣

6

k−1
∑

s=k1

|g(s + 1) − g(s)|.

Furthermore,

(7) g(k)−g(k1) = g(k)−g(k1+ω) = −[g(k1+ω)−g(k)] = −

k1+ω−1
∑

s=k

[g(s+1)−g(s)].

Thus,

(8) |g(k) − g(k1)| =

∣

∣

∣

∣

−

k1+ω−1
∑

s=k

[g(s + 1) − g(s)]

∣

∣

∣

∣

6

k1+ω−1
∑

s=k

|g(s + 1) − g(s)|.

Combining inequality (6) with inequality (8) gives that

2|g(k) − g(k1)| 6

k−1
∑

s=k1

|g(s + 1) − g(s)| +

k1+ω−1
∑

s=k

|g(s + 1) − g(s)|(9)

=

k1+ω−1
∑

s=k1

|g(s + 1) − g(s)| =

ω−1
∑

s=0

|g(s + 1) − g(s)|.

Therefore,

(10) |g(k) − g(k1)| 6
1

2

ω−1
∑

s=0

|g(s + 1) − g(s)|.

Similarly, we can prove that inequality (10) holds if k < k1.

Obviously, inequality (10) implies inequality (4). This completes the proof. �

Fan et al. [4] proved the following lemma.
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Lemma. Let g : Z → R be ω-periodic, i.e., g(k + ω) = g(k). Then for any fixed

k1, k2 ∈ Iω and any k ∈ Z, one has

g(k) 6 g(k1) +

ω−1
∑

s=0

|g(s + 1) − g(s)|, g(k) > g(k2) −

ω−1
∑

s=0

|g(s + 1) − g(s)|.

Basing on the above lemma, Fan et al. [4] and Ding et al. [3] studied the existence

of a positive periodic solution for the predator-prey system. Obviously, Lemma 4 in

our paper greatly improves Lemma 2 in [3] and Lemma 3.2 [4]. We can obtain more

precise a priori estimate of the periodic solution by using Lemma 4.

Next, we will investigate the existence of a positive periodic solution for the

predator-prey system (2).

Define

ln = {y = {y(k)} : y(k) ∈ R
n, k ∈ Z}.

Take the usual norm

‖y‖ = (|y1|
2
0 + |y2|

2
0 + . . . + |yn|

2
0)

1/2,

where |yi|0 = max
k∈Iω

|yi(k)|, i = 1, 2, . . . , n. Let lω ⊂ ln denote the subspace of all

ω-periodic sequences equipped with the usual norm, then it is easy to prove that

lω is a finite-dimensional Banach space.

Let

lω0 =

{

y = {y(k)} ∈ lω :
1

ω

ω−1
∑

k=0

y(k) = 0

}

,

lωc =
{

y = {y(k)} ∈ lω : y(k) = h, h ∈ R
n, k ∈ Z

}

.

Then it follows that both lω0 and lωc are closed linear subspaces of l
ω and

lω = lω0 ⊕ lωc , dim lωc = n.

Theorem 1. System (2) has at least one ω-periodic solution with strictly positive

components if

(11) āi −

n−1
∑

j=1,j 6=i

āije
Lj −

( ain

min

)

> 0, i = 1, 2, . . . , n − 1,

and

(12) ān1e
d1 − āneL1 > 0,
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where Lj = ln (āj/ājj) + 1
2 (Āj + āj)ω, j = 1, 2, . . . , n − 1,

d1 = ln

ā1 −

n−1
∑

j=2

a1je
Lj −

( a1n

m1n

)

ā11
−

1

2
(Ā1 + ā1)ω,

Āi = ω−1
ω−1
∑

k=0

|ai(k)|.

P r o o f. Let xi(k) = exp{yi(k)}, i = 1, 2, . . . , n. Then equation (2) becomes

(13)











































yi(k + 1) − yi(k) = ai(k) −
n−1
∑

j=1

aij(k) exp{yj(k)}

−
ain(k) exp{yn(k)}

min(k) exp{yn(k)} + exp{yi(k)}
, i = 1, 2, . . . , n − 1,

yn(k + 1) − yn(k) = −an(k) +
n−1
∑

l=1

anl(k) exp{yl(k)}

mln(k) exp{yn(k)} + exp{yl(k)}
,

where k ∈ Z+.

Let X = Y = lω. For any y ∈ X and k ∈ Z, define (Ly)(k) = y(k + 1) − y(k) and

(14) Ny(k) =































ai(k) −

n−1
∑

j=1

aij(k) exp{yj(k)} −
ain(k) exp{yn(k)}

min(k) exp{yn(k)} + exp{yi(k)}
,

i = 1, 2, . . . , n − 1,

−an(k) +
n−1
∑

l=1

anl(k) exp{yl(k)}

mln(k) exp{yn(k)} + exp{yl(k)}
.

Then L is a bounded linear operator and

KerL = lωc , Im L = lω0 , dim KerL = n = codim Im L.

So, L is a Fredholm mapping of index zero.

Define

Py =
1

ω

ω−1
∑

k=0

y(k), y ∈ X, Qz =
1

ω

ω−1
∑

k=0

z(k), z ∈ Y.

It is not difficult to show that P and Q are continuous projectors such that

Im P = KerL, KerQ = Im L = Im(I − Q).
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Furthermore, the generalized inverse (to L) KP : Im L → KerP ∩ DomL is given

by

(15) KP (z) =
ω−1
∑

s=0

z(s) −
1

ω

ω−1
∑

s=0

(ω − s)z(s).

Clearly, QN and KP (I − Q)N are continuous. Since X is a finite-dimensional Ba-

nach space, it is not difficult to show that KP (I − Q)N(Ω) is compact for any open

bounded set Ω ⊂ X . Moreover, QN(Ω) is bounded. Thus N is L-compact on Ω.

Since Im Q = KerL, the isomorphic mapping J from Im Q to KerL is I. Corre-

sponding to the operator equation Ly = λNy, λ ∈ (0, 1), we have

(16)











































yi(k + 1) − yi(k) = λ

(

ai(k) −
n−1
∑

j=1

aij(k) exp{yj(k)}

−
ain(k) exp{yn(k)}

min(k) exp{yn(k)} + exp{yi(k)}

)

, i = 1, 2, . . . , n − 1,

yn(k + 1) − yn(k) = λ

(

−an(k) +
n−1
∑

l=1

anl(k) exp{yl(k)}

mln(k) exp{yn(k)} + exp{yl(k)}

)

,

for λ ∈ (0, 1). Assume that y = {y(k)} = {(y1(k), y2(k), . . . , yn(k))⊤} ∈ X is an

arbitrary solution of (16) for a certain λ ∈ (0, 1). Summing both sides of (16) from 0

to ω − 1 with respect to k gives

(17)































āiω =

ω−1
∑

k=0

(n−1
∑

j=1

aij(k) exp{yj(k)} +
ain(k) exp{yn(k)}

min(k) exp{yn(k)} + exp{yi(k)}

)

,

i = 1, 2, . . . , n − 1,

ānω =

ω−1
∑

k=0

n−1
∑

l=1

anl(k) exp{yl(k)}

mln(k) exp{yn(k)} + exp{yl(k)}
.

Equation (16) and (17) imply

(18)

ω−1
∑

k=0

|yi(k + 1) − yi(k)| 6

ω−1
∑

k=0

|ai(k)| + āiω = (Āi + āi)ω, i = 1, 2, . . . , n − 1.

From (17) we have

(19) āiω >

ω−1
∑

k=0

aii(k) exp{yi(k)} >

ω−1
∑

k=0

aii(k)eyi(ξi).
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So

(20) yi(ξi) 6 ln
āi

āii
.

From Lemma 4 and (18) it follows that

yi(k) 6 yi(ξi) +
1

2

ω−1
∑

s=0

|yi(s + 1) − yi(s)|(21)

6 ln
āi

āii
+

1

2
(Āi + āi)ω =: Li, i = 1, 2, . . . , n − 1.

On the other hand,

āiω 6

ω−1
∑

k=0

(n−1
∑

j=1

aij(k) exp{yj(k)} +
ain(k)

min(k)

)

(22)

6 ω

(

āiie
yi(ηi) +

n−1
∑

j=1,j 6=i

āije
Lj +

( ain

min

)

)

, i = 1, 2, . . . , n − 1.

Then

(23) yi(ηi) > ln

āi −

n−1
∑

j=1,j 6=i

āije
Lj −

( ain

min

)

āii
.

Therefore, Lemma 4 and (18) imply

yi(k) > ln

āi −

n−1
∑

j=1,j 6=i

āije
Lj −

( ain

min

)

āii
−

1

2
(Āi + āi)ω =: di,(24)

i = 1, 2, . . . , n − 1.

From the nth equation of (17) we infer

(25) ānω 6

ω−1
∑

k=0

n−1
∑

l=1

anl(k) exp{yl(k)}

mln(k) exp{yn(k)}
6

ω−1
∑

k=0

n−1
∑

l=1

anl(k) exp{Ll}

mln(k) exp{yn(ξn)}
.

So

(26) yn(ξn) 6 ln

n−1
∑

l=1

( anl

mln

)

eLl

ān
.
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Using Lemma 4 again yields

yn(k) 6 yn(ξn) +
1

2

ω−1
∑

s=0

|yn(s + 1) − yn(s)|(27)

6 ln

n−1
∑

l=1

( anl

mln

)

eLl

ān
+

1

2
(Ān + ān)ω =: Ln.

Denote mu
1n = max{m1n(k), k ∈ Iω}.

From (17) we have

ānω >

ω−1
∑

k=0

an1(k) exp{y1(k)}

m1n(k) exp{yn(k)} + exp{y1(k)}
(28)

>

ω−1
∑

k=0

an1(k)ed1

mu
1neyn(ηn) + eL1

>
ωān1e

d1

mu
1neyn(ηn) + eL1

,

that is,

(29) yn(ηn) > ln
ān1e

d1 − āneL1

ānmu
1n

.

Hence,

(30) yn(k) > ln
ān1e

d1 − āneL1

ānmu
1n

−
1

2
(Ān + ān)ω =: dn.

Let Hi = max{|Li|, |di|, i = 1, 2, . . . , n}. From inequalities (21), (24), (27), and

(30), we have

(31) |yi(k)| 6 Hi, ‖y‖ 6

( n
∑

i=1

H2
i

)1/2

=: M0.

Obviously, M0 is independent of λ.

Now consider the algebraic equations

(32)











































ω−1
∑

k=0

(

ai(k) − aii(k) exp{yi} − µ

n−1
∑

j=1,j 6=i

aij(k) exp{yj}

−µ
ain(k) exp{yn}

min(k) exp{yn} + exp{yi}

)

= 0, i = 1, 2, . . . , n − 1,

ω−1
∑

k=0

(

−an(k) +
n−1
∑

l=1

anl(k) exp{yl}

mln(k) exp{yn} + exp{yl}

)

= 0,

586



for (y1, y2, . . . , yn)⊤ ∈ R
n, in which µ ∈ [0, 1] is a parameter. Using technique similar

to the previous one for estimating values, we get d̄i 6 yi 6 L̄i, i = 1, 2, . . . , n, where

L̄i = ln
āi

āii
, i = 1, 2, . . . , n − 1,

d̄i = ln

āi −

n−1
∑

j=1,j 6=i

āije
L̄j −

( ain

min

)

āii
, i = 1, 2, . . . , n − 1,

L̄n = ln

n−1
∑

l=1

( anl

mln

)

eL̄l

ān
,

d̄n = ln
ān1e

d̄1 − āneL̄1

ānmu
1n

.

Taking Hi = max{|L̄i|, |d̄i|, i = 1, 2, . . . , n}, Hi is independent of µ. Let

M1 =
( n

∑

i=1

H2
i

)1/2

. Then M1 is independent of µ and ‖y‖ 6 M1 for every so-

lution (y1, y2, . . . , yn)⊤ of (32).

Since ān1e
d1 − āneL1 > 0 and d1 < L1, we have ān1 > ān. By Lemma 3, equa-

tion (3) has a unique positive solution (v∗1 , v∗2 , . . . , v∗n)⊤ with v∗i > 0. Now, let M =

M0 + M1 + M2 where M2 is taken sufficiently large such that
[ n
∑

i=1

(ln v∗i
)2

]1/2

6 M2.

We define

(33) Ω = {y = {y(k)} ∈ X, ‖y‖ < M}.

Then it is clear that Ω is an open, bounded set inX and verifies the requirement (a)

of Lemma 1. When y ∈ ∂Ω ∩ KerL = ∂Ω ∩ R
n, y is a constant vector in R

n with

‖y‖ = M . Note that

(34) QNy =































1

ω

ω−1
∑

k=0

(

ai(k) −

n−1
∑

j=1

aij(k) exp{yj} −
ain(k) exp{yn}

min(k) exp{yn} + exp{yi}

)

,

i = 1, 2, . . . , n − 1,

1

ω

ω−1
∑

k=0

(

−an(k) +

n−1
∑

l=1

anl(k) exp{yl}

mln(k) exp{yn} + exp{yl}

)

.

So

QNy 6= 0.
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Now let us consider homotopic hµ(y) = µQNy + (1 − µ)Gy, µ ∈ [0, 1], where

(35) Gy =
1

ω

ω−1
∑

k=0





















a1(k) − a11(k) exp{y1}

a2(k) − a22(k) exp{y2}
...

an−1(k) − an−1,n−1(k) exp{yn−1}

−an(k) +

n−1
∑

l=1

anl(k) exp{yl}

mln(k) exp{yn} + exp{yl}





















.

From (32)–(35) we have 0 /∈ hµ(∂Ω∩KerL) and deg{QN, Ω∩KerL, 0} = deg{G, Ω∩

KerL, 0}. Direct calculation shows that

(36) deg

{

G, Ω ∩ KerL, 0} = sgn{(−1)n
n−1
∏

i=1

āiiv
∗
i

ω

ω−1
∑

k=0

n−1
∑

l=1

anl(k)mln(k)v∗l v∗n
mln(k)v∗n + v∗l

}

6= 0.

Note that J = I, deg{JQN, Ω ∩ KerL, 0} 6= 0. By Lemma 1, equation (16) has

at least one ω-periodic solution. Therefore, equation (2) has at least one positive

ω-periodic solution. �

3. Conclusion

In this paper, based on improved a priori estimate of the periodic solution, a new

sufficient condition is established for the existence of positive periodic solutions of

a class of nonautonomous discrete time food web model of n − 1 competing preys

and one predator. The result obtained in this paper greatly improves the existing

results. This paper also corrects some mistakes in [3].
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