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ELLIPTICITY OF THE SYMPLECTIC TWISTOR COMPLEX

Svatopluk Krýsl

Abstract. For a Fedosov manifold (symplectic manifold equipped with a
symplectic torsion-free affine connection) admitting a metaplectic structure,
we shall investigate two sequences of first order differential operators acting
on sections of certain infinite rank vector bundles defined over this manifold.
The differential operators are symplectic analogues of the twistor operators
known from Riemannian or Lorentzian spin geometry. It is known that the
mentioned sequences form complexes if the symplectic connection is of Ricci
type. In this paper, we prove that certain parts of these complexes are elliptic.

1. Introduction

In this article, we prove the ellipticity of certain parts of the so called symplectic
twistor complexes. The symplectic twistor complexes are two sequences of first
order differential operators defined over Ricci type Fedosov manifolds admitting
a metaplectic structure. The mentioned parts of these complexes will be called
truncated symplectic twistor complexes and will be defined later in this text.

Now, let us say a few words about the Fedosov manifolds. Formally speaking,
a Fedosov manifold is a triple (M2l, ω,∇) where (M2l, ω) is a (for definiteness
2l dimensional) symplectic manifold and ∇ is a symplectic torsion-free affine
connection. Connections satisfying these two properties are usually called Fedosov
connections in honor of Boris Fedosov who used them to obtain a deformation
quantization for symplectic manifolds. (See Fedosov [5].) Let us also mention that
in contrary to torsion-free Levi-Civita connections, the Fedosov ones are not unique.
We refer an interested reader to Tondeur [18] and Gelfand, Retakh, Shubin [6] for
more information.

To formulate the result on the ellipticity of the truncated symplectic twistor
complexes, one should know some basic facts on the structure of the curvature
tensor field of a Fedosov connection. In Vaisman [19], one can find a proof of a
theorem which says that such curvature tensor field splits into two parts if l ≥ 2,
namely into the symplectic Ricci and symplectic Weyl curvature tensor fields. If
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l = 1, only the symplectic Ricci curvature tensor field occurs. Fedosov manifolds
with zero symplectic Weyl curvature are usually called of Ricci type. (See also
Cahen, Schwachhöfer [3] for another but related context.)

After introducing the underlying geometric structure, let us start describing the
fields on which the differential operators from the symplectic twistor complexes
act. These fields are certain exterior differential forms with values in the so called
symplectic spinor bundle which is an associated vector bundle to the metaplectic
bundle. We shall introduce the metaplectic bundle briefly now. Because the first
homotopy group of the symplectic group Sp(2l,R) is isomorphic to Z, there exists
a connected two-fold covering of this group. The covering space is called the
metaplectic group, and it is usually denoted by Mp(2l,R). Let us fix an element of
the isomorphism class of all connected 2 : 1 coverings of Sp(2l,R) and denote it by λ.
In particular, the mapping λ : Mp(2l,R)→ Sp(2l,R) is a Lie group homomorphism,
and in this case it is also a Lie group representation. A metaplectic structure on
a symplectic manifold (M2l, ω) is a notion parallel to that of a spin structure
known from Riemannian geometry. In particular, one of its part is a principal
Mp(2l,R)-bundle Q covering twice the bundle of symplectic repères P on (M,ω).
This principal Mp(2l,R)-bundle is the mentioned metaplectic bundle and will be
denoted by Q in this paper.

As we have already written, the fields we are interested in are certain exterior
differential forms on M2l with values in the symplectic spinor bundle which is a
vector bundle over M associated to the chosen principal Mp(2l,R)-bundle Q via an
’analytic derivate’ of the Segal-Sahle-Weil representation. The Segal-Shale-Weil re-
presentation is a faithful unitary representation of the metaplectic group Mp(2l,R)
on the vector space L2(L) of complex valued square Lebesgue integrable functions
defined on a Lagrangian subspace L of the canonical symplectic vector space
(R2l, ω0). For technical reasons, we shall use the so called Casselman-Wallach glo-
balization of the underlying Harish-Chandra (g, K̃)-module of the Segal-Shale-Weil
representation. Here, g is the Lie algebra of the metaplectic group G̃ and K̃ is
a maximal compact subgroup of the group G̃. The vector space carrying this
globalization is the Schwartz space S := S(L) of smooth functions on L rapidly
decreasing in infinity with its usual Fréchet topology. This Schwartz space is the
’analytic derivate’ mentioned above. We shall denote the resulting representation
of Mp(2n,R) on S by L and call it the metaplectic representation, i.e., we have
L : Mp(2l,R) → Aut(S). Let us mention that S decomposes into two irreducible
Mp(2l,R)-submodules S+ and S−, i.e., S = S+ ⊕ S−. The elements of S are
usually called symplectic spinors. See Kostant [11] who used them in the context
of geometric quantization.

The underlying algebraic structure of the symplectic spinor valued exterior
differential forms is the vector space E :=

∧•(R2l)∗ ⊗ S =
⊕2l

r=0
∧r(R2l)∗ ⊗

S. Obviously, this vector space is equipped with the following tensor product
representation ρ of the metaplectic group Mp(2l,R). For r = 0, . . . , 2l, g ∈ Mp(2l,R)
and α ⊗ s ∈

∧r(R2l)∗ ⊗ S, we set ρ(g)(α ⊗ s) := λ(g)∗∧rα ⊗ L(g)s and extend
this prescription by linearity. With this notation in mind, the symplectic spinor
valued exterior differential forms are sections of the vector bundle E associated
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to the chosen principal Mp(2l,R)-bundle Q via ρ, i.e., E := Q ×ρ E. Now, we
shall restrict our attention to the mentioned specific symplectic spinor valued
exterior differential forms. For each r = 0, . . . , 2l, there exists a distinguished
irreducible submodule of

∧r(R2l)∗ ⊗ S± which we denote by Er
±. Actually, the

submodules Er
± are the Cartan components of

∧r(R2l)∗ ⊗ S±, i.e., the highest
weight of each of them is the largest one of the highest weights of all irreducible
constituents of

∧r(R2l)∗ ⊗ S± wrt. the standard choices. For r = 0, . . . , 2l, we
set Er := Er

+ ⊕Er
− and Er := Q×ρ Er. Further, let us denote the corresponding

Mp(2l,R)-equivariant projection from
∧r(R2l)∗ ⊗ S onto Er by pr. We denote the

lift of the projection pr to the associated (or ’geometric’) structures by the same
symbol, i.e., pr : Γ(M,Q×ρ (

∧r(R2l)∗ ⊗ S))→ Γ(M, Er).
Now, we are in a position to define the main subject of our investigation, namely

the symplectic twistor complexes. Let us consider a Fedosov manifold (M,ω,∇)
and suppose that (M,ω) admits a metaplectic structure. Let d∇S be the exterior
covariant derivative associated to ∇. For each r = 0, . . . , 2l, let us restrict the
associated exterior covariant derivative d∇S to Γ(M, Er) and compose the restriction
with the projection pr+1. The resulting operator, denoted by Tr, will be called
symplectic twistor operator. In this way, we obtain two sequences of differential
operators, namely 0 −→ Γ(M, E0) T0−→ Γ(M, E1) T1−→ · · · Tl−1−→ Γ(M, E l) −→ 0 and
0 −→ Γ(M, E l) Tl−→ Γ(M, E l+1) Tl+1−→ · · · T2l−1−→ Γ(M, E2l) −→ 0. It is known, see
Krýsl [14], that these sequences form complexes provided the Fedosov manifold
(M2l, ω,∇) is of Ricci type. These two complexes are the mentioned symplectic
twistor complexes. Let us notice, that we did not choose the full sequence of all
symplectic spinor valued exterior differential forms together with the exterior
covariant derivative acting between them because for a general or even Ricci type
Fedosov manifold, this sequence would not form a complex in general.

As we have mentioned, we shall prove that some parts of these two complexes
are elliptic. To obtain these parts, one should remove the last (i.e., the zero) term
and the second last term from the first complex and the first term (the zero space
again) from the second complex. The complexes obtained in this way will be called
truncated symplectic twistor complexes. Let us mention that by an elliptic complex,
we mean a complex of differential operators such that its associated symbol sequence
is an exact sequence of the sheaves in question. (See, e.g., Wells [21] for details.)

Let us make some remarks on the methods we have used to prove the ellipticity
of the truncated symplectic twistor complexes. We decided to use the so called
Schur-Weyl-Howe correspondence, which is referred to as the Howe correspondence
for simplicity in this text. The Howe correspondence in our case, i.e., for the
metaplectic group Mp(2l,R) acting on the space E of symplectic spinor valued
exterior forms, leads to the ortho-symplectic super Lie algebra osp(1|2) and a
certain representation of this algebra on E. We decided to use the Howe type
correspondence mainly because the spaces Er (defined above) can be characterized
via the mentioned representation of osp(1|2) easily and in a way described in this
paper. See R. Howe [10] for more information on the Howe type correspondence
in general. Let us also mention that besides this duality, the Cartan lemma on
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exterior differential forms was used. For other examples of elliptic complexes, we
refer an interested reader, e.g., to Stein and Weiss [17], Schmid [15], Hotta [9], and
Branson [2].

For an application of symplectic spinors in mathematical physics, see, e.g., Shale
[16] and Green, Hull [7] and the already mentioned article of Kostant [11]. In
the first reference, one can find an application of these spinors in quantizing of
Klein-Gordon fields and in the second one in the 10 dimensional super-string theory.
The purpose for taking symplectic spinor valued forms might be justified by the
intention to describe higher spin boson fields.

In the second section, we recall some known facts on symplectic spinors and
the space of symplectic spinor valued exterior forms and its decomposition into
irreducible submodules (Theorem 1). In the third chapter, basic information on
Fedosov manifolds and their curvature are mentioned and the symplectic twistor
complexes are introduced. In the fourth section, the symbol sequence of the
symplectic twistor complexes is computed and the ellipticity of the truncated
symplectic twistor complexes is proved (Theorem 7).

2. Symplectic spinor valued forms

In this paper the Einstein summation convention is used for finite sums, not
mentioning it explicitly unless otherwise is stated. (We will not use this convention
in the proof of the Lemma 6 and in the item 3 of the proof of the Theorem 7 only.)
The category of representations of Lie groups we shall consider is that one the
object of which are finite length admissible representations of a fixed reductive
group G on Fréchet vector spaces and the morphisms are continuous G-equivariant
maps between the objects. All manifolds, vector bundles and their sections in
this text are supposed to be smooth. The only manifolds which are allowed to
be of infinite dimension are the total spaces of vector bundles. If this is the case,
the bundles are supposed to be Fréchet. The base manifolds are always finite
dimensional. The sheaves we will consider are sheaves of smooth sections of vector
bundles. If E →M is a Fréchet vector bundle, we denote the sheaf of sections by
Γ, i.e., Γ(U) := Γ(U,E) for each open set U in M . For m ∈M , we denote the stalk
of Γ at m by Γm.

2.1. Symplectic linear algebra and basic notation. In order to set the notation, let
us start recalling some simple results from symplectic linear algebra. Let (V, ω0) be
a real symplectic vector space of dimension 2l, l ≥ 1. Let us choose two Lagrangian
subspaces L and L′, such that V ' L⊕L′ 1. It is easy to see that dim L = dim L′ = l.
Further, let us choose an adapted symplectic basis {ei}2li=1 of (V ' L⊕L′, ω0), i.e.,
{ei}2li=1 is a symplectic basis of (V, ω0) and {ei}li=1 ⊆ L and {ei}2li=l+1 ⊆ L′. The
basis dual to the basis {ei}2li=1 will be denoted by {εi}2li=1, i.e., for i, j = 1, . . . , 2l
we have εj(ei) = ιeiε

j = δji , where ιvα for an element v ∈ V and an exterior
form α ∈

∧•V∗, denotes the contraction of the form α by the vector v. Further
for i, j = 1, . . . , 2l, we set ωij := ω0(ei, ej) and define ωij , i, j = 1, . . . , 2l, by

1Let us recall that by Lagrangian, we mean maximal isotropic wrt. ω0.
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the equation ωijω
kj = δki for all i, k = 1, . . . , 2l. Let us remark that not only

ωij = −ωji, but also ωij = −ωji for i, j = 1, . . . , 2l.
As in the Riemannian case, we would like to rise and lower indices of tensor

coordinates. In the symplectic case, one should be more careful because of the
anti-symmetry of ω0. For coordinates Kab...c...d

rs...t...u of a tensor K over V. we
denote the expression ωicKab...c...d

rs...t by Kab...
i
...d

rs...t and Kab...c
rs...t...uωti by

Kab...c
rs...

i
...u and similarly for other types of tensors and also in the geometric

setting when we will be considering tensor fields over a symplectic manifold (M2l, ω).
Let us remark that ωij = −ωji = δji , i, j = 1, . . . , 2l. Further, one can also define
an isomorphism ] : V∗ → V,V∗ 3 α 7→ α] ∈ V, by the formula

α(w) = ω0(α], w) for each α ∈ V∗ and w ∈ V .
For α = αiε

i and j = 1, . . . , 2l, we get αj = α(ej) = ω0((α])iei, ej) = ωij(α])i =
(α])j which implies α] = (α])iei = αiei. Thus, we see that the rising of indices via
the form ω0 is realized by the isomorphism ].

Finally, let us introduce the groups we will be using. Let us denote the symplectic
group of (V, ω0) by G, i.e., G := Sp(V, ω0) ' Sp(2l,R). Because the fundamental
group of G = Sp(V, ω0) is Z, there exists a connected 2: 1, necessarily non-universal,
covering of G by the so called metaplectic group Mp(V, ω0) denoted by G̃ in this text.
Let us denote the mentioned two-fold covering map by λ, in particular λ : G̃→ G.
(See, e.g., Habermann, Habermann [8].)

2.2. Segal-Shale-Weil representation and symplectic spinor valued forms. The
Segal-Shale-Weil representation is a distinguished representation of the meta-
plectic group G̃ = Mp(V, ω0).2 This representation is unitary, faithful and does not
descend to a representation of the symplectic group. Its underlying vector space
is the vector space of complex valued square Lebesgue integrable functions L2(L)
defined on the chosen Lagrangian subspace L. Let us set S := V∞(HC(L2(L))),
where V∞ is the Casselman-Wallach globalization functor and HC denotes the
forgetful Harish-Chandra functor from the category of G̃-modules defined above
into the category of Harish-Chandra (g, K̃)-modules3. We shall denote the resulting
representation by L and call it the metaplectic representation. Thus, we have

L : Mp(V, ω0)→ Aut(S) .
The elements of S will be called symplectic spinors. It is well known that S splits
into two irreducible Mp(V, ω0)-submodules S+ and S−. Thus, we have S = S+⊕S−.
See the foundational paper of A. Weil [20] for more detailed information on the
Segal-Shale-Weil representation and Casselman [4] on this type of globalization. Let
us mention that choosing this particular globalization seems to be rather technical
from the point of view of the aim of our article.

In the proof of the ellipticity of the truncated symplectic twistor complexes,
we shall need some facts on the underlying vector space of the metaplectic repre-
sentation. Let us mention that it is known that S is isomorphic to the Schwartz

2The names oscillator and metaplectic are also used in the literature. See, e.g., Howe [10].
3Here, g is the Lie algebra of G̃ and K̃ is the maximal compact Lie subgroup of G̃.
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space S(L) of smooth functions rapidly decreasing in the infinity equipped with the
standard (locally convex) Fréchet topology generated by the supremum semi-norms.
(See, e.g., Habermann, Habermann [8] or Borel, Wallach [1].) For the convenience of
the reader, let us briefly recall the definition of the involved semi-norms. For each a,
b ∈ Nl0, the semi-norm qa,b is defined by the formula qa,b(f) := supx∈L|(xa∂bf)(x)|,
f ∈ S(L). Let us order the set (qa,b)a,b in the standard ’lexicographical’ way
and denote the resulting sequence of semi-norms by (qk)k∈N0 . These semi-norms
generate a complete metric topology on S(L). Taking a = b = 0, one sees that
the convergence with respect to the semi-norms implies the uniform convergence
immediately. Further, it is well known that the Schwartz space S(L) possesses a
Schauder basis. For a complex metric (e.g., Fréchet) space F , an ordered countable
set (fi)i∈N ⊆ F is called a Schauder basis of F if each element f ∈ F can be uni-
quely expressed as f =

∑∞
i=1 aifi for some ai ∈ C. Notice that from the uniqueness

of the coefficients ai immediately follows that 0 =
∑∞
i=1 aifi implies ai = 0 for all

i ∈ N. From the basic mathematical analysis courses, one knows that in the case of
the Schwartz space S(L), one can take, e.g., the lexicographically ordered sequence
of Hermite functions in l variables as the Schauder basis. We denote this basis by
(hi)i∈N.

Now, we may define the so called symplectic Clifford multiplication · : V×S→ S.
For s ∈ S, x = xjej ∈ L, xj ∈ R and i, j = 1, . . . , l, let us set

ei · s(x) := ıxis(x) and ei+l · s(x) := ∂s

∂xi
(x) .

In physics, this mapping (up to a constant multiple) is usually called the canonical
quantization. Let us remark that the definition is correct due to the preceding
paragraph. For each v, w ∈ V and s ∈ S, one can easily derive the following
commutation relation

(1) v · w · s− w · v · s = −ıω0(v, w)s .

(See, e.g., Habermann, Habermann [8].) We shall use this relation repeatedly and
without mentioning its use. Now, we prove that the symplectic Clifford multipli-
cation by a fixed non-zero vector v ∈ V is injective as a mapping from S into S.
We shall use the G̃-equivariance of the symplectic Clifford multiplication, i.e., the
fact L(g)(v · s) = [λ(g)v] · L(g)s which holds for each g ∈ G̃, v ∈ V and s ∈ S
(see Habermann, Habermann [8]). Thus, let us suppose that a fixed s ∈ S and a
fixed 0 6= v ∈ V are given such that v · s = 0. Because the action of the symplectic
group G on V − {0} is transitive and λ is a covering, there exists an element
g ∈ G̃ such that λ(g)v = e1. Applying L(g) on the equation v · s = 0, we get
L(g)(v · s) = 0. Using the above mentioned equivariance of the symplectic Clifford
multiplication, we get 0 = L(g)(v · s) = [λ(g)v] · (L(g)s) = e1 · (L(g)s). Denoting
L(g)s =: ψ and using the definition of the symplectic Clifford multiplication, we
obtain ıx1ψ = 0, which implies ψ(x) = 0 for each x = (x1, . . . , xl) ∈ L such that
x1 6= 0. By continuity of ψ ∈ S, we get ψ = 0. Because L is a group representation,
we get s = 0 from 0 = ψ = L(g)s, i.e., the injectivity of the symplectic Clifford
multiplication.
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Having defined the metaplectic representation and the symplectic Clifford mul-
tiplication, we shall introduce the underlying algebraic structure of the basic
geometric object we are interested in, namely the space E :=

∧•V∗ ⊗ S of sym-
plectic spinor valued exterior forms. The vector space E is considered with its
canonical (Fréchet) direct sum topology induced by the metric topology on the
(finite dimensional) space of exterior forms and the Fréchet topology on S. The
metaplectic group G̃ acts on E by the representation

ρ : G̃→ Aut(E) defined by the formula

ρ(g)(α⊗ s) := (λ(g)∗)∧rα⊗ L(g)s ,

where α ∈
∧r V∗, s ∈ S, r = 0, . . . , 2l, and it is extended by linearity also for

non-homogeneous elements.
For ψ = α⊗s ∈ E, v ∈ V and β ∈

∧• V∗, we set ιvψ := ιvα⊗s, β∧ψ := β∧α⊗s
and v · ψ := α⊗ v · s and extend these definitions by linearity to non-homogeneous
elements. Obviously, the contraction, the exterior multiplication and the Clifford
multiplication by a fixed vector or co-vector are continuous on E.

Now, we shall describe the decomposition of the space E into irreducible
G̃-submodules. For i = 0, . . . , l, let us set mi := i, and for i = l + 1, . . . 2l,
mi := 2l − i, and define the set Ξ of pairs of non-negative integers

Ξ :=
{

(i, j) ∈ N0 × N0 | i = 0, . . . , 2l, j = 0, . . . ,mi

}
.

One can say the set Ξ has a shape of a triangle if visualized in a 2-plane. (See
the Figure 1. below.) We use the elements of Ξ for parameterizing the irreducible
submodules of E.

In Krýsl [12] for each (i, j) ∈ Ξ, two irreducible G̃-modules Eij
± were uniquely

defined via the highest weights of their underlying Harish-Chandra modules and
by the fact that they are irreducible submodules of

∧i V∗ ⊗ S±. For convenience
for each (i, j) ∈ Z× Z \ Ξ, we set Eij

± := 0, and for each (i, j) ∈ Z× Z, we define
Eij := Eij

+ ⊕Eij
−.

In the following theorem, the decomposition of E into irreducible G̃-submodules
is described.

Theorem 1. For r = 0, . . . , 2l, the following decomposition into irreducible
G̃-modules

r∧
V∗ ⊗ S± '

⊕
j

(r,j)∈Ξ

Erj
± holds .

Proof. See Krýsl [12]. �

The following remark on the multiplicity structure of the module E is cru-
cial. It follows from the prescriptions for the highest weights of the underlying
Harish-Chandra modules of Eij

± (see Krýsl [13]).

Remark. 1. For any (r, j), (r, k) ∈ Ξ such that j 6= k, we have

Erj
± 6' Erk

±
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E00
± E10

± E20
± E30

± E40
± E50

± E60
±

E11
± E21

± E31
± E41

± E51
±

E22
± E32

± E42
±

E33
±

Fig. 1: Decomposition of
∧•V∗ ⊗ S± for 2l = 6.

(any combination of ± at both sides of the preceding relation is allowed).
Thus in particular,

∧r V∗ ⊗ S is multiplicity-free for each r = 0, . . . , 2l.

2. Moreover, it is known that Erj
± ' Esj

∓ for each (r, j), (s, j) ∈ Ξ. One
cannot change the order of + and − at precisely one side of the preceding
isomorphism without changing its trueness.

3. From the preceding two items, one gets immediately that there are no
submodules of

∧i V∗ ⊗ S isomorphic to Ei+1,i+1
± for each i = 0, . . . , l − 1.

In the Figure 1, one can see the decomposition structure of
∧•V∗ ⊗ S± in the

case of l = 3. For i = 0, . . . , 6, the ith column constitutes of the irreducible modules
in which the S±-valued exterior forms of form-degree i decompose.

In the next theorem, the decomposition of V∗ ⊗Eij , (i, j) ∈ Ξ, into irreducible
G̃-submodules is described. Let us remind the reader that due to our convention
Eij = 0 for (i, j) ∈ Z× Z \ Ξ. We will use this theorem in the proofs of Lemma 6
and Theorem 7 on the ellipticity of the truncated symplectic twistor complexes.

Theorem 2. For (i, j) ∈ Ξ, we have

(V∗ ⊗Eij) ∩ (
i+1∧

V∗ ⊗ S) ' Ei+1,j−1 ⊕Ei+1,j ⊕Ei+1,j+1 .

Proof. See Krýsl [13]. �

Remark. Roughly speaking, the theorem says that the wedge multiplication sends
each irreducible module Eij into at most three “neighbor” modules in the (i+ 1)st
column. (See the Figure 1.)

2.3. Operators related to a Howe type correspondence. In this section, we will
introduce five continuous linear operators acting on the space E of symplectic
spinor valued exterior forms. Let us mention that these operators are related to the
so called Howe type correspondence for the metaplectic group Mp(V, ω0) acting on
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E via the representation ρ. For r = 0, . . . , 2l and α⊗ s ∈
∧r V∗ ⊗ S, we set

F+ :
r∧

V∗ ⊗ S→
r+1∧

V∗ ⊗ S , F+(α⊗ s) := ı

2

2l∑
i=1

εi ∧ α⊗ ei · s

and

F− :
r∧

V∗ ⊗ S→
r−1∧

V∗ ⊗ S , F−(α⊗ s) := 1
2

2l∑
i=1

ωijιeiα⊗ ej · s

and extend them linearly. Further, we shall introduce the operators H, E+ and
E− acting also continuously on the space E =

∧•V∗ ⊗ S. We define
H := 2{F+, F−} and E± := ±2{F±, F±} ,

where { , } denotes the anti-commutator in the associative algebra End(E). By a
direct computation, we get

(2) E−(α⊗ s) = ı

2ω
ijιeiιejα⊗ s

for any α⊗s ∈
∧•V∗⊗S. Thus, we see that the operator E− acts on the form-part

of a symplectic spinor valued exterior form only. Because of that we will write
E−α⊗ s instead of E−(α⊗ s) simply.

In the next lemma, we sum-up some known facts and derive some new information
on the operators F±, E± and H which we shall need in the proof of the ellipticity
of the truncated symplectic twistor complexes.

Lemma 3. 1. The operators F±, E± and H are G̃-equivariant.
2. For i = 0, . . . , l, the operator F−|Eimi = 0 and for i = l, . . . , 2l, the operator
F+
|Eimi = 0.

3. The associative algebra
EndG̃(E) := {A : E → E continuous | Aρ(g) = ρ(g)A for all g ∈ G̃}
is, as an associative algebra, finitely generated by F+ and F− and the
G̃-equivariant projections p± : S→ S±.

4. For α⊗ s ∈
∧r V∗ ⊗ S, the following relations hold on E
[E+, E−] = H , [E−, F+] = −F− ,(3)

H(α⊗ s) = 1
2(r − l)α⊗ s ,(4)

{F+, ιv}(α⊗ s) = ı

2α⊗ v · s and [F−, v·](α⊗ s) = ı

2 ιvα⊗ s .(5)

Proof. See Krýsl [13] for the proof of the items 1 and 2, and Krýsl [12] for a
proof of the item 3 and of the relations in the rows (3) and (4). Now, suppose
we are given an element v = viei ∈ V, vi ∈ R, i = 1, . . . , 2l, and a homogeneous
element α ⊗ s ∈

∧j V∗ ⊗ S, j = 0, . . . , 2l. First, let us prove the first relation
in the row (5). Using the definition of F+, we may write {F+, ιv}(α ⊗ s) =
F+(ιvα⊗s)+ ı

2 ιv(εi∧α⊗ei·s) = ı
2 [εi∧ιvα⊗ei·s+viα⊗ei·s−εi∧ιvα⊗ei·s] = ı

2α⊗v·s.
Thus, the first relation of (5) follows now by linearity. Now, let us prove the second
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relation at the row (5). Using the definition of F− and the commutation relation
(1), we get F−(α⊗v ·s) = 1

2 (ωijιeiα⊗ej ·v ·s) = 1
2ω

ijιeiα⊗(v ·ej ·s−ıω0(ej , v)s) =
v ·F−(α⊗ s) + ı

2ω
ijιeiα⊗vjs = v ·F−(α⊗ s) + ı

2 ιvα⊗ s. Thus, the second relation
at the row (5) is proved. �

Remark. The operators F±, E± and H satisfy the commutation and anti-commu-
tation relations identical to that ones which are satisfied by the usual generators of
the ortho-symplectic super Lie algebra osp(1|2).

3. Symplectic twistor complexes and their elliptic parts

In this section, we define the notion of a Fedosov manifold, recall some informa-
tion on its curvature, introduce a symplectic analogue of the spin structure (the
metaplectic structure) and define the symplectic twistor complexes.

Let (M,ω) be a symplectic manifold. Let us consider an affine torsion-free sym-
plectic connection∇ on (M,ω) and denote the induced connection on Γ(M,

∧2
T ∗M)

by ∇ as well. Let us recall that by torsion-free and symplectic, we mean T (X,Y ) :=
∇XY −∇YX − [X,Y ] = 0 for all X,Y ∈ X(M) and ∇ω = 0. Such connections are
usually called Fedosov connections, and the triple (M,ω,∇) a Fedosov manifold.
See the Introduction and the references therein for more information on these
connections. The curvature tensor R∇ of a Fedosov connection is defined in the
classical way, i.e., formally by the same formula as in the Riemannian geometry. It
is known, see Vaisman [19], that R∇ splits into two parts, namely into the extended
symplectic Ricci and Weyl curvature tensor fields, here denoted by σ̃∇ and W∇

respectively. Let us display the definitions of these two curvature parts although
we shall not use them explicitly. For a symplectic frame (U, {ei}2li=1), U ⊆M , we
have the following local formulas

σij := Rkikj ,

2(l + 1)σ̃∇ijkn := ωinσjk − ωikσjn + ωjnσik − ωjkσin + 2σijωkn and
W∇ := R∇ − σ̃∇ ,

where i, j, k, n = 1, . . . , 2l. Let us call a Fedosov manifold (M,ω,∇) of Ricci type if
W∇ = 0.

Remark. Because the Ricci curvature tensor field σij is symmetric (see Vaisman
[19]), a possible candidate for the scalar curvature, namely σijωij , is zero.

Example. It is easy to see that each Riemann surface equipped with its volume
form as the symplectic form and with the Riemann connection is a Fedosov manifold
of Ricci type. Further for any l ≥ 1, the Fedosov manifold (CPl, ωFS ,∇) is also a
Fedosov manifold of Ricci type. Here, ωFS is the Kähler form associated to the
Fubini-Study metric and to the complex structure on the complex projective space
CPl, and ∇ is the Riemannian connection associated to the Fubini-Study metric.

Now, let us introduce the metaplectic structure the definition of which we have
sketched briefly in the Introduction. For a symplectic manifold (M2l, ω) of dimension
2l, let us denote the bundle of symplectic repères in TM by P and the foot-point
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projection from P onto M by p. Thus (p : P →M,G), where G ' Sp(2l,R), is a
principal G-bundle over M . As in the subsection 2.1, let λ : G̃→ G be a member
of the isomorphism class of the non-trivial two-fold coverings of the symplectic
group G. In particular, G̃ ' Mp(2l,R). Now, let us consider a principal G̃-bundle
(q : Q →M, G̃) over the chosen symplectic manifold (M,ω). We call the pair (Q,Λ)
metaplectic structure if Λ: Q → P is a surjective bundle morphism compatible with
the actions of G on P and that of G̃ on Q and with the covering λ in the same
way as in the Riemannian spin geometry. (For a more elaborate definition see, e.g.,
Habermann, Habermann [8].) Let us remark, that typical examples of symplectic
manifolds admitting a metaplectic structure are cotangent bundles of orientable
manifolds (phase spaces), Calabi-Yau manifolds and the complex projective spaces
CP2k+1, k ∈ N0.

Now, let us denote the Fréchet vector bundle associated to the introduced
principal G̃-bundle (q : Q →M, G̃) via the metaplectic representation L on S by
S. Thus, we have S = Q×L S. We shall call this associated vector bundle S →M
the symplectic spinor bundle. The sections φ ∈ Γ(M,S) will be called symplectic
spinor fields. Let us put E := Q×ρ E. For r = 0, . . . , 2l, we define Er := Q×ρ Er,
where Er abbreviates Ermr . The smooth sections Γ(M, E) will be called symplectic
spinor valued exterior differential forms. Because the operators E±, F± and H are
G̃-equivariant (see the Lemma 3 item 1), they lift to operators acting on sections of
the corresponding associated vector bundles. The same is true about the projections
pij , (i, j) ∈ Z× Z. We shall use the same symbols as for the mentioned operators
as for their “lifts” to the associated vector bundle structure.

Now, we shall make a use of the Fedosov connection. The Fedosov connection
∇ determines the induced principal G-bundle connection on the principal bundle
(p : P → M,G). This connection lifts to a principal G̃-bundle connection on the
principal bundle (q : Q → M, G̃) and defines the associated covariant derivative
on the symplectic bundle S, which we shall denote by ∇S , and call it the sym-
plectic spinor covariant derivative. See, e.g., Habermann, Habermann [8] for this
classical construction. The symplectic spinor covariant derivative ∇S induces the
exterior covariant derivative d∇S acting on Γ(M, E). For r = 0, . . . , 2l, we have
d∇

S : Γ(M,Q×ρ (
∧r V∗ ⊗ S))→ Γ(M,Q×ρ (

∧r+1 V∗ ⊗ S)). Now, we are able to
define the symplectic twistor operators. For r = 0, . . . , 2l, we set

Tr : Γ(M, Er)→ Γ(M, Er+1) , Tr := pr+1,mr+1d∇
S

|Γ(M,Er)

and call these operators symplectic twistor operators. Informally, one can say that
the operators are going on the lower edges of the triangle at the Figure 1. Let
us notice that F−(∇S − T0) is, up to a non-zero scalar multiple, the so called
symplectic Dirac operator introduced by K. Habermann. See, e.g., Habermann,
Habermann [8].

In the next theorem, we state that the sequences consisting of the symplectic
twistor operators form complexes. These sequences will be called symplectic twistor
sequences or complexes.
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Theorem 4. Let l ≥ 2 and (M2l, ω,∇) be a Fedosov manifold of Ricci type
admitting a metaplectic structure. Then

0 −→ Γ(M, E00) T0−→ Γ(M, E11) T1−→ · · · Tl−1−→ Γ(M, E ll) −→ 0
and

0 −→ Γ(M, E ll) Tl−→ Γ(M, E l+1,l+1) Tl+1−→ · · · T2l−1−→ Γ(M, E2l,2l) −→ 0
are complexes.

Proof. See Krýsl [14]. �

4. Ellipticity of the symplectic twistor complex

After the preceding summarizing parts, we now tend to the proof the ellipticity
of the truncated symplectic twistor complexes. Let us recall that by an elliptic
complex of differential operators we mean a complex of differential operators acting
on the sections of Fréchet bundles such that the associated complex of symbols of
the considered differential operators forms an exact sequence of sheaves. Let us
recall that a sequence (Γ(F•), π•) in the category of complexes of sheaves of sections
of Fréchet bundles F• is called exact if the stalks [Ker(πi)]m, [Im(πi−1)]m satisfy
the equality [Ker(πi)]m = [Im(πi−1)]m for each i ∈ Z and each m ∈ M , where
always when arriving at a preshaef and not at a sheaf, we consider its sheafification
not distinguishing it at the notation level. Let us notice that in the case of symbols,
we may speak about fibers and not necessarily about stalks because the symbols
are bundle and not only sheaf morphisms. See the classical text-book of Wells [21]
for more on ellipticity of complexes of differential operators.

After this introductory paragraph, we start with a simple lemma in which the
symbol of the exterior covariant symplectic spinor derivative associated to a Fedosov
manifold admitting a metaplectic structure is computed.

Lemma 5. Let (M,ω,∇) be a Fedosov manifold admitting a metaplectic structure,
S →M be the corresponding symplectic spinor bundle and d∇S denotes the exterior
covariant derivative. Then for each ξ ∈ Γ(M,T ∗M) and α ⊗ φ ∈ Γ(M, E), the
symbol σξ of d∇S is given by

σξ(α⊗ φ) = ξ ∧ α⊗ φ .

Proof. For f ∈ C∞(M), ξ ∈ Γ(M,T ∗M) and α ⊗ s ∈ Γ(M, E), let us compute
d∇

S (fα⊗ s)− fd∇S (α⊗ s) = df ∧α⊗ s+ fd∇
S (α⊗ s)− fd∇S (α⊗ s) = df ∧α⊗ s.

Using this computation, we get the statement of the lemma. �

From now on, we shall denote the projections pimi onto Ei by pi simply, i =
0, . . . , 2l. (In order not to cause a possible confusion, we will make no use of the
projections from E onto

∧i V∗ ⊗ S or of their lifts to the associated geometric
structures.) Due to the previous lemma and the definition of the symplectic twistor
operators, we get easily that for each i = 0, . . . , 2l and ξ ∈ Γ(M,T ∗M), the symbol
σξi of the symplectic twistor operator Ti is given by the formula

σξi (α⊗ s) := pi+1(ξ ∧ α⊗ s)
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for each α⊗ s ∈ Γ(M, E i).
In order to prove the ellipticity of the appropriate parts of the symplectic twistor

complexes, we need to compare the kernels and the images of the symbols maps
σξi for any ξ ∈ Γ(M,T ∗M) \ {0}. Therefore, we prove the following statement in
which the projections pi are more specified.

Lemma 6. For i = 0, . . . , l − 1, ξ ∈ V∗ and α⊗ s ∈ Ei, we have

(6) pi+1(ξ ∧ α⊗ s) = ξ ∧ α⊗ s+ βF+(α⊗ ξ] · s) + γ(E+ιξ]α⊗ s)

where β = 2
i−l and γ = ı

i−l .
For i = l + 1, . . . , 2l and ψ ∈ Ei−1,mi−1 ⊕Ei−1,mi−1−1 ⊕Ei−1,mi−1−2, we have

(7) pi−1ψ = ψ + 4
l − i

F−F+ψ + 1
l − i

E−E+ψ .

Proof. We prove the first relation only. The second formula can be derived following
the same lines of reasoning used for proving the first one. We split the proof of (6)
into four parts.

1. In this item, we prove that for a fixed i ∈ {0, . . . , l} and any k = 0, . . . , i,
there exists αik ∈ C such that

pi =
i∑

k=0
αik(F+)k(F−)k

with αi0 = 1 for each i = 0, . . . , l. Because for each i = 0, . . . , l, the
projections pi are G̃-equivariant, they can be expressed as (finite) linear
combinations of the elements of the finite dimensional vector space EndG̃(E).
Due to the Lemma 3 item 3 (cf. also Krýsl [12]), we know that the complex
associative algebra EndG̃(E) is generated by F+ and F− and by the
projections p±. It is easy to see that the projections p± can be omitted
from any expression for pi and thus, each projection pi can be expressed
just using F+ and F−. Due to the defining relation H = 2{F+, F−} and
the relation (4) on the values of H on homogeneous elements, one can
order the operators F+ and F− in an expression for pi in the way that
the operators F+ appear on the left-hand and the operators F− on the
right-hand side. In this way, we express pi as a linear combination of the
expressions of type (F+)a(F−)b for some a, b ∈ N0. Since the projection
pi does not change the form degree of a symplectic spinor valued exterior
form and F− and F+ decreases and increases the form degree by one,
respectively, the relation a = b follows. Because the operator F− decreases
the form degree by one, the summands (F+)k(F−)k for k > i actually do
not occur in the expression for the projection pi written above. Thus,

(8) pi =
i∑

k=0
αik(F+)k(F−)k

for some αik ∈ C, k = 0, . . . , i.
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Now, we shall prove the equation αi0 = 1, i = 0, . . . , l. By evaluating
the left-hand side of (8) on an element φ ∈ Ei we get φ, whereas at the
right-hand side the only summand which remains is the one indexed by
zero. (The other summands vanish because F− is G̃-equivariant, decreases
the form degree by one and there is no summand in

∧i−1 V∗⊗S isomorphic
to Ei

+ or to Ei
−. See the Remark item 3 below the Theorem 1.)

2. Now, suppose ξ ∈ V∗ and α⊗s ∈ Ei, i = 0, . . . , l−1. Due to the Theorem 2,
we know that φ := ξ∧α⊗s ∈ Ei+1,i−1⊕Ei+1,i⊕Ei+1,i+1. Applying pi+1 to
the element φ, only the zeroth, first, and second summand in the expression
pi+1φ =

∑i+1
k=0 α

i+1
k (F+)k(F−)kφ remains. (For k > 2, the kth summand

vanishes in the expression for pi+1φ because F− is G̃-equivariant, decreases
the form degree by one and there is no summand in

∧i−2 V∗⊗S isomorphic
to Ei+1,i−1

± or Ei+1,i
± or Ei+1,i+1

± . See the item 3 of the Remark below the
Theorem 1.)

3. Due to the previous item, we already know that for the element φ = ξ∧α⊗s
chosen above, we get

pi+1φ =
2∑
k=0

αi+1
k (F+)k(F−)kφ .

Using the relations (4) and (2), we may write
pi+1(ξ ∧ α⊗ s) = ξ ∧ α⊗ s+ αi+1

1 F+F−(ξ ∧ α⊗ s)
+ αi+1

2 (F+)2(F−)2(ξ ∧ α⊗ s)

= ξ ∧ α⊗ s+ αi+1
1

1
2F

+ωij [(ιeiξ)α⊗ ej · s− ξ ∧ ιeiα⊗ ej · s]

− αi+1
2 E+ ı

32ω
ijιeiιej (ξ ∧ α⊗ s)

= ξ ∧ α⊗ s− αi+1
1

1
2F

+[α⊗ ξ] · s+ 2ξ ∧ F−(α⊗ s)]

− αi+1
2 E+ ı

32ω
ijιei(ξjα⊗ s− ξ ∧ ιejα⊗ s) .

Because α⊗ s ∈ Ei, we get F−(α⊗ s) = 0 by Lemma 3 item 2. Using the
last written equation, we may write

pi+1(ξ ∧ α⊗ s) = ξ ∧ α⊗ s− αi+1
1
2 F+(α⊗ ξ] · s)

− ıαi+1
2

32 E+(2ξiιeiα⊗ s+ 2αi+1
2
ı

ξ ∧ E−α⊗ s) .

The last summand in this expression vanishes due to the Lemma 3 item 2 be-
cause first E− = −4F−F− (Eqn. (2)) and second α⊗ s ∈ Ei. Summing-up,
we have

pi+1φ = ξ ∧ α⊗ s− αi+1
1

1
2F

+(α⊗ ξ] · s)− αi+1
2

ı

16E
+ιξ]α⊗ s ,

which is a formula of the form written in the statement of the lemma.
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4. In this item, we shall determine the numbers β, γ ∈ C. Using the fact
that pi+1 is an idempotent ((pi+1)2 = pi+1), we get αi+1

1 = 4/(l − i) and
αi+1

2 = 16/(l − i) after a tedious but straightforward calculation.
Thus, comparing the last written formula of the preceding item and the

Eqn. (6), we get β = 2/(i− l) and γ = ı/(i− l).
�

Remark. For i = l, . . . , 2l, ξ ∈ V∗ and α ⊗ s ∈ Ei, the formula for pi+1 reads
simply

pi+1(ξ ∧ α⊗ s) = ξ ∧ α⊗ s
because of the Theorem 2 and the items 1 and 2 of the Remark below the Theorem 1.
(Notice that one may also use the relation (7).)

Now, we are prepared to prove the ellipticity of the truncated symplectic twistor
complexes.

Theorem 7. Let (M2l, ω,∇) be a Fedosov manifold of Ricci type admitting a
metaplectic structure, l ≥ 2. Then the truncated symplectic twistor complexes

0 −→ Γ(M, E0) T0−→ Γ(M, E1) T1−→ · · · Tl−2−→ Γ(M, E l−1)

and

Γ(M, E l) Tl−→ Γ(M, E l+1) Tl+1−→ · · · T2l−1−→ Γ(M, E2l) −→ 0

are elliptic.

Proof. We should prove the equations Ker(σξi )m = Im(πξi−1)m for the appropriate
indices i and for each point m ∈M . Here the constituents of the previous equation
are fibers of the corresponding shaeves.

1. First, we prove that the sequences mentioned in the formulation of the theorem
are complexes. For i = 0, . . . , l−2, l, . . . , 2l−1, ψ ∈ Γ(M, E i) and a differential
1-form ξ ∈ Γ(M,T ∗M), we may write 0 = pi+2(0) = pi+2((ξ ∧ ξ) ∧ ψ) =
pi+2(ξ∧ Id(ξ∧ψ)) = pi+2(ξ∧

∑mi+1
j=0 pi+1,j(ξ∧ψ)). Due to the Theorem 2, we

know that the last written expression equals pi+2(ξ ∧ pi+1(ξ ∧ ψ)) = σξi+1σ
ξ
iψ

and thus σξi+1σ
ξ
i = 0.

2. Second, we prove the relation Ker(σξi )m ⊆ Im(σξi−1)m for each 0 6= ξ ∈ T ∗mM
and i = 0, . . . , l−2. Here σξ−1 = 0 is to be understood. Suppose a homogeneous
element α⊗ s ∈ E im is given such that σξi (α⊗ s) = 0. (In the next item, we
will treat the general non-homogeneous case.) Due to the paragraph below
the Lemma 5, we know that 0 = σξi (α⊗ s) = pi+1(ξ ∧ α⊗ s). We shall find
an element ψ ∈ E i−1

m such that pi(ξ ∧ ψ) = α⊗ s.
Using formula (6) for the projection (Lemma 6), we may rewrite the

equation pi+1(ξ ∧ α⊗ s) = 0 into

(9) ξ ∧ α⊗ s+ βF+(α⊗ ξ] · s) + γE+ιξ]α⊗ s = 0 .
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Applying the operator E− (formula (2)) on the both sides of the previous
equation and using the first commutation relation in the row (3) from Lemma 3,
we get
ı

2ω
ijιeiιej (ξ ∧ α)⊗ s+ βE−F+(α⊗ ξ] · s) + γ(E+E− − 2H)ιξ]α⊗ s = 0 .

Using the graded Leibniz property of ιξ] , the relation (4) for the values of
H on form-homogeneous elements and the second relation in the row (3) from
Lemma 3, we obtain
ı

2(−2ιξ] − 2ıξ ∧ E−)(α⊗ s) + βF+E−(α⊗ ξ] · s)− βF−(α⊗ ξ] · s)

+ γE+E−ιξ]α⊗ s+ γ(l − i+ 1)ιξ]α⊗ s = 0 .

The operator E− commutes with the operator of the symplectic Clifford
multiplication (by the vector field ξ]) and also with the contraction ιξ] because
E− = ı

2ω
ijιeiιej (formula (2)). Using these two facts, we get

ı

2(−2ιξ] − 2ıξ ∧ E−)(α⊗ s) + βF+ξ] · E−(α⊗ s)− βF−(α⊗ ξ].s)

+ γE+ιξ]E
−α⊗ s+ γ(l − i+ 1)ιξ]α⊗ s = 0 .

Because F−(α⊗s) = 0 (Lemma 3 item 2), we have E−α⊗s = 4F−F−(α⊗
s) = 0. Thus, we obtain the identity

−ıιξ]α⊗ s− βF−(α⊗ ξ] · s) + γ(l − i+ 1)ιξ]α⊗ s = 0 .
Substituting the second relation in the row (5) into the previous equation

and using the fact F−(α⊗ s) = 0 again, we get

−ıιξ]α⊗ s− βξ] · F−(α⊗ s)− β ı2 ιξ]α⊗ s

+ γ(l − i+ 1)ιξ]α⊗ s = 0 .
Using the prescription for the numbers β and γ (Lemma 6) and the already
twice used relation F−(α⊗ s) = 0, we get (−ı+ γ(l − i+ 1)− β ı2 )ιξ]α⊗ s =
−2ıιξ]α⊗ s = 0 from which the equation

(10) ιξ]α⊗ s = 0
follows.

Substituting this relation into the prescription for the projection pi (Eqn.
(9)), we get for i = 0, . . . , l − 2 the equation

(11) 0 = pi+1(ξ ∧ α⊗ s) = ξ ∧ α⊗ s+ βF+(α⊗ ξ] · s) .
Applying the contraction operator ιξ] to the previous equation and using

the first formula in the row (5) from Lemma 3, we obtain

0 = −ξ ∧ ιξ]α⊗ s− βF+ιξ](α⊗ ξ] · s) + β
ı

2α⊗ ξ
].(ξ] · s) .

Using the fact that the contraction and symplectic Clifford multiplication
commute, we have

0 = −ξ ∧ ιξ]α⊗ s− βF+ξ] · (ιξ]α⊗ s) + β
ı

2α⊗ ξ
] · (ξ] · s) .



ELLIPTICITY OF THE SYMPLECTIC TWISTOR COMPLEX 325

Substituting the Eqn. (10) into the previous equation, we obtain

α⊗ ξ] · (ξ] · s) = 0 .
Substituting the definition of F+ into the equation (11) multiplying it by

ξ] and using the equation ιξ]α⊗ s = 0 (Eqn. (10)) again, we get

0 = ξ ∧ α⊗ ξ] · s+ β
ı

2ε
i ∧ α⊗ ξ] · ei · ξ] · s ,

0 = ξ ∧ α⊗ ξ] · s+ β
ı

2ε
i ∧ α⊗ (ei · ξ] · ξ] · −ıω0(ξ], ei)ξ]·)s .

Substituting the identity α⊗ ξ] · ξ] · s = 0 into the previous equation, we
obtain

0 = (1 + 1
2β)ξ ∧ α⊗ ξ] · s .

If i = 0, . . . , l − 2, the coefficient 1 + β/2 6= 0, and thus by dividing, we get
ξ ∧α⊗ ξ] · s = 0. Because the symplectic Clifford multiplication by a non-zero
vector is injective (see the subsection 2.2), we have

(12) 0 = ξ ∧ α⊗ s .
3. In this item, we will still suppose i = 0, . . . , l − 2. Let us consider a general

element φ ∈ Ker(σξi )m ⊆ E im and denote the basis of
∧i

T ∗mM by (αik)nik=1,
ni ∈ N. Due to the finite dimensionality of

∧i
T ∗mM , there exist complex

numbers ajk, j ∈ N, k = 1, . . . , ni, such that φ =
∑ni
k=1

∑∞
j=1 ajkα

ik ⊗ hj
where (hj)j∈N is the Schauder basis of Sm corresponding to the Schauder basis
of S(L) ' Sm. Because the operators F±, H, E±, ιξ and ξ∧ are continuous
on Em, we get 0 =

∑ni
k=1

∑∞
j=1 ajkξ∧αik⊗hj precisely in the same way as we

obtained the formula (12) in the homogeneous situation (item 2 of this proof).
Using the definition of the Schauder basis again, we have for each j ∈ N the
equation

∑ni
k=1 ajkξ∧αik = 0. Using the Cartan lemma on exterior differential

systems, we get the existence of a family (βj)j∈N of (i− 1) forms such that
ξ ∧ βj =

∑ni
k=1 ajkα

ik. It is possible to see (e.g. by taking the standard
Hodge-type metric on the space of forms) that one can choose the family
(βj)j∈N in such a way that ψ :=

∑∞
j=1 βj ⊗ hj converges. Thus, we may write

σξi−1(
∑∞
j=1 βj ⊗ hj) = pi(

∑∞
j=1 ξ ∧ βj ⊗ hj) = pi(

∑∞
j=1

∑ni
k=1 ajkα

ik ⊗ hj) =
pi(φ) = φ. Summing-up, we have that ψ =

∑∞
j=1 βj ⊗ hj is the desired

preimage. Thus, φ ∈ Im(σξi−1)m.
4. Now, we prove that Ker(σξi )m ⊆ Im(σξi−1)m for i = l + 1, . . . , 2l, 0 6= ξ ∈

Γ(M,T ∗M). If φ = α⊗ s ∈ Ker(σξi )m, then 0 = pi+1(ξ ∧ φ) = ξ ∧ α⊗ s. Due
to the Cartan lemma, we know that there is a form β ∈

∧i−1
T ∗mM such that

ξ∧β⊗ s = α⊗ s. Define ψ := pi−1(β⊗ s). Using the formula (7), the equation
ξ ∧ β = α and the assumption F+(α⊗ s) = 0 (implied by α⊗ s ∈ Eimi), one
can prove that ξ ∧ ψ = α⊗ s in an analogous way as we proceeded the item
2 of this proof. The dehomogenization goes in the steps similar to that ones
written in the preceding item.

�
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In the future, we would like to interpret the appropriate (reduced) cohomology
groups of the truncated symplectic twistor complexes. Eventually, one can search
for an application of the symplectic twistor complexes in representation theory.
One can also try to prove that the full (i.e., not truncated) symplectic twistor
complexes are not elliptic by finding an example of a suitable Ricci type Fedosov
manifold admitting a metaplectic structure.
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