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Abstract. We characterize compact embeddings of Besov spaces B
0,b
p,r(R

n) involving the
zero classical smoothness and a slowly varying smoothness b into Lorentz-Karamata spaces
Lp,q;b̄(Ω), where Ω is a bounded domain in R

n and b̄ is another slowly varying function.
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1. Introduction

Classical Besov spaces play a significant role in numerous parts of mathematics.

These spaces are particular cases of Besov spaces of generalized smoothness. The

latter spaces have been studied especially by the Soviet mathematical school (cf. [21,

Sect. 8]). A lot of attention has been paid to optimal embeddings and to growth and

continuity envelopes of such spaces (see, e.g., [15], [17], [22], [6], [7], [14], [2], [20],

[5], [18], [19], [24, Chapt. 1], [16], [3], [4], etc.). This paper is a direct continuation of

[4], where local embeddings of Besov spaces B0,b
p,r = B0,b

p,r(R
n) into classical Lorentz

spaces were characterized. These results have been applied to establish sharp local

embeddings of Besov spaces in question into Lorentz-Karamata spaces and to deter-

mine growth envelopes of spaces B0,b
p,r. Besov spaces B0,b

p,r are defined by means of the

modulus of continuity and they involve the zero classical smoothness and a slowly

varying smoothness b.1 In particular, the following two theorems are proved there.

1We refer to Section 2 for precise definitions.
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Theorem 1.1 ([4, Theorem 3.3]). Let 1 6 p < ∞, 1 6 r 6 ∞, 0 < q 6 ∞ and let

b be a slowly varying function on the interval (0, 1) (notation b ∈ SV (0, 1)) satisfying

(1.1) ‖t−1/rb(t)‖r,(0,1) = ∞.

Put b(t) = 1 if t ∈ [1, 2). Define, for all t ∈ (0, 1),

(1.2) br(t) := ‖s−1/rb(s1/n)‖r,(t,2)

and

(1.3) b̃(t) :=

{

br(t)
1−r/q+r/ max{p,q}b(t1/n)r/q−r/ max{p,q} if r 6= ∞

b∞(t) if r = ∞.

Then the inequality

(1.4) ‖t1/p−1/q b̃(t)f∗(t)‖q,(0,1) . ‖f‖B0,b
p,r

holds for all f ∈ B0,b
p,r if and only if q > r.

Theorem 1.2 ([4, Theorem 3.4(i)]). Let 1 6 p < ∞, 1 6 r 6 q 6 ∞ and let

b ∈ SV (0, 1) satisfy (1.1). Put b(t) = 1 if t ∈ [1, 2), define br and b̃ by (1.2) and (1.3).

Let κ be a non-negative and non-increasing function on (0, 1). Then the inequality

(1.5) ‖t1/p−1/q b̃(t)κ(t)f∗(t)‖q,(0,1) . ‖f‖B0,b
p,r

holds for all f ∈ B0,b
p,r if and only if κ is bounded.

In the whole paper we assume that any slowly varying function on (0, 1) is extended

by 1 to the interval (0,∞).

Theorems 1.1 and 1.2 describe the optimal continuous embeddings of the Besov

space B0,b
p,r(R

n) into the Lorentz-Karamata space Lp,q;b̃(Ω), where Ω is a domain in

R
n of finite Lebesgue measure. Namely, these theorems imply that2

(1.6) B0,b
p,r(R

n) →֒ Lp,q;b̃(Ω)

and that this embedding is optimal within the scale of Lorentz-Karamata spaces.

The aim of this paper is to characterize compact embeddings of the Besov space

B0,b
p,r(R

n) into Lorentz-Karamata spaces. Our main result reads as follows.

2Note that (1.6) means that the mapping u 7→ u|Ω from B
0,b
p,r(R

n) into Lp,q;b̃(Ω) is

continuous.
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Theorem 1.3. Let 1 6 p < ∞, 1 6 r 6 q 6 ∞ and let b ∈ SV (0, 1) satisfy (1.1).

Define functions br and b̃ by (1.2) and (1.3). Let Ω be a bounded domain in R
n

and let 0 < P 6 p. Assume that b̄ ∈ SV (0, 1) and, if P = p > q, that b̄/b̃ is

a non-negative and non-decreasing function on the interval (0, δ) for some δ ∈ (0, 1).

Then3

(1.7) B0,b
p,r(R

n) →֒→֒ LP,q;b(Ω)

if and only if

(1.8) lim
t→0+

t1/P b̄(t)

t1/pb̃(t)
= 0.

In fact, Theorem 1.3 is a corollary of more general Theorems 3.3, 4.4 and Re-

mark 3.4 below. The sufficiency part of Theorem 1.3 follows from Theorem 3.3 and

Remark 3.4, while the necessity part from Theorem 4.4 and Remark 3.4.

In particular, Theorem 1.3 shows that the optimal embedding (1.6) is not com-

pact. Such assertions about optimal embeddings of Sobolev-type spaces into Banach

function spaces are known. It seems that the same is true for optimal embeddings

of Besov-type spaces but it is almost impossible to find the corresponding references

to a proof of this property in the existing literature. This is even the case of optimal

embeddings of classical Besov spaces into Lebesgue spaces Lq with q ∈ [1,∞). (For

example, in such a case the result can be proved by contradiction using [24, Proposi-

tion 4.6, p. 197], combined with the relationship between Besov and Triebel-Lizorkin

spaces [23, (22), p. 96] and the fact that F 0
q2 = Lq if 1 < q < ∞ [23, Remark 2,

p. 25]). Note also that target spaces of our embeddings need not be Banach function

spaces.

The paper is organized as follows. Section 2 contains notation and preliminaries.

In Section 3 we prove the sufficiency part of Theorem 1.3, while Section 4 is devoted

to the proof of the necessity part of this theorem.

2. Notation and preliminaries

Whenever convenient, we use the abbreviation LHS(∗) (RHS(∗)) for the left-

(right-)hand side of the relation (∗).

3Note that (1.7) means that the mapping u 7→ u|Ω from B
0,b
p,r(R

n) into LP,q;b(Ω) is

compact.
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For two non-negative expressions A and B, the symbol A . B (or A & B) means

that A 6 cB (or cA > B), where c is a positive constant independent of the appro-

priate quantities involved in A and B. If A . B and A & B, we write A ≈ B and

say that A and B are equivalent.

Given a set A, its characteristic function is denoted by χA. If a ∈ R
n and r > 0,

the symbol B(a, r) stands for the closed ball in R
n centred at a with the radius r.

The volume of B(0, 1) in Rn is denoted by Vn though, in general, we use the notation

| · |n for the Lebesgue measure in R
n.

Let Ω be a measurable subset of Rn. The symbol M(Ω) is used to denote the

family of all complex-valued or extended real-valued (Lebesgue-)measurable func-

tions defined a.e. on Ω. By M+(Ω) we mean the subset of M(Ω) consisting of

those functions which are non-negative a.e. on Ω. If Ω = (a, b), we write simply

M(a, b) and M+(a, b) instead of M(Ω) and M+(Ω), respectively. By M+(a, b; ↓)

orM+(a, b; ↑) we mean the collection of all f ∈ M+(a, b) which are non-increasing

or non-decreasing on (a, b), respectively. Finally, by W(Ω) or by W(a, b) we denote

the class of weight functions on Ω or on (a, b), consisting of all measurable functions

which are positive a.e. on Ω or on (a, b), respectively. A subscript 0 is added to

the previous notation (as inM0(Ω), for example) if one restricts to functions in the

considered class which are finite a.e.

Given two quasi-Banach spaces X and Y , we write X = Y (and say that X and

Y coincide) if X and Y are equal in the algebraic and the topological sense (their

quasi-norms are equivalent). The symbol X →֒ Y or X →֒→֒ Y means that X ⊂ Y

and the natural embedding of X in Y is continuous or compact, respectively.

Let either a = 1 or a = ∞. A function b ∈ M+
0 (0, a), b 6≡ 0, is said to be

slowly varying on (0, a), notation b ∈ SV (0, a), if, for each ε > 0, there are functions

gε ∈ M+
0 (0, a; ↑) and g−ε ∈ M+

0 (0, a; ↓) such that

tεb(t) ≈ gε(t) and t−εb(t) ≈ g−ε(t) for all t ∈ (0, a).

Let p, q ∈ (0,∞], let Ω be a domain in R
n and let w ∈ W(0, |Ω|n) be such that

(2.1) Wp,q;w(t) := ‖τ1/p−1/qw(τ)‖q;(0,t) < ∞ for all t ∈ (0, |Ω|n],

where ‖ · ‖q;E is the usual Lq-(quasi-)norm on the measurable set E. The Lorentz-

type space Lp,q;w(Ω) consists of all (classes of) functions f ∈ M(Ω) for which the

quantity

(2.2) ‖f‖p,q;w;Ω := ‖t1/p−1/qw(t)f∗(t)‖q;(0,|Ω|n)

is finite; here f∗ denotes the non-increasing rearrangement of f given by

(2.3) f∗(t) = inf{λ > 0: |{x ∈ Ω: |f(x)| > λ}|n 6 t}, t > 0.
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We shall also need the maximal function f∗∗ of f∗ defined by

f∗∗(t) =
1

t

∫ t

0

f∗(s) ds, t > 0.

It is known (see, e.g., [9, Cor. 2] for the case q ∈ (0,∞)) that the functional (2.2) is

a quasi-norm on Lp,q;w(Ω) if and only if the function Wp,q;w given by (2.1) satisfies

(2.4) Wp,q;w ∈ ∆2,

that is, Wp,q;w(2t) . Wp,q;w(t) for all t ∈ (0, |Ω|n/2). One can easily verify that this

is satisfied provided that

w(2t) . w(t) for a.e. t ∈ (0, |Ω|n/2).

Moreover, since the relation w ∈ W(0, |Ω|n) yields Wp,q;w(t) > 0 for all t ∈ (0, |Ω|n),

one can prove that the space Lp,q;w(Ω) is complete (cf. the proof of [8, Prop. 2.2.9]).

If q ∈ [1,∞), the spaces Lp,q;w(Ω) coincide with the classical Lorentz spaces Λq(ω).

On the other hand, if w is a slowly varying function, then Lp,q;w(Ω) is the so-called

Lorentz-Karamata space introduced in [13]. The scale of Lorentz-Karamata spaces

involves as particular cases a lot of well-known spaces (cf., e.g., [13], [11]).

If Ω = R
n, we sometimes omit this symbol in the notation and, for example,

simply write ‖ · ‖p,q;w or Lp,q;w instead of ‖ · ‖p,q;w;Rn or Lp,q;w(Rn), respectively.

Definition 2.1. A subset K of a Lorentz-type space Y = Y (Ω), with |Ω|n < ∞,

is said to have a uniformly absolutely continuous quasi-norm in the space Y , written

K ⊂ UAC(Y ), if

∀ε > 0, ∃δ > 0: f ∈ K, |E|n < δ ⇒ ‖fχE‖Y < ε.

Lemma 2.2 ([12, Lemma 2.2]). Let K ⊂ UAC(Y ), where Y = Lp,q;w(Ω) is

a Lorentz-type space such that Wp,q;w ∈ ∆2 and ‖χΩ‖Y ≡ Wp,q;w(|Ω|n) < ∞. Then

every sequence {ui} ⊂ K which converges in measure on Ω converges also in the

space Y .

Given f ∈ Lp, 1 6 p < ∞, the first difference operator ∆h of step h ∈ R
n

transforms f to ∆hf defined by

(∆hf)(x) := f(x + h) − f(x), x ∈ R
n,

whereas the modulus of continuity of f is given by

ω1(f, t)p := sup
h∈R

n

|h|6t

‖∆hf‖p, t > 0.

927



Definition 2.3. Let 1 6 p < ∞, 1 6 r 6 ∞ and let b ∈ SV (0, 1) satisfy (1.1).

The Besov space B0,b
p,r = B0,b

p,r(R
n) consists of those functions f ∈ Lp for which the

norm

(2.5) ‖f‖B0,b
p,r

:= ‖f‖p + ‖t−1/rb(t)ω1(f, t)p‖r,(0,1)

is finite.

3. Proof of the sufficiency part of Theorem 1.3

We shall start with some auxiliary statements. Our first assertion is an analogue

of the well-known result which states that the classical Besov space Bs
p,r(R

n) is

compactly embedded into the Lebesgue space Lp(Ω) when Ω is a bounded domain in

R
n, 1 6 p < ∞, 1 6 r 6 ∞ and s > 0. While such a statement can be easily proved

from the corresponding one for Sobolev spaces by interpolation of compactness, such

an argument does not work in the limiting case when the classical Besov space is

replaced by the Besov space B0,b
p,r(R

n) involving only slowly varying smoothness.

Nevertheless, the result continues to hold.

Lemma 3.1. Let 1 6 p < ∞, 1 6 r 6 ∞ and let b ∈ SV (0, 1) satisfy (1.1). If Ω

is a bounded domain in R
n, then

B0,b
p,r(R

n) →֒→֒ Lp(Ω).

P r o o f. Put X := B0,b
p,r(R

n) and B(R) := {x ∈ R
n : |x| < R} for R ∈ (0,∞).

Since Ω is bounded, there is R0 ∈ (0,∞) such that Ω ⊂ B(R0). Take a Lipschitz

continuous function ϕ in R
n satisfying

(3.1) 0 6 ϕ 6 1, ϕ = 1 on Ω and ϕ = 0 on R
n \ B(R0 + 1).

As

‖u‖p,Ω 6 ‖ϕu‖p,Rn ,

it is sufficient to prove that the set

K := {ϕu : ‖u‖X 6 1}

is precompact in Lp(R
n).

By [10, Thm. IV.8.21], it is enough to verify that
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(i) K is bounded in Lp(R
n);

(ii) given ε > 0, there exists δ > 0 such that

‖∆h(ϕu)‖p,Rn < ε

for every u ∈ X , ‖u‖X 6 1, and all h ∈ R
n with |h| < δ;

(iii) given ε > 0, there exists R1 ∈ (0,∞) such that

‖ϕu‖p,Rn\B(R) < ε

for every u ∈ X , ‖u‖X 6 1, and all R ∈ (R1,∞).

Condition (i) is satisfied, since

‖ϕu‖p,Rn . ‖u‖p,Rn 6 ‖u‖X for all u ∈ X.

Condition (iii) holds as well. Indeed, taking R1 := R0 + 1 and using (3.1), we

obtain for all u ∈ X and R ∈ (R1,∞) that

‖ϕu‖p,Rn\B(R) 6 ‖ϕu‖p,Rn\B(R0+1) = 0

and condition (iii) follows.

To verify condition (ii), first note that, for all u ∈ X and x, h ∈ R
n,

|∆h(ϕu)(x)| 6 ‖ϕ‖∞,Rn |∆hu(x)| + ‖∆hϕ‖∞,Rn |u(x)|

. |∆hu(x)| + |h||u(x)|,

which implies that

(3.2) ‖∆h(ϕu)‖p,Rn . ‖∆hu‖p,Rn + |h|‖u‖p,Rn.

Second, if u ∈ X and ‖u‖X 6 1, then, for any T ∈ (0, 1),

1 > ‖u‖X > ‖t−1/rb(t)ω1(u, t)p‖r,(T,1) > ω1(u, T )p‖t
−1/rb(t)‖r,(T,1).

Hence, for any T ∈ (0, 1) and all u ∈ X with ‖u‖X 6 1,

ω1(u, T )p 6 ‖t−1/rb(t)‖−1
r,(T,1).

Together with (1.1), this shows that given ε1 > 0 there is δ1 > 0 such that

(3.3) ‖∆hu‖p,Rn < ε1

for all h ∈ R
n, |h| < δ1, and every u ∈ X with ‖u‖X 6 1. Now, making use of (3.2)

and (3.3), we can easily verify condition (ii). �
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Lemma 3.2. Let 0 < q 6 ∞, I = (α, β) ⊂ R, w, v ∈ M+(I) and let C ∈ (0,∞).

Then

(3.4) ‖fw‖q,I 6 C‖fv‖q,I for all f ∈ M+(I; ↓)

if and only if

(3.5) ‖w‖q,(α,t) 6 C‖v‖q,(α,t) for all t ∈ I.

P r o o f. To prove the necessity part, test inequality (3.4) with f := χ(α,t), where

t ∈ I.

To prove the sufficiency part, we distinguish two cases:

(i) Let 0 < q < ∞. Then the proof is analogous to that of [1, Chapt. 2, Prop. 3.6].

Start with

f q =

k
∑

j=1

cjχ(α,tj),

where the coefficients cj are positive and α < t1 < . . . < tk < β, and verify the

result. Then apply the monotone convergence theorem to prove the general case.

(ii) Let q = ∞. Put W (t) := ‖w‖∞,(α,t), t ∈ I. Since f ∈ M+(I; ↓), exchanging

the essential suprema, we obtain that

(3.6) ‖fW‖∞,I = ‖fw‖∞,I .

Moreover, by (3.5),

f(t)W (t) 6 Cf(t)‖v‖∞,(α,t) 6 C‖fv‖∞,(α,t) 6 C‖fv‖∞,I

for a.e. t ∈ I. Consequently,

‖fW‖∞,I 6 C‖fv‖∞,I for all f ∈ M+(I; ↓).

Together with (3.6), this yields the result. �
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Theorem 3.3. Let 1 6 p < ∞, 1 6 r 6 q 6 ∞ and let b ∈ SV (0, 1) satisfy (1.1).

Define br and b̃ by (1.2) and (1.3). Let Ω be a bounded domain in R
n, 0 < P 6 p

and let w ∈ W(0, |Ω|n) be such that the function

WP,q,w(t) := ‖τ1/P−1/qw(τ)‖q,(0,t), t ∈ (0, |Ω|n],

satisfies

WP,q,w ∈ ∆2 and WP,q,w(|Ω|n) < ∞.

If

(3.7) lim
t→0+

WP,q,w(t)

Wp,q,b̃(t)
= lim

t→0+

‖τ1/P−1/qw(τ)‖q,(0,t)

‖τ1/p−1/q b̃(τ)‖q,(0,t)

= 0,

then

B0,b
p,r(R

n) →֒→֒ LP,q,w(Ω).

P r o o f. By Theorem 1.2,

(3.8) B0,b
p,r(R

n) →֒ Lp,q,b̃(Ω).

Put

K := {u ∈ B0,b
p,r(R

n) : ‖u‖B0,b
p,r(Rn) 6 1}.

If {u′
i}i∈N ⊂ K, then Lemma 3.1 implies that there is a subsequence {ui}i∈N ⊂

{u′
i}i∈N such that ui → u in Lp(Ω). Thus, by [1, Chapt. 1, Thm. 1.4], ui

meas
−→ u on

Ω. In view of Lemma 2.2, it is sufficient to show that

(3.9) K ⊂ UAC (LP,q,w(Ω)).

Let ε > 0. By (3.7), there is δ ∈ (0, |Ω|n) such that

(3.10) ‖τ1/P−1/qw(τ)‖q,(0,t) 6 ε‖τ1/p−1/q b̃(τ)‖q,(0,t) for all t ∈ (0, δ].

Assume that u ∈ K and M ⊂ Ω with |M |n < δ. Since (uχM )∗ 6 u∗χ[0,δ), we obtain

(3.11) ‖uχM‖P,q,w;Ω 6 ‖t1/P−1/qw(t)u∗(t)‖q,(0,δ).

Moreover, using (3.10) and Lemma 3.2, we arrive at

(3.12) ‖t1/P−1/qw(t)u∗(t)‖q,(0,δ) 6 ε‖t1/p−1/q b̃(t)u∗(t)‖q,(0,δ)

for all u ∈ Lp,q,b̃(Ω). Estimates (3.11), (3.12) and embedding (3.8) imply that

‖uχM‖P,q,w;Ω . ε‖u‖B0,b
p,r(Rn) 6 ε for all u ∈ K

and (3.9) follows. �
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Remark 3.4. (i) Let P = p ∈ (0,∞) and w = b̄ ∈ SV (0, |Ω|n). Then

WP,q,w(t)

Wp,q,b̃(t)
≈

t1/P b̄(t)

t1/pb̃(t)
=

b̄(t)

b̃(t)
for all t ∈ (0, |Ω|n)

and (3.7) is equivalent to

(3.13) lim
t→0+

b̄(t)

b̃(t)
= 0.

(ii) Let 0 < P < p < ∞ and w = b̄ ∈ SV (0, |Ω|n). Then

WP,q,w(t)

Wp,q,b̃(t)
≈

t1/P b̄(t)

t1/pb̃(t)
for all t ∈ (0, |Ω|n)

and condition (3.7) holds since

lim
t→0+

WP,q,w(t)

Wp,q,b̃(t)
= lim

t→0+

t1/P b̄(t)

t1/pb̃(t)
= 0.

P r o o f of the sufficiency part of Theorem 1.3. The sufficiency part of Theo-

rem 1.3 follows from Theorem 3.3 and Remark 3.4. �

4. Proof of the necessity part of Theorem 1.3

We start with some auxiliary results.

Lemma 4.1 ([3, Proposition 3.5]). (i) Let f ∈ L1(R
n) and let F (x) := f∗(Vn|x|

n),

x ∈ R
n. Then

ω1(F, t)1 . n

∫ tn

0

f∗(s) ds + (n − 1)t

∫ ∞

tn

f∗(s)s−1/n ds

= t

(
∫ ∞

tn

s−1/n

∫ s

0

(f∗(u) − f∗(s)) du
ds

s

)

for all t > 0 and f ∈ L1(R
n).

(ii) Let 1 < p < ∞, f ∈ Lp(R
n) and let F (x) = f∗∗(Vn|x|

n), x ∈ R
n. Then

ω1(F, t)p . t

(
∫ ∞

tn

s−p/n

∫ s

0

(f∗(u) − f∗(s))p du
ds

s

)1/p

for all t > 0 and f ∈ Lp(R
n).
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Making use of Lemma 4.1, one can prove the next statement.

Lemma 4.2. Let 1 6 p < ∞, 1 6 r 6 ∞ and let b ∈ SV (0, 1) satisfy (1.1). If

f ∈ Lp(0, 1) and the function F is defined on R
n by

F (x) = f∗(Vn|x|
n) when p = 1 and F (x) = f∗∗(Vn|x|

n) when 1 < p < ∞,

then

‖F‖B0,b
p,r

.

∥

∥

∥

∥

t1−1/rb(t)

(
∫ 2

tn

s−p/n

∫ s

0

(f∗(u) − f∗(s))p du
ds

s

)1/p∥
∥

∥

∥

r,(0,1)

.

P r o o f. Let f ∈ Lp(0, 1). Then f∗(t) = 0 for t >1. Therefore,
∫ s

0 (f∗(u) −

f∗(s))p du =
∫ s

0
f∗(u)p du =

∫ 1

0
f∗(u)p du when s ∈ (1,∞). Hence,

(4.1) ‖f‖p =

(
∫ 1

0

f∗(u)p du

)1/p

≈

(
∫ 2

1

s−p/n−1 ds

∫ 1

0

f∗(u)p du

)1/p

≈ ‖t1−1/rb(t)‖r,(0,1)

(
∫ 2

1

s−p/n−1

∫ s

0

(f∗(u) − f∗(s))p du ds

)1/p

6

∥

∥

∥

∥

t1−1/rb(t)

(
∫ 2

tn

s−p/n−1

∫ s

0

(f∗(u) − f∗(s))p du ds

)1/p∥
∥

∥

∥

r,(0,1)

.

Moreover, using (4.1), we obtain

(4.2)

∥

∥

∥

∥

t1−1/rb(t)

(
∫ ∞

tn

s−p/n

∫ s

0

(f∗(u) − f∗(s))p du
ds

s

)1/p∥
∥

∥

∥

r,(0,1)

6

∥

∥

∥

∥

t1−1/rb(t)

(
∫ 1

tn

s−p/n

∫ s

0

(f∗(u) − f∗(s))p du
ds

s

)1/p∥
∥

∥

∥

r,(0,1)

+

∥

∥

∥

∥

t1−1/rb(t)

(
∫ ∞

1

s−p/n

∫ 1

0

f∗(u)p du
ds

s

)1/p∥
∥

∥

∥

r,(0,1)

.

∥

∥

∥

∥

t1−1/rb(t)

(
∫ 2

tn

s−p/n

∫ s

0

(f∗(u) − f∗(s))p du
ds

s

)1/p∥
∥

∥

∥

r,(0,1)

.

Now, since ‖F‖p . ‖f‖p, the desired result follows from (2.5), Lemma 4.1,

[1, Chapt. 2, Corollary 7.8] and estimates (4.1) and (4.2). �

We shall also need the following assertion.
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Lemma 4.3. Let 1 6 p < ∞, 1 6 r 6 ∞, and let b ∈ SV (0, 1). Then

∥

∥

∥

∥

t1−1/rb(t)

(
∫ 2

tn

s−p/n

∫ s

0

(f∗(u) − f∗(s))p du
ds

s

)1/p∥
∥

∥

∥

r,(0,1)

≈ ‖f‖p +

∥

∥

∥

∥

t−1/rb(t1/n)

(
∫ t

0

(f∗(u) − f∗(t))p du

)1/p∥
∥

∥

∥

r,(0,1)

≈

∥

∥

∥

∥

t−1/rb(t1/n)

(
∫ t

0

f∗(u)p du

)1/p∥
∥

∥

∥

r,(0,2)

for all f ∈ Lp(0, 1).

P r o o f. Lemma is a consequence of [4, Lemmas 4.4 and 4.6] and [1, Chapt. 2,

Corollary 7.8]. �

Theorem 4.4. Let 1 6 p < ∞, 1 6 r 6 q 6 ∞ and let b ∈ SV (0, 1) satisfy (1.1).

Define br and b̃ by (1.2) and (1.3). Let Ω be a bounded domain in R
n, 0 < P 6 p

and let w ∈ W(0, |Ω|n) be such that the function

WP,q,w(t) := ‖τ1/P−1/qw(τ)‖q,(0,t), t ∈ (0, |Ω|n],

satisfies

WP,q,w ∈ ∆2 and WP,q,w(|Ω|n) < ∞.

If

(4.3) B0,b
p,r(R

n) →֒→֒ LP,q,w(Ω),

then (3.7) holds provided that one of the following conditions is satisfied:

(A) p 6 q;

(B) q < p, P < p,

there exists b̄ ∈ SV (0, δ) with δ ∈ (0, |Ω|n) such that w = b̄ on (0, δ);

(C) q < p, P = p,

there exists b̄ ∈ SV (0, δ) with δ ∈ (0, |Ω|n) such that w = b̄ on (0, δ) and

b̄/b̃ ∈ M+
0 (0, δ; ↑).

P r o o f. Without loss of generality, we can suppose that |Ω|n = 1.

Assume that (4.3) holds but (3.7) does not and seek for a contradiction. It is

enough to find a sequence {Fk}k∈N ⊂ B0,b
p,r(R

n) with

(4.4) sup
k∈N

‖Fk‖B0,b
p,r(Rn) . 1

such that {Fk}k∈N has no convergent subsequence in LP,q,w(Ω).
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To this end, it is sufficient to construct a sequence {Fk}k∈N ⊂ B0,b
p,r(R

n) satisfying

(4.4) and

‖Fk‖P,q,w,Ω & 1 for all sufficiently large k ∈ N,(4.5)

Fk
meas
−→ 0 on Ω.(4.6)

Indeed, suppose that F ∈ LP,q,w(Ω) is the limit of a convergent subsequence

{Fσ(k)}k∈N in the space LP,q,w(Ω), that is,

(4.7) ‖Fσ(k)(x) − F (x)‖P,q;w;Ω → 0 as k → ∞.

Then, by (2.1) and (2.2),

(4.8) WP,q;w(|{x ∈ Ω: |Fσ(k)(x) − F (x)| > α}|n)

= ‖τ1/P−1/qw(τ)‖q; (0,|{x∈Ω: |Fσ(k)(x)−F (x)|>α}|n)

= ‖τ1/P−1/qw(τ)χ∗
{x∈Ω: |Fσ(k)(x)−F (x)|>α}(τ)‖q;(0,|Ω|n)

= ‖χ{x∈Ω: |Fσ(k)(x)−F (x)|>α}‖P,q;w;Ω

6 α−1‖Fσ(k)(x) − F (x)‖P,q;w;Ω.

Since the functionWP,q,w satisfiesWP,q,w(t) > 0 if t ∈ (0, |Ω|n], (4.8) and (4.7) imply

that Fσ(k)
meas
−→ F on Ω (otherwise (4.8) and (4.7) lead to a contradiction). Together

with (4.6), this means that F = 0 a.e. on Ω, which contradicts (4.5).

So, to prove our theorem, we will construct a sequence {Fk}k∈N ⊂ B0,b
p,r(R

n) sat-

isfying (4.4), (4.5) and (4.6).

As (3.7) does not hold, there exists a sequence (tk)k∈N ⊂ (0, 1), tk+1 < tk, k ∈ N,

lim
k→∞

tk = 0, satisfying

(4.9) WP,q,w(tk) & Wp,q,b̃(tk) for all k ∈ N.

Let (fk)k∈N ⊂ Lp(0, 1). If p = 1, put Fk := f∗
k (Vn|x|

n), x ∈ R
n, and, if 1 < p < ∞,

put Fk := f∗∗
k (Vn|x|

n), x ∈ R
n. Then, by Lemmas 4.2 and 4.3,

(4.10) ‖Fk‖B0,b
p,r(Rn) .

∥

∥

∥

∥

t−1/rb(t1/n)

(
∫ t

0

f∗
k (u)p du

)1/p∥
∥

∥

∥

r,(0,2)

.

∥

∥

∥

∥

t−1/rb(t1/n)

(
∫ t

0

f∗
k (u)p du

)1/p∥
∥

∥

∥

r,(0,tk)

+

∥

∥

∥

∥

t−1/rb(t1/n)

(
∫ t

0

f∗
k (u)p du

)1/p∥
∥

∥

∥

r,(tk,2)

=: N1 + N2.
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(i) Let p 6 q. Put fk(t) := t
−1/p
k br(tk)−1χ(0,tk](t), t ∈ (0, 1). Then

(4.11) N1 = t
−1/p
k br(tk)−1

∥

∥

∥

∥

t−1/rb(t1/n)

(
∫ t

0

(χ(0,tk](u))p du

)1/p∥
∥

∥

∥

r,(0,tk)

= t
−1/p
k br(tk)−1‖t1/p−1/rb(t1/n)‖r,(0,tk)

≈ br(tk)−1b(t
1/n
k ) . 1 for all k ∈ N.

(The last estimate in (4.11) follows from the properties of slowly varying functions—

cf. [4, Lemma 2.2, part 7].) Moreover, for all k ∈ N,

(4.12) N2 = t
−1/p
k br(tk)−1

(
∫ tk

0

du

)1/p

‖t−1/rb(t1/n)‖r,(tk,2) = 1.

Thus, by (4.10)–(4.12), condition (4.4) is satisfied.

On the other hand, for all k ∈ N,

(4.13) ‖Fk‖P,q,w,Ω = ‖t1/P−1/qw(t)F ∗
k (t)‖q,(0,1)

> ‖t1/P−1/qw(t)fk(t)‖q,(0,tk)

= fk(tk)‖t1/P−1/qw(t)‖q,(0,tk)

= t
−1/p
k br(tk)−1WP,q,w(tk).

Using estimate (4.9), the facts that b̃ = br if p 6 q and Wp,q,b̃(tk) ≈ t
1/p
k br(tk) for all

k ∈ N, we obtain from (4.13) that (4.5) holds.

Given any α > 0, we have

|{x ∈ Ω: |Fk(x)| > α}|n = |{t ∈ (0, 1): F ∗
k (t) > α}|1

= |{t ∈ (0, tk) : t
−1/p
k br(tk)−1 > α}|1

+ χ(1,∞)(p)|{t ∈ (tk, 1): t−1t
1−1/p
k br(tk)−1 > α}|1

6 tk + χ(1,∞)(p)α−1t
1−1/p
k br(tk)−1.

Thus, using the properties of slowly varying functions, we see that (4.6) is satisfied.

(ii) Let (B) hold. Together with the assumption r 6 q, this shows that r < ∞.

Take γ > 0 and put fk(t) := br(tk)γϕ(t)χ(0,tk), t ∈ (0, 1), where ϕ ∈ M+
0 (0, 1; ↓) and

ϕ(t) ≈ t−1/pbr(t)
−γ−1−r/pb(t1/n)r/p for all t ∈ (0, 1).

It is easy to verify that, given β > 0, then

(4.14) Iβ(t) :=

∫ t

0

u−1br(u)−β−rb(u1/n)r du ≈ br(t)
−β for all t ∈ (0, 1).
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Using this estimate, we obtain

(4.15) N1 =

∥

∥

∥

∥

t−1/rb(t1/n)

(
∫ t

0

f∗
k (u)p du

)1/p∥
∥

∥

∥

r,(0,tk)

≈ br(tk)γ

∥

∥

∥

∥

t−1/rb(t1/n)

(
∫ t

0

ϕ(u)p du

)1/p∥
∥

∥

∥

r,(0,tk)

= br(tk)γ‖t−1/rb(t1/n)(I(γ+1)p(t))
1/p‖r,(0,tk)

≈ br(tk)γ‖t−1/rb(t1/n)br(t)
−(γ+1)‖r,(0,tk)

= br(tk)γ(Iγr(tk))1/r

≈ br(tk)γbr(tk)−γ

= 1 for all k ∈ N.

Moreover,

(4.16) N2 =

∥

∥

∥

∥

t−1/rb(t1/n)

(
∫ t

0

f∗
k (u)p du

)1/p∥
∥

∥

∥

r,(tk,2)

=

(
∫ tk

0

f∗
k (u)p du

)1/p

br(tk), k ∈ N.

Since

(
∫ tk

0

f∗
k (u)p du

)1/p

≈ br(tk)γ

(
∫ tk

0

ϕ(u)p du

)1/p

= br(tk)γ(I(γ+1)p(tk))1/p

≈ br(tk)γbr(tk)−(γ+1)

= br(tk)−1 for all k ∈ N,

(4.16) implies that

(4.17) N2 ≈ 1 for all k ∈ N.

By (4.10), (4.15) and (4.17), condition (4.4) is satisfied.

Assumption (1.1) implies that given any k ∈ N, there exists sk ∈ {tk+j : j ∈ N}

such that

(4.18)
br(tk)

br(sk)
6 2−1/(γq).
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Let k0 ∈ N be such that tk0 6 δ, K0 := {k ∈ N : k > k0} (recall that δ is the

number from condition (B)). Putting

Mk := inf
t∈(sk,tk)

t1/P−1/p b̄(t)

b̃(t)
, k ∈ K0,

and using the fact that the function

(4.19) t 7−→ t1/P−1/p b̄(t)

b̃(t)
, t ∈ (0, δ),

is equivalent to a non-decreasing function on (0, δ), we obtain

(4.20) Mk & s
1/P−1/p
k

b̄(sk)

b̃(sk)
≈

WP,q,b̄(sk)

Wp,q,b̃(sk)
for all k ∈ K0.

Now, making use of the definition of Fk and condition (B), we obtain, for all k ∈ K0,

(4.21) ‖Fk‖P,q,w,Ω = ‖t1/P−1/qw(t)F ∗
k (t)‖q,(0,1)

& br(tk)γ‖t1/P−1/qw(t)ϕ(t)‖q,(0,tk)

> br(tk)γ‖t1/P−1/qw(t)ϕ(t)‖q,(sk ,tk)

> br(tk)γ‖t1/p−1/q b̃(t)ϕ(t)‖q,(sk ,tk) · Mk.

As r 6 q < p, b̃(t) = br(t)
1−r/q+r/pb(t1/n)r/q−r/p for all t ∈ (0, 1). Using also the

definition of ϕ, we arrive at

(4.22) ‖t1/p−1/q b̃(t)ϕ(t)‖q,(sk ,tk) = ‖t−1/qbr(t)
−γ−r/qb(t1/n)r/q‖q,(sk,tk), k ∈ N.

By a change of variables and (4.18),

RHS(4.22) =
{ r

γq
br(tk)−γq

[

1 −
( br(tk)

br(sk)

)γq]}1/q

>
r

γq
br(tk)−γ

(1

2

)1/q

≈ br(tk)−γ for all k ∈ N.

Thus,

‖t1/p−1/q b̃(t)ϕ(t)‖q,(sk ,tk) & br(tk)−γ for all k ∈ K0.

Together with (4.21), (4.20) and (4.9) (and the hypothesis (B)), this implies that

‖Fk‖P,q,w,Ω & 1 for all k ∈ K0,

which means that (4.5) holds.
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Let α > 0. Applying Hölder’s inequality and (4.14), we get (with a convenient

positive constant c) that, for all k ∈ N,

|{x ∈ Ω: |Fk(x)| > α}|n = |{t ∈ (0, 1): F ∗
k (t) > α}|1

6 tk + χ(1,∞)(p)|{t ∈ (tk, 1): ct−1t
1−1/p
k br(tk)−1 > α}|1

6 tk + χ(1,∞)(p)cα−1t
1−1/p
k br(tk)−1.

Thus, using the properties of slowly varying functions, we see that (4.6) holds.

(iii) Let (C) hold. The proof is the same as that of part (ii). Note that now the

function (4.19) is non-decreasing on (0, δ) by our assumption in (C). �

P r o o f of the necessity part of Theorem 1.3. The necessity part of Theorem 1.3

follows from Theorem 4.4 and Remark 3.4. �

Acknowledgement. This work was partially supported by grant no. 201/08/

0383 of the Grant Agency of the Czech Republic, by the Institutional Research Plan

no. AV0Z10190503 of the Academy of Sciences of the Czech Republic (AS CR),

by a joint project between AS CR and Fundação para a Ciência e a Tecnologia

(Portugal), and by Centro de I&D em Matemática e Aplicações (formerly Unidade

de Investigação Matemática e Aplicações) of University of Aveiro.

References

[1] C.Bennett, R. Sharpley: Interpolation of Operators. Academic Press, Boston, 1988.
[2] A.M.Caetano, W.Farkas: Local growth envelopes of Besov spaces of generalized
smoothness. Z. Anal. Anwendungen 25 (2006), 265–298.

[3] A.M.Caetano, A.Gogatishvili, B.Opic: Sharp embeddings of Besov spaces involving
only logarithmic smoothness. J. Approx. Theory 152 (2008), 188–214.

[4] A.M.Caetano, A.Gogatishvili, B.Opic: Embeddings and the growth envelope of Besov
spaces involving only slowly varying smoothness. J. Approx. Theory 163 (2011),
1373–1399.

[5] A.M. Caetano, D.D.Haroske: Continuity envelopes of spaces of generalised smoothness:
a limiting case; embeddings and approximation numbers. J. Function Spaces Appl. 3
(2005), 33–71.

[6] A.M. Caetano, S. D.Moura: Local growth envelopes of spaces of generalized smooth-
ness: the sub-critical case. Math. Nachr. 273 (2004), 43–57.

[7] A.M. Caetano, S. D.Moura: Local growth envelopes of spaces of generalized smooth-
ness: the critical case. Math. Ineq. & Appl. 7 (2004), 573–606.

[8] M.J. Carro, J. A.Raposo, J. Soria: Recent developments in the theory of Lorentz spaces
and weighted inequalities. Mem. Amer. Math. Soc. 187 (2007).

[9] M.J. Carro, J. Soria: Weighted Lorentz spaces and the Hardy operator. J. Funct. Anal.
112 (1993), 480–494.

[10] N.Dunford, J. T. Schwartz: Linear Operators, part I. Interscience, New York, 1957.
[11] D.E. Edmunds, W.D. Evans: Hardy Operators, Functions Spaces and Embeddings.

Springer, Berlin, Heidelberg, 2004.

939



[12] D.E. Edmunds, P.Gurka, B.Opic: Compact and continuous embeddings of logarithmic
Bessel potential spaces. Studia Math. 168 (2005), 229–250.

[13] D.E. Edmunds, R.Kerman, L.Pick: Optimal Sobolev imbeddings involving rearrange-
ment-invariant quasinorms. J. Funct. Anal. 170 (2000), 307–355.

[14] W.Farkas, H.-G. Leopold: Characterisations of function spaces of generalised smooth-
ness. Ann. Mat. Pura Appl. 185 (2006), 1–62.

[15] M.L.Gol’dman: Embeddings of Nikol’skij-Besov spaces into weighted Lorent spaces.
Trudy Mat. Inst. Steklova 180 (1987), 93–95. (In Russian.)

[16] M.L.Gol’dman: Rearrangement invariant envelopes of generalized Besov, Sobolev, and
Calderon spaces. Burenkov, V. I. (ed.) et al., The interaction of analysis and geometry.
International school-conference on analysis and geometry, Novosibirsk, Russia, August
23-September 3, 2004. Providence, RI: American Mathematical Society (AMS). Con-
temporary Mathematics 424 (2007), 53–81.

[17] M.L.Gol’dman, R.Kerman: On optimal embedding of Calderón spaces and general-
ized Besov spaces. Tr. Mat. Inst. Steklova 243 (2003), 161–193 (In Russian.); English
translation: Proc. Steklov Inst. Math. 243 (2003), 154–184.

[18] P.Gurka, B.Opic: Sharp embeddings of Besov spaces with logarithmic smoothness. Rev.
Mat. Complutense 18 (2005), 81–110.

[19] P.Gurka, B.Opic: Sharp embeddings of Besov-type spaces. J. Comput. Appl. Math.
208 (2007), 235–269.

[20] D.D.Haroske, S. D.Moura: Continuity envelopes of spaces of generalized smoothness,
entropy and approximation numbers. J. Approximation Theory 128 (2004), 151–174.

[21] G.A.Kalyabin, P. I. Lizorkin: Spaces of functions of generalized smoothness. Math.
Nachr. 133 (1987), 7–32.

[22] Yu.Netrusov: Imbedding theorems of Besov spaces in Banach lattices. J. Soviet. Math.
47 (1989), 2871–2881; Translated from Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst.
Steklova (LOMI) 159 (1987), 69–82.

[23] H.Triebel: Theory of Function Spaces II. Birkhäuser, Basel, 1992.
[24] H.Triebel: Theory of Function Spaces III. Birkhäuser, Basel, 2006.

Authors’ addresses: A n t ó n i o C a e t a n o, Departamento de Matemática, Univer-
sidade de Aveiro, 3810-193 Aveiro, Portugal e-mail: acaetano@ua.pt (corresponding au-
thor); Am i r a n G o g a t i s h v i l i, Institute of Mathematics, Academy of Sciences of the

Czech Republic, Z̆itná 25, 115 67 Prague 1, Czech Republic e-mail: gogatish@math.cas.cz;
B o hum í r O p i c, Department of Mathematical Analysis, Faculty of Mathematics and
Physics, Charles University, Sokolovská 83, 186 75 Prague 8, Czech Republic e-mail:
opic@karlin.mff.cuni.cz.

940


		webmaster@dml.cz
	2020-07-03T19:35:54+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




