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Abstract. It is proved by an order theoretical and purely algebraic method that any order
bounded orthosymmetric bilinear operator b : E×E → F where E and F are Archimedean
vector lattices is symmetric. This leads to a new and short proof of the commutativity of
Archimedean almost f -algebras.
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1. Introduction

In [10] G. Buskes and A. van Rooij introduced the class of orthosymmetric bilin-

ear operators on vector lattices. It is only recently that the class of such operators

have been getting more attention, see [8], [11]. A number of important properties of

such operators was revealed. In particular, Buskes and van Rooij in [10] proved that

any positive orthosymmetric bilinear operator is symmetric. However, the disadvan-

tage of this approach is that the proof is not intrinsic, i.e., does not take place in

the vector lattice itself and makes use of analytic means. The same authors in [10]

proved that every positive orthosymmetric bilinear operator defined on a sublattice

of an f -algebra can be factored through a positive linear operator and the algebra

multiplication. These results gave rise to the concept of the square of a vector lat-

tice, developed in [11]. Recently, G. Buskes and A.G. Kusraev in [8] proved that

all orthosymmetric order bounded bilinear operators from E × E to the relatively

uniformly complete vector lattice F can be represented as compositions of order

bounded linear operators from E⊙ the square of E to F with the canonical bimor-

phism. Since we wish to avoid representation in this paper, we refer the reader to the

proof of Theorem 5.8 in [13] for purely algebraic proof of some analytic techniques
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(Lemma 1.6 in [8]) used by Buskes and Kusraev in the proof of the above result.

We also refer to [13] for a purely algebraic approach based on the tensor product

used by the same authors in the construction of the square of a vector lattice. The

present paper is largely motived by that work of Buskes and Kusraev [8]. In fact it

could have been entitled “A look at order bounded orthosymmetric operators from

an algebraic point of view”. Indeed, our main purpose in this paper is to prove that

any order bounded orthosymmetric bilinear operator is symmetric. All our results,

as well as their proofs, are purely algebraic and do not use any analytic tools. In

this sense, we provide not only new results but also new techniques, which we think

are useful additions to the literature.

The paper is organized as follows. The main purpose of the first section is to fix

the notion and terminology and give a brief outline of some useful results which are

of particular importance to this paper. The main results are discussed in the second

section.

We use [1], [4], [5], [6], [7], [12], [14], [15], [16], [17] as a starting point and we refer

the reader to these standard monographs for terminology, notation and properties

not explained or proved in this paper.

2. Preliminaries

A lattice ordered group (briefly an ℓ-group) G is called Archimedean if for each

nonzero x ∈ G the set {nx : n = ±1,±2, . . .} has no upper bound in G. In order

to avoid unnecessary repetition we will assume throughout that all ℓ-groups under

consideration are Archimedean. An ℓ-group G which is simultaneously a ring with

the property that xy ∈ G+ for all x, y ∈ G+ (equivalently, |xy| 6 |x||y| for all

x, y ∈ G) (where G+ is the positive cone of G) is called a lattice ordered ring (briefly,

an ℓ-ring). If in addition, G is a real vector lattice, then G is called an ℓ-algebra.

An ℓ-algebra A is said to be an f -algebra if x ∧ y = 0 and z ∈ A+ implies

xz ∧ y = zx ∧ y = 0. An almost f -algebra A is an ℓ-algebra with the additional

property that x ∧ y = 0 in A implies xy = 0. Both the f -algebras and the almost

f -algebras are automatically commutative and have positive squares. More about

almost f -algebras can be found in [3].

Next, we discuss linear operators on vector lattices. Let E and F be vector lattices

with positive cones E+ and F+, respectively, and let T be a linear operator from E

into F . One says that T is order bounded if for each x ∈ E+ there exists y ∈ F+

such that |T (z)| 6 y in F whenever |z| 6 x in E. The linear operator T is said to be

positive if T (E+) ⊂ F+. The linear operator T is called a lattice homomorphism (or

Riesz homomorphism) whenever x∧y = 0 implies T (x)∧T (y) = 0. Obviously, every

lattice homomorphism is positive and then order bounded. The set Lb(E) of all order
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bounded linear operators on E is an ordered vector space with respect to pointwise

operations and order. The positive cone of Lb(E) is the subset of all positive linear

operators. We end this section with some definitions and notation of the classes of

bilinear operators on products of Archimedean vector lattices. Let E, F , and G be

Archimedean vector lattices. A bilinear operator b : E × F → G is called positive if

b(x, y) > 0 for all 0 6 x ∈ E and 0 6 y ∈ F , and regular if it can be represented as

the difference of two positive bilinear operators. For any positive bilinear operator b

we have |b(x, y)| 6 b(|x|, |y|) for all x ∈ E, y ∈ F . A bilinear operator b : E×F → G

is said to be a lattice bimorphism whenever the partial operators

b(x, ·) : F → G,

y 7→ b(x, y)

and

b(·, y) : E → G

x 7→ b(x, y)

are lattice homomorphisms for every x ∈ E+ and y ∈ F+. Evidently, every lattice

bimorphism is positive. For a positive bilinear operator b the following assertions are

equivalent:

(1) b is a lattice bimorphism;

(2) |b(x, y)| = b(|x|, |y|) for all x ∈ E and y ∈ F .

A bilinear operator b : E ×E → G is called orthosymmetric if |x| ∧ |y| = 0 implies

b(x, y) = 0 for arbitrary x, y ∈ E. The difference of two positive orthosymmetric

bilinear operators is called orthoregular. Recall also that b is said to be symmetric if

b(x, y) = b(y, x).

3. Main results

We plunge into the matter by the following basic proposition, which turns out to

be useful for later purposes.

Proposition 1. Let E be a vector space and b : E × E → R a bilinear operator

such that b(x, y) = 0 if and only if b(y, x) = 0 for x, y ∈ E. Then

b(x, y) = b(y, x) for all x, y ∈ E

or

b(x, y) = − b(y, x) for all x, y ∈ E.
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P r o o f. We distinguish two cases:

First case: if b(x, x) = 0 for all x ∈ E then b(x + y, x + y) = 0 for all x, y ∈ E.

Thus b(x, x)+b(x, y)+b(y, x)+b(y, y) = 0. On the other hand, b(x, x) = b(y, y) = 0.

Finally, b(x, y) = −b(y, x) for all x, y ∈ E.

Second case: if there exists a ∈ E such that b(a, a) 6= 0, we claim that b(x, y) =

b(y, x) for all x, y ∈ E. The proof proceeds in two steps.

Step 1 : We show that b(a, x) = b(x, a) for all x ∈ E. For every λ ∈ R, we have

b(a, x + λa) = b(a, x) + λb(a, a). We derive that for λ = −b(a, x)/b(a, a) we get

b(a, x + λa) = 0. It follows from the hypothesis that b(x + λa, a) = 0. Therefore,

b(a, x + λa) = b(x + λa, a) = 0 and thus b(a, x) + λb(a, a) = b(x, a) + λb(a, a) and

therefore,

b(a, x) = b(x, a) for all x ∈ E.

Step 2 : We claim that b(x, y) = b(y, x) for all x, y ∈ E. If b(x, a) 6= 0, then for

λ = −b(x, y)/b(x, a)we get b(x, y+λa) = 0 and thus b(y+λa, x) = 0. So b(x, y+λa) =

b(y + λa, x) = 0, therefore b(x, y) + λb(x, a) = b(y, x) + λb(a, x). Moreover, step 1

yields that b(x, y) = b(y, x). Similarly, if b(y, a) 6= 0 we obtain b(y, x) = b(x, y). Now,

b(x, a) = b(y, a) = 0. So, for all λ ∈ R, we have b(x + a, y + λa) = b(x, y) + λb(a, a).

If we put λ = −b(x, y)/b(a, a), then b(x + a, y + λa) = 0. By hypothesis, we obtain

that b(y + λa, x + a). This shows that b(x + a, y + λa) = b(y + λa, x + a) = 0. We

get that b(x, y)+ λb(a, a) = b(y, x) + λb(a, a) and so

b(x, y) = b(y, x)

for all x, y ∈ E, and the proof is completed. �

The next result is deduced from the preceding proposition by classical means. The

details follow.

Theorem 2. Let E be an Archimedean vector lattice. Then any orthosymmetric

lattice bimorphism from E × E to R is symmetric.

P r o o f. Let b : E × E → R be an orthosymmetric lattice bimorphism. In order

to apply Proposition 1, we show that b(x, y) = 0 if and only if b(y, x) = 0 for all

x, y ∈ E.

Suppose first that x, y ∈ E+ are such that b(x, y) = 0. Now by hypothesis and

(x − x ∧ y) ∧ (y − x ∧ y) = 0 it follows that b(y − x ∧ y, x − x ∧ y) = 0. So, we can

write

(3.1) b(y, x) = b(y, x ∧ y) + b(x ∧ y, x) − b(x ∧ y, x ∧ y).
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Observe now that 0 6 b(x ∧ y, x ∧ y) 6 b(x, y) = 0, so b(x ∧ y, x ∧ y) = 0. The fact

that b is orthosymmetric and positive implies b(z, z) > 0 for all z ∈ E. This yields

that b(λy + x ∧ y, λy + x ∧ y) > 0 for all λ ∈ R. This implies λ2b(y, y) + λ(b(y, x ∧

y)+ b(x∧ y, y))+ b(x∧ y, x∧ y) > 0 for all λ ∈ R. From the “negative discriminant”

inequality, it follows that (b(y, x∧ y) + b(x∧ y, y))2 6 4b(y, y)b(x∧ y, x∧ y). On the

other hand, b(x ∧ y, x ∧ y) = 0, so we have b(y, x ∧ y) + b(x ∧ y, y) = 0. Now from

the fact that b(y, x ∧ y) > 0 and b(x ∧ y, y) > 0 (because x, y ∈ E+) it follows that

b(y, x ∧ y) = b(x ∧ y, y) = 0.

Similarly b(x, x ∧ y) + b(x ∧ y, x) = 0. And thus b(x, x ∧ y) = b(x ∧ y, x) = 0.

Finally, via (3.1) we obtain

b(y, x) = 0.

Assume now that x, y ∈ E such that b(x, y) = 0. By virtue of the fact that

|b(x, y)| = b(|x|, |y|), we obtain b(|x|, |y|) = 0. So by the first case, b(|y|, |x|) = 0 and

thus b(y, x) = 0. Consequently,

b(x, y) = 0 if and only if b(y, x) = 0

for all x, y ∈ E. According to the preceding proposition b(x, y) = b(y, x) for all

x, y ∈ E or b(x, y) = −b(y, x) for all x, y ∈ E. However, since b is positive (it is

a lattice bimorphism) we have in the latter case 0 6 b(x, y) = −b(y, x) 6 0 for all

x, y ∈ E+. This implies that b is zero on E. Hence, we have

b(x, y) = b(y, x) for all x, y ∈ E,

which completes the proof of the theorem. �

We are now in position to prove the first main result of the present work.

Theorem 3. Let E and F be Archimedean vector lattices. Then any orthosym-

metric lattice bimorphism b from E × E to F is symmetric.

P r o o f. Let x, y ∈ E+, consider the vector sublattice E0 of E generated by x

and y, the vector sublattice F0 of F generated by b(x, y), b(y, x), b(x, x) and b(y, y).

By [9, 1.2 (ii)], F0 is a slender vector sublattice of F . Now by Theorem 2.2 in [9], the

set H(F0) of all real-valued lattice homomorphisms on F0 separates the points of F0,

that is, if a ∈ F0 and w(a) = 0 for all w ∈ H(F0) then a = 0. On the other hand, for

all w ∈ H(F0) the bilinear operator w ◦b/Eo×E0
: Eo×E0 → R is an orthosymmetric

lattice bimorphism. So, by the preceding theorem, w ◦ b/Eo×E0
is symmetric. And

thus

w(b(x, y)) = w(b(y, x))
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for all w ∈ H(F0). Consequently,

b(x, y) = b(y, x)

for all x, y ∈ E+. The general case is deduced by linearity since every x, y ∈ E are of

the form x = x+ −x− and y = y+ − y−, where x+, x−, y+, y− ∈ E+. This completes

the proof of the theorem. �

For an arbitrary Archimedean vector lattice E there exist a vector lattice E⊙

(unique up to isomorphism) and a lattice bimorphism ⊙ : (x, y) → x⊙ y from E×E

to E⊙ such that the following assertions hold:

(1) if b is a symmetric lattice bimorphism from E×E to some vector lattice F then

there is a unique lattice homomorphism Φb : E⊙ → F with b = Φb⊙;

(2) given an arbitrary u ∈ E⊙, there is e0 ∈ E+ such that, for every ε > 0, one can

choose x1, . . . , xn, y1, . . . , yn ∈ E with

∣

∣

∣

∣

u −

n
∑

i=1

xi ⊙ yi

∣

∣

∣

∣

6 εe0 ⊙ e0;

(3) for any x, y ∈ E we have x ⊙ y = 0 if and only if |x| ∧ |y| = 0;

(4) given an element 0 < u ∈ E⊙, there exists e ∈ E+ with 0 < e0 ⊙ e0 6 u.

The vector lattice E⊙ (or the pair (E⊙,⊙)) uniquely (up to lattice isomorphism)

determined by an arbitrary Archimedean vector lattice E is called the square of E.

The lattice bimorphism ⊙ : E × E → E⊙ is called the canonical bimorphism. The

construction of E⊙ was first introduced in [9] as follows. Denote by J the smallest

relatively uniformly closed order ideal in Fremlin’s tensor product E ⊗E containing

the set {x ⊗ y : x, y ∈ E, x⊥y}. Define E⊙ = E ⊗ E/J and ⊙ = ϕ⊗ where ϕ :

E ⊗ E → E⊙ is the quotient homomorphism. Then E⊙ is an Archimedean vector

lattice and ⊙ is a lattice bimorphism. Observe that ⊙ is orthosymmetric. Indeed,

if x⊥y then x ⊗ y ∈ J = kerϕ, thus x ⊙ y = ϕ(x ⊗ y). At this point ⊙ is an

orthosymmetric lattice bimorphism. Consequently, by the preceding theorem, ⊙ is

symmetrical, so that

x ⊙ y = y ⊙ x

for all x, y ∈ E.

We have gathered now all of the ingredients for the proof of the central theorem

of this paper, which states that any order bounded orthosymmetric bilinear operator

E × E → F , where E and F are Archimedean vector lattices, is symmetric. The

details follow.

Theorem 4. Let E and F are Archimedean vector lattices. Then every order

bounded orthosymmetric bilinear operator b : E × E → F is symmetric.
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P r o o f. By virtue of the fact that F ⊂ F ru, the uniform completion of F , we

can assume without loss of generality that F is relatively uniformly complete. Now

according to Theorem 3.4 in [8] there exists a unique order bounded linear operator

Φb : E⊙ → F such that

b(x, y) = Φb(x ⊙ y)

for all x, y ∈ E. On the other hand, we have already mentioned before the preceding

theorem that ⊙ is symmetric. So, we can write

b(x, y) = Φb(x ⊙ y) = Φb(y ⊙ x) = b(y, x).

Thus b is symmetric, which is the desired result. �

In particular, any orthoregular bilinear operator from E × E to F , where E and

F are Archimedean vector lattices, is symmetric.

Now, we give a short historical note about the following application. The commu-

tativity of almost f -algebras has been established by many authors. This result has

been proved by Basly and Triki in [2], some years later by Bernau and Huijsmans

in [3], and more recently, in [10], by Buskes and van Rooij. Note that except for

Bernau and Huijsmans, these authors rely on analytical means and the proof does not

take place in the almost f -algebra itself. Note also the disadvantage of Bernau and

Huijsman’s approach that the proof is long and quite involved. In the final paragraph

of this paper, we intend to make some contributions to this area. We give a new

proof of the commutativity of almost f -algebras that uses purely algebraic and order

theoretical means and does not involve any representation theorems. Interestingly,

it deals with positive orthosymmetric maps rather than algebra multiplications and

it does not make use of associativity.

Corollary 5. Any Archimedean almost f -algebra is commutative.

P r o o f. Let A be an Archimedean vector lattice, and assume that A is an almost

f -algebra under ∗. Then the bilinear operator

b : A × A → A

(x, y) 7→ x ∗ y

is a positive orthosymmetric operator, and by the preceding theorem b is symmetric

which implies that

x ∗ y = y ∗ x

for all x, y ∈ E and we are done. �
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