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Abstract. We show that for every ε > 0 there is a set A ⊂ R
3 such that H1xA is a

monotone measure, the corresponding tangent measures at the origin are non-conical and
non-unique and H1xA has the 1-dimensional density between 1 and 2+ ε everywhere in the
support.
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1. Introduction

This paper is devoted to a construction of a monotone measure with bad tangential

behavior satisfying some additional density assumptions natural for minimal surfaces.

Definition 1.1. Let µ be a Radon measure on R
n and k ∈ N. We say that µ is

k-monotone if the function r 7→ µB(z, r)/rk is non-decreasing on (0,∞) for every

z ∈ R
n.

The tangent measures of µ at z ∈ R
n were introduced by Preiss in [5]. They are

defined by blowing up µ by sequences of expansive homotheties around z, normal-

izing suitably and taking the vague limits. The mapping Tz,r that blows up B(z, r)

to B(0, 1) is given by

Tz,r(x) =
x− z

r
.

Since every k-monotone measure µ, where k 6 n, has a finite k-dimensional density

defined by θk
zµ = lim

r→0
µB(z, r)/ωkr

k at every point z ∈ R
n, where ωk is the volume

of the unit ball in R
k, it is natural to normalize the blow-up by 1/rk.

Research of the first and the third author is supported by the grant MSM 0021620839.
Research of the second author is supported by the grant AV 0Z 10190503.
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Definition 1.2. Let µ be a Radon measure on R
n, z ∈ sptµ and k 6 n. We

say that ν is a k-tangent measure of µ at z (ν ∈ Tank
z µ) if ν is a non-zero Radon

measure on R
n and if there is a sequence {rj}∞j=1, rj > 0, rj → 0 as j → ∞, such

that
1

rk
j

Tz,rj
(µ) → ν vaguely as j → ∞,

i.e. for every continuous function ϕ on R
n with a compact support we have

lim
j→∞

1

rk
j

∫

ϕ
(x− z

rj

)

dµ(x) =

∫

ϕ(x) dν(x).

Definition 1.3. Let ν be a Radon measure on R
n and k ∈ N. We say that ν is

k-conical if ν(λA) = λk · ν(A) for every Borel set A ⊂ R
n and every λ > 0.

Instead of 1-monotone, 1-tangent and 1-conical we simply writemonotone, tangent

and conical, respectively.

The first monotone measure with bad tangential behavior was given by the second

author in [3]. He constructed a measure in R
2 which does not have a unique tan-

gent measure at the origin, and observing that the monotonicity can be sometimes

obtained by adding a suitable monotone measure he added a measure absolutely

continuous with respect to the Lebesgue measure to obtain the desired result.

Immediately, a new question arises whether there exists a monotone measure with

similarly bad tangential behavior and more related to minimal surfaces. It is a well-

known open problem whether for each fixed ε > 0 a k-monotone Radon measure µ

in R
n, 1 6 k 6 n, can be found, with non-unique k-tangent measures at the origin

0 ∈ sptµ and with the density properties

θk
zµ > 1 for every z ∈ sptµ (then µ is called a concentrated measure),(1)

θk
zµ = 1 for every z ∈ sptµ \ {0}(2)

and

(3) θk
0µ 6 1 + ε.

There are several partial results. A well-known result is an unpublished example

by Kirchheim. He studied the so called logarithmic spirals in R
2 and proved the

“local monotonicity” (there is r0 > 0 depending on |z| such that r 7→ µB(z, r)/r is

non-decreasing on (0, r0)) for H1 restricted to these curves. Then it is not difficult

to show that there is a finite number of lines passing through the origin such that

H1 restricted to the union of these lines and the symmetrical pair of logarithmic

spirals is monotone (and the spirals ensure the bad tangential behavior).
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An improved version of Kirchheim’s result can be found in [2]. The authors gave

a different proof of the “local monotonicity” which enables estimating r0. In fact, the

estimate of r0 was accurate enough to show that for some types of logarithmic spirals

only two suitably chosen lines are a sufficient compensation for the monotonicity

(hence there is a monotone measure in R2 with bad tangential behavior satisfying (1),

(2) up to the points of intersection of the spirals and the lines, and the version of (3)

with θ10µ 6 3 + ε).

Motivated by the above result, in this paper we give a version of logarithmic spirals

in R3 such that only one line provides a sufficient compensation to the monotonicity.

Thus the final measure satisfies θ10µ 6 2+ ε, which becomes the best achieved result.

For a, c > 0 fixed we define a version of an anti-symmetrical pair of logarithmic

spirals in R
3 by

Γ+
a,c(t) = (c exp (at) cos t, c exp (at) sin t, exp (at)), t ∈ R,

Γ−

a,c(t) = −Γ+
a,c(t) = (−c exp (at) cos t,−c exp (at) sin t,− exp (at)), t ∈ R.

Further, we set

µa,c = H1x([Γ+
a,c] ∪ [Γ−

a,c]),

where [Γ+
a,c] = {Γ+

a,c(t) : t ∈ R} and [Γ−

a,c] = {Γ−

a,c(t) : t ∈ R}.
Next, we define L = {(0, 0, t) : t ∈ R}. This is the line we use as a compensation

for the monotonicity. Now, we can state or main result.

Theorem 1.4. Let ε > 0. Then there is K = K(ε) > 0 such that for every a > K

and c = a−3 the measure µa,c + H1xL satisfies:

µa,c + H1xL is monotone,

µa,c + H1xL does not have a unique tangent measure at the origin,

the tangent measures at the origin are not conical,

θ1z(µa,c + H1xL) = 1 for every z ∈ (sptµa,c ∪ L) \ {0},

and

θ10(µa,c + H1xL) < 2 + ε.

We refer to [4], [5] and [6] for further information concerning the geometry of

measures and the Monotonicity Formula.

The paper is organized in a way similar to [2]. In the third section we study the

tangential behavior. The last two sections are devoted to the proof of the mono-

tonicity, which is the most difficult part of the proof of Theorem 1.4. We prove
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the monotonicity showing that the lower derivative of r 7→ (µa,c + H1xL)B(z, r)/r

is non-negative for every pair (z, r), z ∈ R
3, r > 0. When checking this pointwise

property, we distinguish several cases. In the fourth section we consider the cases

concerning z and r such that the proof of the non-negativity of the lower derivative is

just a straightforward computation. The fifth section is devoted to very small radii.

It was the most difficult and challenging part of our work to obtain a reasonably

short proof of the monotonicity at (z, r) for very small r. Let us note that the planar

method from [2, Section 5] cannot be used in our case. Our proof is finally based on

a method from [1].

2. Preliminaries

Notation. The scalar product of x, y ∈ R
3 is denoted by x · y. The Euclidean

norm of x is |x|, x1, x2 and x3 are the first, the second and the third coordinates of

x. We use the following notation for a ball, a sphere, a northern hemisphere and for

an equator:

B(z, r) = {x ∈ R
3 : |x− z| 6 r},

S(z, r) = {x ∈ R
3 : |x− z| = r},

S+(z, r) = S(z, r) ∩ {x ∈ R
3 : x3 > z3},

E(z, r) = S(z, r) ∩ {x ∈ R
3 : x3 = z3}.

When z = 0, we simply write B(r), S(r), S+(r) and E(r).

For fixed z ∈ S+(1) ∪E(1) and c > 0 we define the function

Ψz(t) = cz1 cos t+ cz2 sin t+ z3, t ∈ R.

Further, if z ∈ S+(1) and c > 0, let

s = s(z, c) =

√

z2
1 + z2

2

cz3
=

√

z2
1 + z2

2

c
√

1 − z2
1 − z2

2

.

Hence

(4) z3 =
1√

1 + s2c2
and

√

z2
1 + z2

2 =
sc√

1 + s2c2
.

The 1-dimensional Hausdorff measure is denoted by H1. If A ⊂ R
3 is a Borel set

and µ is a Radon measure, then µxA is the restriction of µ to A, i.e. (µxA)(M) =

µ(M ∩A). If I ⊂ R is an interval and Γ: I 7→ R
3 is a curve then [Γ] = {Γ(t) : t ∈ I}.
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For z ∈ R
3 and r > 0 such that sptµa,c ∩ S(z, r) 6= ∅, our estimates often deal

with the points of intersection with maximal and minimal third coordinates. Let

ξ ∈ sptµa,c ∩ S(z, r) be such that ξ3 > θ3 whenever θ ∈ sptµa,c ∩ S(z, r)

and let

η ∈ sptµa,c ∩ S(z, r) be such that η3 6 θ3 whenever θ ∈ sptµa,c ∩ S(z, r).

Properties of sptµa,c. We denote α = α(c) =
√

1 + c2 and

β = β(a, c) =
|Γ̇+

a,c(t)|
d(Γ+

a,c(t))3/dt

=

√

(

d(Γ+
a,c(t))1/dt

)2
+
(

d(Γ+
a,c(t))2/dt

)2
+
(

d(Γ+
a,c(t))3/dt

)2

d(Γ+
a,c(t))3/dt

=

√

(caeat cos t− ceat sin t)2 + (caeat sin t+ ceat cos t)2 + (aeat)2

aeat

=

√

1 + c2 +
c2

a2
.

Using the symmetry between Γ+
a,c and Γ−

a,c we obtain from the above

(5) µa,c({x ∈ R
3 : d1 6 x3 6 d2}) = β(d2 − d1)

for any d1 6 d2. Further, if ζ ∈ sptµa,c, then we see that

(6)
√

ζ2
1 + ζ2

2 = c|ζ3|.

From (5) and (6) we obtain

(7)
µa,cB(r)

2r
=
µa,c{x ∈ R

3 : −r/α 6 x3 6 r/α}
2r

=
β

α
.

Notice that sptµa,c is self-similar in the sense that multiplying all three coordinates

by the same constant corresponds to some rotation of the plane generated by the X

and Y -axis. More precisely, if we define

Γ+
a,c,t0

(t) = (cea(t−t0) cos t, cea(t−t0) sin t, ea(t−t0)), t ∈ (−∞,∞),

Γ−

a,c,t0
(t) = (−cea(t−t0) cos t,−cea(t−t0) sin t,−ea(t−t0)), t ∈ (−∞,∞),
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and

µa,c,t0 = H1
x([Γ+

a,c,t0
] ∪ [Γ−

a,c,t0
]),

then for every ̺ > 0 we have

(8)
1

̺
T0,̺(µa,c) = µa,c,t0 where t0 =

ln ̺

a
.

Some notes on monotonicity. Let us recall some well-known facts concerning

the monotonicity of Radon measures. Let Γ: [a, b] 7→ R
n be a regular C1-curve and

let ν = H1x[Γ]. If we want to prove that r 7→ νB(z, r)/r is nondecreasing on (0,∞)

for some z ∈ R
n, then it is enough to show that

(9) Dr

νB(z, r)

r
=

1

r2
(

rDr νB(z, r) − νB(z, r)
)

is nonnegative on (0,∞). Here we use the notation Dr f(r) = lim inf
δ→0

(f(r + δ) −
f(r))/δ.

Notice that the condition Dr(νB(z, r)/r) > 0 is satisfied when νB(z, r) 6 2r and

Γ(a),Γ(b) /∈ B(z, r) (if νB(z, r) = 0 then the proof is trivial and if 0 < νB(z, r) 6 2,

then there are at least two points of the intersection S(z, r) ∩ Γ((a, b)) and the

contribution of each of them to Dr νB(z, r) is at least 1). We use this criterion very

often.

We say that a measure ν is monotone at (z, r) if Dr(νB(z, r)/r) > 0. The super-

additivity of the lower derivative Dr implies that a sum of monotone measures at

(z, r) is again monotone at (z, r).

We need the following criterion for the monotonicity at (z, r) (see [1, Proposi-

tion 3.1] and use a suitable rescaling of the coordinates).

Proposition 2.1. Let d > 0, ε ∈ (0, 1
20 ], δ ∈ (0, 1

20d
−1] and let f, ϕ ∈

C2((−δ, δ),R) be functions satisfying

f(0) = f ′(0) = ϕ(0) = ϕ′(0) = 0,

|f ′′(x) − d| 6 εd and |ϕ′′(x)| 6 εd on (−δ, δ).

Set γ(x) = (x, f(x), ϕ(x)) for x ∈ (−δ, δ) and µγ = H1x({γ(x) : x ∈ (−δ, δ)}). Then
r 7→ µγB((0, h, g), r)/r is non-decreasing on (0, δ) for every h ∈ R and every g ∈ R.

We also make use of the following easy lemma.

Lemma 2.2. Let f : (0,∞) 7→ [0,∞) be a non-negative non-decreasing function.

If Dr(f(r)/r) > 0 on (0, 1) ∪ (1,∞), then r 7→ f(r)/r is non-decreasing on (0,∞).
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P r o o f. In a standard way, it can be shown that f(r)/r is non-decreasing on

(0, 1) and on (1,∞). Hence there exist

A = lim
r→1

−

f(r)

r
and B = lim

r→1+

f(r)

r
.

We want to show that A 6 f(1)/1 6 B. Let us prove the first inequality. For

contradiction, suppose A− f(1) = 2ε > 0. There is δ ∈ (0, 1) small enough so that

f(1 − δ)

1 − δ
> A− ε and f(1) + ε >

f(1)

1 − δ
.

Thus, as f is non-decreasing we obtain

f(1)

1 − δ
>
f(1 − δ)

1 − δ
> A− ε = f(1) + ε >

f(1)

1 − δ
.

This is a contradiction, hence A 6 f(1). The inequality f(1) 6 B is proved in the

same way. �

Finally, let us show that the measure H1xL is abundant in monotonicity. If z ∈
S(1) and r >

√

z2
1 + z2

2 , then we have

Dr

(H1xL)B(z, r)

r
=

d

dr

2
√

r2 − z2
1 − z2

2

r
(10)

= 2
z2
1 + z2

2

r2
√

r2 − z2
1 − z2

2

> 2
z2
1 + z2

2

r3
.

If r ∈ (0,
√

z2
1 + z2

2 ], then (H1xL)B(z, r) = 0. Hence Dr((H1xL)B(z, r)/r) > 0 and

thus

(11) Dr

(H1xL)B(z, r)

r
> 0 for every r ∈ (0,∞).

3. Tangential behavior

In this section we show that the measure µa,c +H1xL has infinitely many tangent

measures at the origin. Moreover, these tangent measures are non-conical.

Proposition 3.1. Let a, c > 0. Then

Tan1
0(µa,c + H1xL) = {µa,c,t0 + H1xL : 0 6 t0 < 2π}.
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P r o o f. Let us fix 0 6 t0 < 2π. Since we plainly have

(12) µa,c,t0 = µa,c,t0+2kπ for all k ∈ Z,

considering the sequence ̺j = exp(a(t0 − 2jπ)), j ∈ N, we obtain from (8)

1

̺j

T0,̺j
(µa,c) = µa,c,t0−2jπ = µa,c,t0 .

Further, we obviously have for any ̺ > 0

(13)
1

̺
T0,̺(H1xL) = H1xL.

Hence

1

̺j

T0,̺j
(µa + H1xL) = µa,c,t0 + H1xL vaguely converges to µa,c,t0 + H1xL

and thus

Tan1
0(µa,c + H1xL) ⊃ {µa,c,t0 + H1xL : 0 6 t0 < 2π}.

The reverse inclusion is obtained by a suitable choice of a test function. Assume

that ̺j > 0 for j ∈ N, ̺j → 0 and (1/̺j)T0,̺j
(µa,c + H1xL) vaguely converges. Set

tj = ln ̺j/a. Hence from (8) and (13) we see that µa,c,tj
vaguely converges. Let

ψ : R 7→ [0,∞) be a continuous function with a compact support satisfying ψ(t) = 0

for t 6 0 and
∫

∞

0 ψ2(t) dt = 1. We define on R3 a continuous function with a compact

support by ϕ1(0, 0, 0) = 0 and

ϕ1(x) = ψ
( |x|
α

)

ψ(x3)
( x1

c|x| cos
( ln |x|

a

)

+
x2

c|x| sin
( ln |x|

a

))

for |x| > 0.

For x ∈ sptµa,c,tj
\ [Γ+

a,c,tj
] we have ϕ1(x) = 0 and if x = Γ+

a,c,tj
(t) for some t ∈ R,

then we have

ϕ1(x) = ψ
( |x|
α

)

ψ(x3)(cos t cos(t− tj) + sin t sin(t− tj)) = ψ2(x3) cos tj.

Hence we obtain from (5)

∫

R3

ϕ1 dµa,c,tj
=

∫

∞

0

βψ2(t) cos tj dt = β cos tj .

Therefore cos tj converges. If cos tj → 1, then from (12) we see that µa,c,tj
→ µa,c,0 =

µa,c vaguely. Similarly, if cos tj → −1, then µa,c,tj
→ µa,c,π vaguely.
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Finally, if cos tj → d ∈ (−1, 1), then there is t0 ∈ (0, π) such that cos tj → cos t0 =

cos(2π − t0). Let us set ϕ2(0, 0, 0) = 0 and

ϕ2(x) = ψ
( |x|
α

)

ψ(x3)
( x1

c|x| cos
( ln |x|

a
+ t0

)

+
x2

c|x| sin
( ln |x|

a
+ t0

))

for |x| > 0,

where the function ψ is the same as above. This time we obtain for x = Γ+
a,c,tj

(t)

ϕ2(x) = ψ
( |x|
α

)

ψ(x3)(cos t cos(t−tj +t0)+sin t sin(t−tj +t0)) = ψ2(x3) cos(tj −t0).

The vague convergence implies in the same way as above that cos(tj − t0) converges.

If cos(tj − t0) → 1, then (12) implies µa,c,tj
→ µa,c,t0 vaguely. Otherwise, since

cos(tj−t0) → b 6= 1 and cos tj → cos(2π−t0), using (12) we obtain µa,c,tj
→ µa,c,2π−t0

vaguely. Hence we have the remaining inclusion

Tan1
0(µa,c + H1

xL) ⊂ {µa,c,t0 + H1
xL : 0 6 t0 < 2π}.

�

4. Large radii: monotonicity by compensation

Because of the self-similarity of our logarithmic spirals it is enough to prove mono-

tonicity at (z, r) only for z ∈ S+(1) ∪ E(1) ∪ {0} and r > 0. In the case of large

radii, we carefully estimate each term on the right-hand side of (9) for ν = µa,c.

Proposition 4.1. There is K1 > 0 with the following property: If a > K1,

c = a−3 and if one of the following conditions is satisfied

(i) z = 0 and r ∈ (0,∞),

(ii) z ∈ E(1) and r ∈ (0,∞) \ {1},
(iii) z ∈ S+(1), with s(z) /∈ (1

2 , 2), and r ∈ (0,∞) \ {1},
(iv) z ∈ S+(1), with s(z) ∈ (1

2 , 2), and r ∈ (4c,∞) \ {1},
then the measure µa,c + H1xL is monotone at (z, r).

Note that Proposition 4.1 is in fact satisfied with K1 = 1000. Therefore we prefer

to state and prove our auxiliary lemmata with the assumption a > 1000 rather then

always warn the reader that we pass to a sufficiently large.

The monotonicity of µa,c at (z, r) is easily obtained when the center z is far enough

from sptµa,c.
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Lemma 4.2. Let a > 1000, c = a−3 and z ∈ S+(1) ∪ E(1).

(i) If
√

z2
1 + z2

2 ∈ (1
2c,

3
2c) and r ∈ (0,

√

z2
1 + z2

2 + 2c], then r < 4c.

(ii) If
√

z2
1 + z2

2 /∈ (1
2c,

3
2c) and r ∈ (0,

√

z2
1 + z2

2 + 2c], then µa,c is monotone at

(z, r).

(iii) If
√

z2
1 + z2

2 > 4c and r ∈ (
√

z2
1 + z2

2 + 2c, 11
10 ], then µa,c is monotone at (z, r).

P r o o f. Assumptions of (i) imply

r 6

√

z2
1 + z2

2 + 2c 6
3

2
c+ 2c < 4c.

Thus, we have proved (i) and it remains to prove (ii) and (iii).

We can suppose that µa,cB(z, r) > 0 (otherwise the proof easily follows from (9)).

Therefore the points ξ and η (see Preliminaries for the definition) are well defined,

Dr µa,cB(z, r) > 2 and, in addition, (6) implies

(14)
√

η2
1 + η2

2 = c|η3| 6 c(|z3| + r) 6 c(|z| + r) = c(1 + r).

Our next step is to prove the estimate

(15)
∣

∣

∣

√

z2
1 + z2

2 −
√

η2
1 + η2

2

∣

∣

∣
>

4

3
cr.

We distinguish four cases. If
√

z2
1 + z2

2 ∈ [0, 1
2c] and r ∈

(

0,
√

z2
1 + z2

2 + 2c
]

, then we

have r 6 3c,

z3 =
√

1 − z2
1 − z2

2 >

√

1 − (1
2c)

2 > 1 − c

and η3 > z3 − r > 1 − 4c. Hence from (6) we obtain

√

η2
1 + η2

2 = c|η3| > c(1 − 4c) >
3

4
c.

Therefore

√

η2
1 + η2

2 −
√

z2
1 + z2

2 >
3

4
c− 1

2
c =

1

4
c >

1

4
c · r

3c
=

1

12
r >

4

3
cr.

If
√

z2
1 + z2

2 ∈ [32c,
1
5 ] and r ∈

(

0,
√

z2
1 + z2

2 + 2c
]

, then we obtain from (14)

√

η2
1 + η2

2 6 c(1 + r) 6 c
(

1 +
1

5
+ 2c

)

6
7

5
c

and thus

√

z2
1 + z2

2 −
√

η2
1 + η2

2 >
3

2
c− 7

5
c =

1

10
c >

1

10
c · r

1
5 + 2c

>
4

10
r >

4

3
cr.
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If
√

z2
1 + z2

2 ∈ [15 , 1] and r ∈ (0,
√

z2
1 + z2

2 + 2c], then (14) implies
√

η2
1 + η2

2 6 3c.

Thus
√

z2
1 + z2

2 −
√

η2
1 + η2

2 >
1

5
− 3c >

1

6
>

1

6

r

1 + 2c
>

1

7
r >

4

3
cr.

Finally, if
√

z2
1 + z2

2 > 4c and r ∈
(
√

z2
1 + z2

2 + 2c, 11
10

]

, then using (14) we arrive at
√

η2
1 + η2

2 6 5
2c. Therefore

√

z2
1 + z2

2 −
√

η2
1 + η2

2 > 4c− 5

2
c =

3

2
c >

3

2
c · r11

10

>
4

3
cr.

Since our four cases cover the assumptions of (ii) and (iii), we have proved (15).

Consequently,

|η3 − z3| 6

√

r2 −
∣

∣

∣

√

η2
1 + η2

2 −
√

z2
1 + z2

2

∣

∣

∣

2

6

√

r2 −
(4

3
cr
)2

= r

√

1 − 16

9
c2 <

r

β
.

In the same way we obtain |ξ3−z3| < r/β. Hence |ξ3−η3| < 2r/β and thus from (9),

(5), and Dr µa,cB(z, r) > 2 we conclude

Dr

µa,cB(z, r)

r
>

1

r2

(

2r − 2β
2r

β

)

> 0.

�

The rest of this section is devoted to the difficult case when the center z is not so

far from sptµa,c.

Let us briefly outline our strategy. Since there are always at least two points of

the intersection B(z, r)∩ sptµa,c in our case (i.e. ξ and η are well defined), from (5)

and (9) we obtain (28). Next, we estimate all the terms on the right-hand side

of (28) using the identities from Lemma 4.4. Notice that when estimating dξ3/dr

(and similarly d(−η3)/dr), we do not use the explicit formula (23) (which is not
convenient to work with), but we proceed in the following way. First, we obtain

a rough estimate (see Lemma 4.5). Then we use formula (22) together with this

rough estimate on the right-hand side (where dξ3/dr is multiplied by a
−1, which can

be made very small).

We start with some estimates concerning the function Ψz(t).
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Lemma 4.3. Assume a > 1000, c = a−3, z ∈ S+(1) ∪ E(1), r ∈
[
√

z2
1 + z2

2 +

2c,∞
)

and t ∈ R. Then we have

|Ψz(t)| 6 α,(16)

|Ψ′

z(t)| 6 c
√

z2
1 + z2

2 ,(17)
√

Ψ2
z(t) + α2(r2 − 1) 6 αr,(18)

√

Ψ2
z(t) + α2(r2 − 1) − 1

a
|Ψ′

z(t)| > 0.(19)

If moreover either r > 4c and z ∈ S+(1) with 0 6 s 6 2 or r > 11
10 , then

(20)
√

Ψ2
z(t) + α2(r2 − 1) >

1

3
αr.

P r o o f. By the Schwartz inequality for the scalar product we have

max
z∈S+(1)

t∈R

|Ψz(t)| = max
z∈S+(1)

t∈R

|c(z1, z2) · (cos t, sin t) + z3|

= max
z∈S(1)

∣

∣

∣
c
√

z2
1 + z2

2 + z3

∣

∣

∣
= max

z∈S(1)

∣

∣

∣
(c, 1) ·

(

√

z2
1 + z2

2 , z3

)
∣

∣

∣

=
√

1 + c2 = α.

Hence we have proved (16), and (18) follows. Further, we obtain (17) from

|Ψ′

z(t)| = c|(z1, z2) · (− sin t, cos t)| 6 c
√

z2
1 + z2

2 .

Let us prove (19). First, for z ∈ E(1) we have r > 1 + 2c and thus (17) implies

√

Ψ2
z(t) + α2(r2 − 1) >

√

α2(r2 − 1)

>
√

α2((1 + 2c)2 − 1) > 2αc >
c

a
>

1

a
|Ψ′

z(t)|

and we are done. In the case z ∈ S+(1) we have by (4)

Ψ2
z(t) >

(

z3 − c
√

z2
1 + z2

2

)2

=
( 1√

1 + s2c2
− sc2√

1 + s2c2

)2

=
(1 − sc2)2

1 + s2c2
.

Further, from (4) and

(s+ 2)2c2(1 + c2) = (s+ 2)2c4 + (s+ 2)2c2 >
s2c4

a2
+ (s+ 1)2c2
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we see that

r2 >

(

√

z2
1 + z2

2 + 2c
)2

=
( sc√

1 + s2c2
+ 2c

)2

>
(s+ 2)2c2

1 + s2c2
>
s2c4/a2 + (s+ 1)2c2

(1 + c2)(1 + s2c2)
.

Hence, as α2 = 1 + c2, we obtain from (4), (17) and from the above estimates

1

a2
Ψ′2

z (t) 6
s2c4

a2(1 + s2c2)
=

(1 − sc2)2

1 + s2c2
+ α2

(s2c4/a2 + (s+ 1)2c2

α2(1 + s2c2)
− 1
)

< Ψ2
z(t) + α2(r2 − 1).

This proves (19). Finally, let us prove the last assertion. If r > 11
10 , then

√

Ψ2
z(t) + α2(r2 − 1) >

√

α2(r2 − 1) = αr

√

1 − 1

r2
> αr

√

1 −
(10

11

)2

>
1

3
αr.

If r > 4c and z ∈ S+(1) with s 6 2, then we have from (4)

Ψ2
z(t)

α2
>

1

α2

(

z3 − c
√

z2
1 + z2

2

)2

=
1

α2

( 1√
1 + s2c2

− sc2√
1 + s2c2

)2

=
(1 − sc2)2

(1 + c2)(1 + s2c2)
>

(1 − 2c2)2

(1 + c2)(1 + 4c2)
> 1 − 10c2.

Therefore

√

Ψ2
z(t) + α2(r2 − 1) > α

√

1 − 10c2 + r2 − 1

= αr

√

1 − 10c2

r2
> αr

√

1 − 10c2

16c2
>

1

3
αr.

�

The following lemma enables us to use the parameterization of our logarithmic

spirals when estimating the right-hand side of (9).

Lemma 4.4. Assume a > 1000, c = a−3, z ∈ S+(1)∪E(1). If r >
√

z2
1 + z2

2 +2c,

then S(z, r)∩ sptµa,c 6= ∅ and thus the points ξ and η are well defined. The function
r 7→ ξ3 is continuously differentiable on

(
√

z2
1 + z2

2 + 2c,∞
)

and satisfies

ξ3 =
1

α2

(

Ψz(τ) +
√

Ψ2
z(τ) + α2(r2 − 1)

)

,(21)

dξ3
dr

=
a−1Ψ′

z(τ) dξ3/dr + r
√

Ψ2
z(τ) + α2(r2 − 1)

,(22)

1153



and

(23)
dξ3
dr

=
r

√

Ψ2
z(τ) + α2(r2 − 1) − a−1Ψ′

z(τ)
,

where τ ∈ R is such that ξ = Γ+
a,c(τ). The function r 7→ η3 is continuously differen-

tiable on
(
√

z2
1 + z2

2 + 2c,∞
)

\ {1} and satisfies

η3 =
1

α2

(

Ψz(σ) −
√

Ψ2
z(σ) + α2(r2 − 1)

)

,(24)

d(−η3)
dr

=
−a−1Ψ′

z(σ) d(−η3)/dr + r
√

Ψ2
z(σ) + α2(r2 − 1)

,(25)

and

(26)
d(−η3)

dr
=

r
√

Ψ2
z(σ) + α2(r2 − 1) + a−1Ψ′

z(σ)
,

where σ ∈ R is such that η = Γ+
a,c(σ) provided r ∈ (0, 1) ∩

(
√

z2
1 + z2

2 + 2c,∞
)

and

η = Γ−

a,c(σ) provided r ∈ (1,∞) ∩
(
√

z2
1 + z2

2 + 2c,∞
)

.

P r o o f. If z ∈ S+(1), let us set θ = log(|z3|)/a. Then θ 6 0, (Γ+
a,c(θ))3 = z3 and

for any r ∈
(
√

z2
1 + z2

2 + 2c,∞
)

we have by (6)

|Γ+
a,c(θ) − z| 6

√

(Γ+
a,c(θ))21 + (Γ+

a,c(θ))22 +
√

z2
1 + z2

2 = cz3 +
√

z2
1 + z2

2 < r.

Hence sptµa,c∩S(z, r) contains at least two points and thus ξ and η are well defined.

Similarly for z ∈ E(1).

Using ξ = Γ+
a,c(τ) = (cξ3 cos τ, cξ3 sin τ, ξ3) we set

F (r, τ) = |ξ − z|2 − r2 = (cξ3 cos τ − z1)
2 + (cξ3 sin τ − z2)

2 + (ξ3 − z3)
2 − r2

= α2ξ23 − 2ξ3(cz1 cos τ + cz2 sin τ + z3) + 1 − r2

= α2ξ23 − 2ξ3Ψz(τ) + 1 − r2.

Solving the equation F (r, τ) = 0 with respect to ξ3 we obtain that ξ3 satisfies ei-

ther (21) or

(27) ξ3 = α−2
(

Ψz(τ) −
√

Ψ2
z(τ) + α2(r2 − 1)

)

.

Let us show that formula (27) cannot be satisfied. Recall that Γ+
a,c(θ) ∈ B(z, r),

thus ξ3 > z3. Our aim is to show that formula (27) implies ξ3 < z3. We distinguish

three cases. If r > 1, we observe that (27) implies ξ3 < 0 6 z3, hence (27) cannot
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be satisfied. If r ∈
(
√

z2
1 + z2

2 + 2c, 1
]

and Ψz(τ) 6 z3, then from (27) we obtain

ξ3 6 α−2z3 < z3. Finally, if r ∈
(
√

z2
1 + z2

2 +2c, 1
]

and Ψz(τ) > z3, then (27) implies

ξ3 =
1 − r2

Ψz(τ) +
√

Ψ2
z(τ) − α2(r2 − 1)

6
1 −

(
√

z2
1 + z2

2 + 2c
)2

Ψz(τ)
<

1 − z2
1 − z2

2

z3
= z3.

Hence (27) cannot be satisfied. Thus we have proved (21).

The smoothness, (22) and (23) follow from the Implicit Function Theorem. Indeed,

dξ3/dτ = d(exp(aτ))/dτ = a exp(aτ) = aξ3 implies

∂F

∂τ
= 2α2aξ23 − 2aξ3Ψz(τ) − 2ξ3Ψ

′

z(τ) = 2aξ3

(

α2ξ3 − Ψz(τ) −
1

a
Ψ′

z(τ)
)

.

Hence applying (19) and (21) we obtain

∂F

∂τ
= 2aξ3

(

√

Ψ2
z(τ) + α2(r2 − 1) − 1

a
Ψ′

z(τ)
)

> 0.

Further, ∂F/∂r = −2r, dξ3/dτ = aξ3 and the above formula for ∂F/∂τ imply

dξ3
dr

=
dξ3
dτ

dτ

dr
=

dξ3
dτ

(−1)
∂F/∂r

∂F/∂τ
= aξ3

2r

2aξ3
(√

Ψ2
z(τ) + α2(r2 − 1) − a−1Ψ′

z(τ)
)

and we have proved (23). As α = β/(γ + δ) is equivalent to α = (β − δα)/γ provided

γ + δ 6= 0 6= γ, (22) follows from (23).

For the point of intersection η, the proof is similar. Because of the symmetry

between Γ+
a,c and Γ−

a,c we obtain the same formulae in both cases η ∈ S(z, r) ∩ [Γ+
a,c]

and η ∈ S(z, r) ∩ [Γ−

a,c]. Since the Implicit Function Theorem requires η3 6= 0, the

additional assumption r 6= 1 occurs. Notice that the assumption r >
√

z2
1 + z2

2 + 2c

ensures that we do not consider any case with S(z, r) ∩ [Γ−

a,c] 6= ∅ for r < 1. �

Hence if a > 1000, c = a−3, z ∈ S+(1) ∪ E(1) and r ∈
(
√

z2
1 + z2

2 + 2c,∞
)

\ {1},
then (5), (21), (22), (24) and (25) imply

Dr

µa,cB(z, r)

r
>

β

r2

((dξ3
dr

+
d(−η3)

dr

)

r − (ξ3 − η3)
)

(28)

=
β

α2r2
(U1 + U2 + U3 + V1 + V2 + V3),
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where

U1 =
r

a

α2Ψ′

z(τ) dξ3/dr
√

Ψ2
z(τ) + α2(r2 − 1)

,

U2 = − Ψz(τ) + z3,

U3 =
α2 − Ψ2

z(τ)
√

Ψ2
z(τ)

2 + α2(r2 − 1)
,

V1 =
r

a

−α2Ψ′

z(σ) d(−η3)/dr
√

Ψ2
z(σ) + α2(r2 − 1)

,

V2 = Ψz(σ) − z3,

V3 =
α2 − Ψ2

z(σ)
√

Ψ2
z(σ) + α2 (r2 − 1)

.

Next, we need to obtain suitable estimates of U1, U2, U3, V1, V2 and V3.

Lemma 4.5. Let a > 1000, c = a−3, z ∈ S+(1) ∪ E(1) and r ∈
(
√

z2
1 + z2

2 +

2c,∞
)

\ {1}. Then
dξ3
dr

>
1

β
and

d(−η3)
dr

>
1

β
.

If, moreover, dξ3/dr > 2 or d(−η3)/dr > 2, then µa,c is monotone at (z, r).

P r o o f. By Lemma 4.4 we observe that ξ3, η3, dξ3/dr and d(−η3)/dr as func-
tions with respect to r are well defined on

(
√

z2
1 + z2

2 + 2c,∞
)

\ {1}. The estimates
of dξ3/dr and d(−η3)/dr plainly follow from (5) and from the fact that each point
of the intersection sptµa,c ∩B(z, r) contributes to dµa,cB(z, r)/dr at least by 1.

Further, if dξ3/dr > 2 or d(−η3)/dr > 2, then we have from the first part of the

lemma that dξ3/dr + d(−η3)/dr > 2 + 1/β and thus (28) gives

Dr

µa,cB(z, r)

r
>

β

r2

((dξ3
dr

+
d(−η3)

dr

)

r − (ξ3 − η3)
)

>
β

r2

((

2 +
1

β

)

r − 2r
)

> 0.

�

Lemma 4.6. Let a > 1000, c = a−3, z ∈ S+(1) ∪ E(1) and r ∈
(
√

z2
1 + z2

2 +

2c,∞
)

\ {1}. Then
U3 > 0 and V3 > 0.

P r o o f. The proof follows from (16) and from the definition of U3 and V3. �
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Lemma 4.7. Assume a > 1000, c = a−3, z ∈ S+(1), with s 6 5, and r ∈
(
√

z2
1 + z2

2 + 2c, 11
10

]

\ {1}. Then

U2 + U3 + V2 + V3 >
(s− 1)2c2/(1 + s2c2)
√

Ψ2
z(τ) + α2(r2 − 1)

+
(s− 1)2c2/(1 + s2c2)
√

Ψ2
z(σ)2 + α2(r2 − 1)

.

P r o o f. First, in view of the Schwartz inequality for the scalar product and

of (4) we can write

Ψz(τ) − z3 = cz1 cos τ + cz2 sin τ = c(z1, z2) · (cos τ, sin τ) =
sc2u√

1 + s2c2

for some u ∈ [−1, 1]. Therefore

U2 + U3 > min
u∈[−1,1]

( −sc2u√
1 + s2c2

+
α2 −

(

1/
√

1 + s2c2 + sc2u/
√

1 + s2c2
)2

√

Ψ2
z(τ) − α2(r2 − 1)

)

.

The minimum is attained for u = 1, hence (recall α2 = 1 + c2)

U2 + U3 >
−sc2√
1 + s2c2

+
α2 − (1 + sc2)2/(1 + s2c2)
√

Ψ2
z(τ) − α2(r2 − 1)

(29)

=
−sc2√
1 + s2c2

+
(s− 1)2c2/(1 + s2c2)
√

Ψ2
z(τ) − α2(r2 − 1)

.

The estimate of V2 + V3 is similar, though we have to estimate the minimum a bit

more carefully. Indeed, first we observe αr
√

1 + s2c2 < 2 and thus from (18) we

obtain

(30)
sc2√

1 + s2c2
6

2sc2/(1 + s2c2)

αr
6

2sc2/(1 + s2c2)
√

Ψ2
z(σ) + α2(r2 − 1)

.

Next, as above we can write

Ψz(σ) − z3 = cz1 cosσ + cz2 sinσ =
sc2u√

1 + s2c2
,

where u ∈ [−1, 1]. Hence we have

V2 + V3 > min
u∈[−1,1]

(

sc2u√
1 + s2c2

+
α2 −

(

1/
√

1 + s2c2 + sc2u/
√

1 + s2c2
)2

√

Ψ2
z(τ) − α2(r2 − 1)

)

.

By (30) we can see that the minimum is attained for u = 1 again and we obtain

V2 + V3 >
sc2√

1 + s2c2
+
α2 − (1 + sc2)2/(1 + s2c2)
√

Ψ2
z(σ) − α2(r2 − 1)

(31)

=
sc2√

1 + s2c2
+

(s− 1)2c2/(1 + s2c2)
√

Ψ2
z(σ) − α2(r2 − 1)

.

Now, summing estimates (29) and (31) up we obtain the assertion. �
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Lemma 4.8. Assume a > 1000, c = a−3, z ∈ S+(1) ∪ E(1), r > 11
10 , dξ3/dr 6 2

and d(−η3)/dr 6 2. Then

U1 + V1 > − c
√

z2
1 + z2

2

a(r − 1)

and

U2 + V2 > − 4c
√

z2
1 + z2

2

a(r − 1)
.

P r o o f. Notice that for r > 11
10 we can use Lemma 4.4. Since r > 1 and z ∈ S(1),

we have ξ3, |η3| ∈ [r − 1, r + 1]. Set δ = |τ − σ| (recall ξ = Γ+
a,c(τ), η = Γ−

a,c(σ)). We

obtain

0 6 δ =
∣

∣

∣

1

a
ln ξ3 −

1

a
ln |η3|

∣

∣

∣
(32)

6
1

a
ln
(r + 1

r − 1

)

=
1

a
ln
(

1 +
2

r − 1

)

6
2

a(r − 1)
.

Further, we plainly have

|Ψz(τ) − Ψz(σ)| = |cz1(cos τ − cosσ) + cz2(sin τ − sinσ)|(33)

6 2c
√

z2
1 + z2

2 δ,

|Ψ′

z(τ) − Ψ′

z(σ)| = |cz1(− sin τ + sinσ) + cz2(cos τ − cosσ)|(34)

6 2c
√

z2
1 + z2

2 δ.

Since for a, b ∈ [B,∞] we have |1/a− 1/b| = |b2 − a2|/(ab(a+ b)) 6 |b2 − a2|/2B3,

we obtain from (16), (20), (34) and (35)

∣

∣

∣

1
√

Ψ2
z(τ) + α2(r2 − 1)

− 1
√

Ψ2
z(σ) + α2(r2 − 1)

∣

∣

∣
(35)

6
|Ψ2

z(σ) − Ψ2
z(τ)|

2
27α

3r3

6
|Ψz(σ) + Ψz(τ)||Ψz(σ) − Ψz(τ)|

2
27α

3r3

6
2α2c

√

z2
1 + z2

2 δ
2
27α

3r3
<

c

2r(r − 1)
.
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Now, (17), (20), (22), (25), (34), (36) and (37) imply

∣

∣

∣

dξ3
dr

− d(−η3)
dr

∣

∣

∣
(38)

=
∣

∣

∣

( r
√

Ψ2
z(τ) + α2(r2 − 1)

− r
√

Ψ2
z(σ) + α2(r2 − 1)

)

+
1

a

(( Ψ′

z(τ) dξ3/dr
√

Ψ2
z(τ) + α2(r2 − 1)

− Ψ′

z(τ) dξ3/dr
√

Ψ2
z(σ) + α2(r2 − 1)

)

+
(Ψ′

z(τ) − Ψ′

z(σ)) dξ3/dr
√

Ψ2
z(σ) + α2(r2 − 1)

+
Ψ′

z(σ)(dξ3/dr + d(−η3)/dr)
√

Ψ2
z(σ) + α2(r2 − 1)

)∣

∣

∣

6
c

2(r − 1)
+

1

a

(

c
√

z2
1 + z2

2 · 2 c

2r(r − 1)

+
2c
√

z2
1 + z2

2 δ 2
1
3αr

+
c
√

z2
1 + z2

2 4
1
3αr

)

6
c

r − 1
.

Next, using (17), (20), (34), (36), (37) and (38) we obtain

|U1 + V1| =
r

a

∣

∣

∣

Ψ′

z(τ) dξ3/dr
√

Ψ2
z(τ) + α2(r2 − 1)

− Ψ′

z(τ) dξ3/dr
√

Ψ2
z(σ) + α2(r2 − 1)

+
(Ψ′

z(τ) − Ψ′

z(σ)) dξ3/dr
√

Ψ2
z(σ) + α2(r2 − 1)

+
Ψ′

z(σ)
(

dξ3/dr − d(−η3)/dr
)

√

Ψ2
z(σ) + α2(r2 − 1)

∣

∣

∣

6
r

a

(

c
√

z2
1 + z2

2 · 2 c

2r(r − 1)
+

2c
√

z2
1 + z2

2 δ 2
1
3αr

+
c
√

z2
1 + z2

2c/(r − 1)
1
3αr

)

6
c
√

z2
1 + z2

2

a(r − 1)
.

Hence we have proved (32). Finally, as U2 + V2 = Ψz(σ) − Ψz(τ), the estimate (33)

follows from (34) and (35). �

P r o o f of Proposition 4.1. We distinguish four cases concerning (z, r) when

showing that µa,c + H1xL is monotone at (z, r).

Case 1 : z = 0 and r ∈ (0,∞).

Using (11) and (7) we obtain

Dr

µa,cB(z, r)

r
+ Dr

(H1xL)B(z, r)

r
> Dr

2(β/α)r

r
+ 0 = 0.

Case 2 : z ∈ S+(1) ∪ E(1) and r ∈ (0,
√

z2
1 + z2

2 + 2c].

If
√

z2
1 + z2

2 /∈ (1
2c,

3
2c), then the proof follows from Lemma 4.2 (ii) and (11).

Conversely, if
√

z2
1 + z2

2 ∈ (1
2c,

3
2c), then r < 4c by Lemma 4.2 (i) and we need
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not care about this case (see the statement of Proposition 4.1 (iv) and notice that
√

z2
1 + z2

2 ∈ (1
2c,

3
2c) implies that s(z) ∈ (1

2 , 2) for c small enough).

In the remaining cases, we have r ∈
[
√

z2
1 + z2

2 + 2c,∞
)

\ {1}. Hence we can use
the estimate (28). We can also suppose that

(37)
dξ3
dr

6 2 and
d(−η3)

dr
6 2,

otherwise the proof follows from Lemma 4.5 and (11).

Case 3 : z ∈ S+(1) ∪ E(1) and r ∈
[
√

z2
1 + z2

2 + 2c, 11
10

]

\ {1}.
If z ∈ S+(1) with s ∈ [0, 1

2 ] ∪ [2, 5], then from (4), (17) and (39) we conclude

|U1 + V1| 6

∣

∣

∣

r

a

α2Ψ′

z(τ) dξ3/dr
√

Ψ2
z(τ) + α2(r2 − 1)

∣

∣

∣
+
∣

∣

∣

r

a

−α2Ψ′

z(σ) d(−η3)/dr
√

Ψ2
z(σ) + α2(r2 − 1)

∣

∣

∣

6
3c
√

z2
1 + z2

2

a
√

Ψ2
z(τ) + α2(r2 − 1)

+
3c
√

z2
1 + z2

2

a
√

Ψ2
z(σ) + α2(r2 − 1)

6
3sc2

a
√

Ψ2
z(τ) + α2(r2 − 1)

+
3sc2

a
√

Ψ2
z(σ) + α2(r2 − 1)

.

Further, Lemma 4.7 gives

U2 + U3 + V2 + V3 >

1
4c

2/
√

1 + 25c2
√

Ψ2
z(τ) + α2(r2 − 1)

+
1
4c

2/
√

1 + 25c2
√

Ψ2
z(σ) + α2(r2 − 1)

> |U1 + V1|

and thus (11) and (28) imply Dr((µa,c + H1xL)B(z, r)/r) > 0.

If z ∈ S+(1) is such that s ∈ [ 12 , 2], by Lemma 4.7 we have U2 +U3 + V2 +V3 > 0.

Moreover, the estimates (17), (20) and (39) imply

|U1 + V1| 6

∣

∣

∣

r

a

α2Ψ′

z(τ) dξ3/dr
√

Ψ2
z(τ) + α2(r2 − 1)

∣

∣

∣
+
∣

∣

∣

r

a

−α2Ψ′

z(σ) d(−η3)/dr
√

Ψ2
z(σ) + α2(r2 − 1)

∣

∣

∣
(38)

6 2
r

a

α2c
√

z2
1 + z2

2 2
1
3αr

6
13c
√

z2
1 + z2

2

a
.

Further, from (4) we have

2

√

z2
1 + z2

2

r
> 2

sc/
√

1 + s2c2

11
10

> sc >
1

2
c >

β

α2

13c

a
,

and thus from (10), (28) and (40) we obtain

Dr

(µa,c + H1xL)B(z, r)

r
> 2

z2
1 + z2

2

r3
− β

α2r2
13c
√

z2
1 + z2

2

a
> 0.
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If
√

z2
1 + z2

2 > 4c, then the proof follows from Lemma 4.2 (iii) and from (11). Since

S+(1) ∪ E(1) =
{

z ∈ S+(1) ∪ E(1) :
√

z2
1 + z2

2 > 4c
}

∪ {z ∈ S+(1) : s 6 5}

for c small enough, the monotonicity at (z, r) in the third case is proved.

Case 4 : z ∈ S+(1) ∪ E(1) and r ∈ [1110 ,∞).

If z ∈ S+(1) is such that s 6 1
2 , then by Lemma 4.7 and the estimate (18) we have

U2 + U3 + V2 + V3 > 2
1
4c

2/(1 + 1
4c

2)

αr
>

1

4

c2

r
.

Thus, from (4) and (32) we obtain

|U1 + V1| 6
c
√

z2
1 + z2

2

a(r − 1)
6
csc/

√
1 + s2c2

ar/11
6

11c2

ar
<

1

4

c2

r
6 U2 + U3 + V2 + V3.

Hence (11) and (28) imply Dr((µa,c + H1xL)B(z, r)/r) > 0.

Finally, if either z ∈ E(1) or z ∈ S+(1) is such that s > 1
2 , then by Lemma 4.6 we

have U3 + V3 > 0. Moreover, Lemma 4.8 gives

|U1 + U2 + V1 + V2| 6
c
√

z2
1 + z2

2

a(r − 1)
+

4c
√

z2
1 + z2

2

a(r − 1)
=

5c
√

z2
1 + z2

2

a(r − 1)
.

Hence from (4), (10) and (28) we obtain

Dr

(µa,c + H1xL)B(z, r)

r
> 2

z2
1 + z2

2

r3
− β

α2r2
5c
√

z2
1 + z2

2

a(r − 1)

>

√

z2
1 + z2

2

r3

(

2
√

z2
1 + z2

2 − 6c

a(r − 1)/r

)

>

√

z2
1 + z2

2

r3

(

2
1
2c

√

1 + 1
4c

2
− 6c

a 1
11

)

> 0.

This is the monotonicity at (z, r) in the fourth case.

Finally, it can be easily seen that our Cases 1–4 cover the assumptions of Propo-

sition 4.1 (i)–(iv), and thus we are done. �
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5. Small radii

In this section we deal with the case when the center z is very close to sptµa,c.

Our strategy is the following. We use the self-similarity of our logarithmic spirals

to pass to the case of a ball such that sptµa,c on a neighborhood of the ball can be

parametrized as the graph of a suitable multivalued function to which we can apply

Proposition 2.1.

Proposition 5.1. There is K2 > 0 with the following property:

If a > K2, c = a−3, z ∈ S+(1) with s(z) ∈ [0, 2] and r ∈ (0, 4c], then µa,c is

monotone at (z, r).

Because of the self similarity of sptµa,c we can use the following idea: having any

fixed plane not passing through the origin and using a suitable transformation, we

see that the monotonicity at (z, r) in the case of the ball B(z, r) centered on S(1) is

equivalent to the monotonicity at (z̃, r̃) in the case of the ball B(z̃, r̃) centered at the

proper point on the above mentioned plane. This can be done in such a way that

B(z̃, r̃) is “not far away from” to the B(z, r).

Let us therefore define a new orthogonal basis {ũ, ṽ, w̃} in R
3 by

u =
( 1

a3
,

1

a4
, 1
)

, ũ =
u

|u| ,

v =
(

−1

a
, 1, 0

)

, ṽ =
v

|v| ,

w =
(

1,
1

a
,−a

2 + 1

a5

)

, w̃ =
w

|w| .

Now, it can be seen that Proposition 5.1 follows from Proposition 5.2 below because

of the self similarity of sptµa,c. Indeed, for large a we have ũ ∼ (0, 0, 1), ṽ ∼
(0, 1, 0), w̃ ∼ (1, 0, 0), Γ+

a,c(0) = (a−3, 0, 1) ∼ (0, 0, 1). Hence, the center of the “new”

ball is very close to the center of the “old” one. Furthemore, we can assume the

“new” radius r to be only a little larger (5a−3 instead of 4a−3), and similarly, the

distance of the center of the “new” ball from the “new reference point” Γ+
a,c(0) is

“almost equal” to the distance of the center of the “old” ball from the “old reference

point” sptµa,c ∩ S+(1) (compare the assumptions concerning s in Proposition 5.1

and the assumptions concerning
√

t21 + t22 in Proposition 5.2). Thus the assumptions

of Proposition 5.2 cover the case of the “rescaled” assumptions of Proposition 5.1.

Proposition 5.2. Let a > 1000 and c = a−3. Then µa,c is monotone at (z, r)

whenever z = Γ+
a,c(0) + t1ṽ + t2w̃ with

√

t21 + t22 6 5a−3, and r ∈ (0, 5a−3).
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The proof of Proposition 5.2 is based on Proposition 2.1. Suppose a > 1000 and

c = a−3 in the sequel.

Let us consider a new coordinate system with respect to the basis {ũ, ṽ, w̃} with
the new origin at Γ+

a,c(0). Then the curve Γ+
a,c turns to

γ̃(t) = (x̃(t), f̃(t), ϕ̃(t))

=
(

(Γ+
a,c(t) − Γ+

a,c(0)) · ũ, (Γ+
a,c(t) − Γ+

a,c(0)) · ṽ, (Γ+
a,c(t) − Γ+

a,c(0)) · w̃
)

.

Let t ∈ (−6a−4, 6a−4). Since |1 − cos t| 6 |t|, | sin t| 6 |t| and eat ∈ (1 − 18a−3, 1 +

18a−3), from

Γ̇+
a,c(t) =

( 1

a3
eat(a cos t− sin t),

1

a3
eat(a sin t+ cos t), aeat

)

and

Γ̈+
a,c(t) =

( 1

a3
eat((a2 − 1) cos t− 2a sin t),

1

a3
eat((a2 − 1) sin t+ 2a cos t), a2eat

)

,

we obtain

Γ̇+
a,c(t) · ũ =

eat

|u|
(a2 + 1

a7
cos t+ a

)

, |Γ̇+
a,c(t) · ũ| > a− 20

a2
,(39)

|Γ̈+
a,c(t) · ũ| =

eat

|u|
∣

∣

∣

a2 + 1

a6
cos t− a2 + 1

a7
sin t+ a2

∣

∣

∣
6 2a2,(40)

Γ̇+
a,c(t) · ṽ =

eat

|v|
(a2 + 1

a4
sin t

)

, |Γ̇+
a,c(t) · ṽ| 6

7

a6
,(41)

Γ̈+
a,c(t) · ṽ =

eat

|v|
(a2 + 1

a4
cos t+

a2 + 1

a3
sin t

)

,(42)

Γ̇+
a,c(t) · w̃ =

eat

|w|
a2 + 1

a4
(cos t− 1), |Γ̇+

a,c(t) · w̃| 6
7

a6
,(43)

|Γ̈+
a,c(t) · w̃| =

eat

|w|
∣

∣

∣

a2 + 1

a3
(cos t− 1) − a2 + 1

a4
sin t

∣

∣

∣
6

7

a5
.(44)

Next, by (41) we have x̃′(t) > a − 20a−2 on l[−6a−4, 6a−4]. Therefore we can

define the inverse function ψ = x̃−1 on (x̃(−6a−4), x̃(6a−4)) ⊃ [−5a−3, 5a−3]. We

set

γ(x) = (x, f(x), ϕ(x)) = (x, f̃ (ψ(x)), ϕ̃(ψ(x))).

Hence we have

(45) f ′(x) =
f̃ ′(ψ(x))

x̃′(ψ(x))
=

Γ̇+
a,c(ψ(x)) · ṽ

Γ̇+
a,c(ψ(x)) · ũ

,
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f ′′(x) =
f̃ ′′(ψ(x))

x̃′2(ψ(x))
− f̃ ′(ψ(x))x̃′′(ψ(x))

x̃′3(ψ(x))
(46)

=
Γ̈+

a,c(ψ(x)) · ṽ
(Γ̇+

a,c(ψ(x)) · ũ)2
− (Γ̇+

a,c(ψ(x)) · ṽ)(Γ̈+
a,c(ψ(x)) · ũ)

(Γ̇+
a,c(ψ(x)) · ũ)3

,

(47) ϕ′(x) =
ϕ̃′(ψ(x))

x̃′(ψ(x))
=

Γ̇+
a,c(ψ(x)) · w̃

Γ̇+
a,c(ψ(x)) · ũ

and

ϕ′′(x) =
ϕ̃′′(ψ(x))

x̃′2(ψ(x))
− ϕ̃′(ψ(x))x̃′′(ψ(x))

x̃′3(ψ(x))
(48)

=
Γ̈+

a,c(ψ(x)) · w̃
(Γ̇+

a,c(ψ(x)) · ũ)2
−

(Γ̇+
a,c(ψ(x)) · w̃)(Γ̈+

a,c(ψ(x)) · ũ)
(Γ̇+

a,c(ψ(x)) · ũ)3
.

Now, let us check that f and ϕ satisfy the assumptions of Proposition 2.1.

Lemma 5.3. Let a > 1000 and c = a−3. Then

f(0) = f ′(0) = ϕ(0) = ϕ′(0) = 0.

P r o o f. Since x̃(0) = 0 we have ψ(0) = 0 and thus from the definition of γ̃ we

obtain f(0) = f̃(0) = 0 and ϕ(0) = ϕ̃(0) = 0. Further, (43), (45), (47), (49) and

ψ(0) = 0 imply f ′(0) = ϕ′(0) = 0. �

Lemma 5.4. Let a > 1000 and c = a−3 and ψ(x) ∈ (−6a−4, 6a−4). Then

(49) |f ′′(x) − f ′′(0)| 6
2

a
f ′′(0) and |ϕ′′(x)| 6

2

a
f ′′(0).

P r o o f. First, we need some estimates concerning f ′′(0). As ψ(0) = 0, (41),

(42), (43), (44) and (48) imply

f ′′(0) =
|u|2
|v|

1/a2 + 1/a4

(a+ 1/a5 + 1/a7)2
+ 0(50)

= 1/a4 |u|2
|v|

1 + 1/a2

(1 + 1/a6 + 1/a8)2
=

1

a4

√

1 + 1/a2

1 + 1/a6 + 1/a8
.

Hence for every t ∈ (−6a−4, 6a−4) we have from eat ∈ (1 − 18a−3, 1 + 18a−3)

(51)
∣

∣

∣
f ′′(0) − 1

a4

∣

∣

∣
6

1

a
f ′′(0) and

∣

∣

∣
f ′′(0) − |u|2

|v|
1

a4eat

∣

∣

∣
6

1

a
f ′′(0).

1164



Next, since t ∈ (−6a−4, 6a−4) implies eat ∈ (1 − 18a−3, 1 + 18a−3), from (41), (42),

(45), (46), (49) and (52) we obtain

|ϕ′′(x)| 6
7/a5

(a− 20/a2)2
+

7/a6 · 2a2

(a− 20/a2)3
<

8

a7
+

15

a7
=

23

a7
<

2

a
f ′′(0).

Hence we have the second inequality in (51) and it remains to prove the first. As

a > 1000, |t| 6 6a−4, |sin t| 6 |t|, |1 − cos t| 6 |t|, (41) and (44) give

|a4(Γ̈+
a,c(t) · v) − e−at(Γ̇+

a,c(t) · u)2|

= eat
∣

∣

∣
(a2 + 1) cos t+ (a3 + a) sin t−

(

a+
a2 + 1

a7
cos t

)2∣
∣

∣
6 2

and thus from (41) we obtain

(52)

∣

∣

∣

∣

Γ̈+
a,c(t) · v/|v|

(Γ̇+
a,c(t) · u/|u|)2

− |u|2
a4|v|eat

∣

∣

∣

∣

=
1

|v|
|a4Γ̈+

a,c(t) · v − e−at(Γ̇+
a,c(t) · u)2|

a4(Γ̇+
a,c(t) · u/|u|)2

6
3

a6
.

Finally, using (41), (42), (43), (44), (48), (53) and (54) we conclude the proof by the

following estimate (where we simply write t instead of ψ(x)):

|f ′′(x) − f ′′(0)| 6

∣

∣

∣
f ′′(x) − |u|2

a4|v|eat

∣

∣

∣
+
∣

∣

∣

|u|2
a4|v|eat

− f ′′(0)
∣

∣

∣

6

∣

∣

∣

f̃ ′′(t)

x̃′2(t)
− |u|2
a4|v|eat

∣

∣

∣
+
∣

∣

∣

f̃ ′(t)x̃′′(t)

x̃′3(t)

∣

∣

∣
+

1

a
f ′′(0)

=

∣

∣

∣

∣

Γ̈+
a,c(t) · v/|v|

(Γ̇+
a,c(t) · u/|u|)2

− |u|2
a4|v|eat

∣

∣

∣

∣

+

∣

∣

∣

∣

(Γ̇+
a,c(t) · v/|v|)(Γ̈+

a,c(t) · u/|u|)
(Γ̇+

a,c(t) · u/|u|)3

∣

∣

∣

∣

+
1

a
f ′′(0)

6
3

a6
+

7/a6 · 2a2

(a− 20/a2)3
+

1

a
f ′′(0) 6

2

a
f ′′(0).

�

P r o o f of Proposition 5.2. For all considered pairs (z, r) we observe that

B(z, r) ∩ [Γ−

a,c] = ∅. Further, as a > 1000 and ψ(x) ∈ (−6a−4, 6a−4) for x ∈
[−5a−3, 5a−3], Lemma 5.3 and Lemma 5.4 imply that all assumptions of Proposi-

tion 2.1 are satisfied (with d = f ′′(0) ∼ a−4, ε = 2a−1 and δ = 5a−3 < 1
20d

−1).

Thus, Proposition 2.1 completes the proof. �

Therefore we have also proved Proposition 5.1 (by the comments at the beginning

of this section).
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P r o o f of Theorem 1.4. First, let us prove the monotonicity. Suppose that

K > max{K1,K2}. Because of the self-similarity of the logarithmic spirals and
lines, it is enough to check the monotonicity for z ∈ S+(1) ∪ E(1) ∪ {0} and r > 0.

By Lemma 2.2 we can further suppose that r 6= 1. In every case but z ∈ S+(1)

with s ∈
(

1
2 , 2
)

and r ∈ (0, 4c) we can use Proposition 4.1. Finally, Proposition 5.1

completes the proof in the remaining case.

The assertions concerning the tangential behavior follow from Proposition 3.1.

From the definitions, we easily obtain that

θ1z(µa,c + H1xL) = 1 for every z ∈ (sptµa,c ∪ L) \ {0}.

Finally, (7) gives

θ10(µa,c + H1xL) = 1 +
β

α
= 1 +

√

1 + 1/a6 + 1/a8

√

1 + 1/a6
= 1 +

√

1 +
1

a8 + a2
.

Consequently, we have θ10(µa,c + H1xL) < 2 + ε for a sufficiently large. �

Remark 5.5. Our restriction about a and c in Theorem 1.4 was made to obtain

simple proofs and does not mean that the other compensated measures µa,c +H1xL

cannot be monotone.

On the other hand, using a similar method as in the last section of paper [2] it

can be shown that µa,c itself is not monotone for any a, c > 0.
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