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Reproducing kernels for Dunkl polyharmonic polynomials

Kamel Touahri

Abstract. In this paper, we compute explicitly the reproducing kernel of the space
of homogeneous polynomials of degree n and Dunkl polyharmonic of degree m,

i.e. ∆m
k u = 0, m ∈ N \ {0}, where ∆k is the Dunkl Laplacian and we study

the convergence of the orthogonal series of Dunkl polyharmonic homogeneous
polynomials.

Keywords: Dunkl Laplacian, reproducing kernel

Classification: 31B30, 33C55

1. Introduction and main results

The Dunkl Laplacian ∆k associated to a root system R and a weight function
k is a generalisation of the Laplace operator

∆ =
∂2

∂x2
1

+ · · ·+ ∂2

∂x2
d

.

In the last two decades Ch. Dunkl developed a beautiful theory based for the
Dunkl Laplacian which generalizes the theory of spherical harmonics and leads
to important applications in the theory of multivariate orthogonal polynomials.
The aim of this paper is to generalize a recent result of H. Render in [6] about
reproducing kernels for polyharmonic polynomials to the context of the Dunkl
Laplacian.

We point out that this problem is studied by Ch. Dunkl and Y. Xu for Dunkl
harmonic polynomials in [2]. In particular, they established the reproducing prop-
erty by means of the Poisson kernel. Also, they add the Funk-Hecke formula by
using the Gegenbauer polynomials.

First of all, we begin by giving some definitions and results concerning the
Dunkl operators. For more details (see [1], [2] and [7]).

Let 〈x, y〉 be the euclidean scalar product on Rd and | · | the associated norm.
We recall that for v ∈ Rd the reflection σv with respect to the hyperplane Hv

orthogonal to v is given for x ∈ Rd by

σv(x) = x− 2
〈x, v〉
|v|2 v.

A finite set R ⊆ Rd \{0} is called a root system if R∩Rv = {±v} and σv(R) = R
for all v ∈ R. We assume that it is normalized by |v|2 = 2 for all v ∈ R.
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For a given root system R the reflections σv, v ∈ R, generate a finite group
W ⊆ O(d), the orthogonal group. We fix a positive root system R+ = {α ∈ R :
〈α, β〉 > 0} for some β ∈ Rd \ ⋃

v∈R Hv, then for each v ∈ R either v ∈ R+ or
−v ∈ R+.

A W -invariant function k : R+ → C is called a multiplicity function. We will
assume throughout this paper that the multiplicity function k is nonnegative. For
abbreviation, we introduce the index

(1.1) γ = γ(k) :=
∑

v∈R+

k(v).

Moreover, let wk denote the weight function

wk(x) =
∏

v∈R+

|〈x, v〉|2k(v)

which is W -invariant and homogeneous of degree 2γ and

ck =

∫

Sd−1

wk(t) dσ(t),

where Sd−1 is the unit sphere of Rd and dσ is the surface measure on Sd−1.
The Dunkl operators on Rd denoted Dj, 1 ≤ j ≤ d, associated with the group

W and the multiplicity function k are given for a function u of class C1 on Rd by

Dju(x) = ∂ju(x) +
∑

v∈R+

k(v)vj
u(x)− u(σv(x))

〈x, v〉 .

The properties of these operators can be found in [1]. In particular, the operator
Dj maps Pd

n to Pd
n−1, where Pd

j is the space of homogeneous polynomials of degree

j on Rd. Furthermore the family (Dj)1≤j≤d is commutative.
The Dunkl Laplacian ∆k on Rd is given for u ∈ C2(Rd) by

∆ku =

d∑

j=1

D2
ju.

A polynomial P is called Dunkl harmonic if ∆kP (x) = 0 for all x ∈ Rd, and more
general, Dunkl polyharmonic of order m if ∆m

k P (x) = 0 for all x ∈ Rd. In [6]
H. Render determined the reproducing kernel for the space of all polyharmonic
polynomials of order m and degree n. In this paper, we show that a similar result
holds in the context of Dunkl polyharmonic polynomials.

Let Pd be the space of polynomials on Rd equipped with the apolar inner scalar
product

[P,Q]k = [P (D)Q](0),

where D = (D1, D2, . . . , Dd) and P (D) = P (D1, D2, . . . , Dd).
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We denote by PHk
n,m the space of homogeneous polynomials of degree n on

Rd and Dunkl polyharmonic of order m ∈ N \ {0}, (i.e. ∆m
k P = 0, P ∈ Pd

n).

Suppose that {Qk
n,m,j}1≤j≤ad(n,m), ad(n,m) := dimPHk

n,m, is an orthonormal

basis of PHk
n,m with respect to the inner product [·, ·]k and define the function

Zk
n,m of PHk

n,m by

Zk
n,m(x, y) :=

ad(n,m)∑

j=1

Qk
n,m,j(x)Q

k
n,m,j(y).

It is a well known result of Hilbert space theory that Zk
n,m is independent of the

choice of the orthonormal basis Qk
n,m,j for j = 1, . . . , ad(n,m) and that

[P (x), Zk
n,m(x, y)]k = P (y)

for all y ∈ Rd and P ∈ PHk
n,m. For this reason, the function Zk

n,m is called the

reproducing kernel of the space PHk
n,m with respect to the inner product [·, ·]k.

In this paper, we show that the reproducing kernel Zk
n,m can be described

explicitly as
(1.2)

Zk
n,m(x, y) =

min([n2 ],m−1)∑

s=0

|x|2s|y|2sZk
n−2s(x, y)

2ss!(d+ 2γ)(d+ 2γ + 2) . . . (d+ 2(γ + n− s− 1))
,

where γ is defined in formula (1.1) and [n2 ] is the integral part of n
2 .

Note that the reproducing kernel Zk
n is defined for the inner product

(P,Q)k =
1

ck

∫

Sd−1

P (x)Q(x)wk(x) dσ(x)

on the space PHk
n,1 while Zk

n,1 is the reproducing kernel with respect to [·, ·]k.
The dimension of PHk

j,1 is given (see [2]) by

ad(j, 1) = (2j + d− 2)
(j + d− 3)!

j!(d− 2)!
.

Using (1.2) and the expression of the reproducing kernel of PHk
j,1, we prove that

there exists a positive constant C depending only on d and γ such that for all
x, y ∈ Sd−1,

(1.3) |Zk
n,m(x, y)| ≤ C

nm+d+2γ

2nn!
.
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Formula (1.3) allows to prove that the following orthogonal series

+∞∑

n=0

ad(n,m)∑

j=1

µn,jQ
k
n,m,j

converges absolutely and uniformly on compact subsets of the open ball B(ρ)
centered at the origin and with radius

ρ =
1√
2
lim sup
n→+∞

(‖µn‖2√
n!

)−1
n

,

where

‖µn‖2 =

( ad(n,m)∑

j=1

|µn,j|2
) 1

2

.

The paper is organized as follows. In the second section, we give a relation between
the two scalar products [·, ·]k and (·, ·)k on PHk

n,1 and we describe explicitly the

reproducing kernel Zk
n,m by means of Zk

n. The third section contains a criterion

for the convergence of the series
∑+∞

n=0

∑ad(n,m)
j=1 µn,jQ

k
n,m,j.

2. The reproducing kernel for Dunkl polyharmonic polynomials

Since ∆m
k is a homogeneous operator of order 2m, using arguments analogous

as in the proof of the case m = 1, (see [2, Theorem 5.1.7, p. 178]) we find that

(2.1) ad(n,m) =

(
d+ n− 1

n

)
−
(
d+ n− 1− 2m

n− 2m

)
.

It is shown in [7] that the scalar product [·, ·]k satisfies the following properties

[xiP,Q]k = [P,DiQ]k, i = 1, . . . , d,

for all P,Q ∈ Pd. Using this relation, we see that, for all P,Q,R ∈ Pd, we have

(2.2) [P ⋆(D)Q,R]k = [Q,PR]k,

where P ⋆(x) is the polynomial obtained by conjugation the coefficients of the
polynomial P and P ⋆(D) is the operator associated to P ⋆(x). In addition, we
note that for all homogeneous polynomials P and Q of degree n,

[P,Q]k = P (D)Q.

To establish a relation between [·, ·]k and (·, ·)k on PHk
n,1, we give the following

technical lemmas. We mention that Lemma 2.1, in the classical case is due to
Kuran, see [3, p. 19].
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Lemma 2.1. Let n be a positive integer. If h is Dunkl harmonic function in Rd

(i.e. ∆kh = 0) and P ∈ Pd
n, then

(2.3) ∆n
k (Ph) = 2nn!P (D)h.

Proof: It is proved in [2, Lemma 5.1.10, p. 179], that for all i ∈ {1, . . . , d} and
f ∈ C2(Rd),

(2.4) ∆k(xif) = xi∆k(f) + 2Di(f).

Using (2.4) and the fact that ∆k and Di commute, we prove by induction that,
if α ∈ Nd and i ∈ {1, 2, . . . , d} be fixed, then for all p ∈ N \ {0}

(2.5) ∆p
k(x

α+eif) = xi∆
p
k(x

αf) + 2pDi∆
p−1
k (xαf)

where ei is the i-th standard basis vector.
We prove now (2.3) by induction for P = xα. The result is true for |α| = 1.

Suppose

∆n
k (x

αh) = 2nn!Dα(h),

for all α ∈ Nd such that |α| = n, then by (2.5) and (2.4), we have for all i = 1, . . . , d

∆n+1
k (xα+eih) = xi∆

n+1
k (xαh) + 2(n+ 1)Di∆

n
k (x

αh)

= xi∆k(∆
n
k (x

αh)) + 2(n+ 1)Di(2
nn!Dαh)

= xi∆k(2
nn!Dα(h)) + 2n+1(n+ 1)!Dα+ei(h)

= 2nn!xiD
α(∆kh) + 2n+1(n+ 1)!Dα+ei(h)

= 2n+1(n+ 1)!Dα+ei(h).

Hence, the result is true for all α ∈ Nd such that |α| = n+1 and the induction is
terminated. Finally, we conclude by linearity. �

Lemma 2.2. Let P be a homogeneous polynomial of degree n. Then

(2.6)

∫

Sd−1

∆kP (y)wk(y) dσ(y) = n(n+ d+ 2γ − 2)

∫

Sd−1

P (y)wk(y) dσ(y).

If further n is even, i.e. n = 2s, then

(2.7) ∆s
kP =

2ss!

ck
ud,γ(s)

∫

Sd−1

P (y)wk(y) dσ(y),

where

ud,γ(s) = (d+ 2γ)(d+ 2γ + 2) . . . (d+ 2γ + 2s− 2).
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Proof: By Euler’s identity,

nP =
d∑

i=1

xi
∂P

∂xi
= r

∂P

∂r
, r = |x|.

Then, by Green’s formula (see [4]), the homogeneity of wk of degree 2γ and the
homogeneity of ∆kP of degree n− 2, we have

n

∫

Sd−1

P (y)wk(y) dσ(y) =

∫

Sd−1

∂P

∂r
(y)wk(y) dσ(y)

=

∫

B

∆kP (x)wk(x) dx

=

∫ 1

0

∫

Sd−1

∆kP (rt)wk(rt)r
d−1 dr dσ(t)

=

∫ 1

0

∫

Sd−1

∆kP (t)wk(t)r
2γ+n+d−3 dr dσ(t)

=
1

(2γ + n+ d− 2)

∫

Sd−1

∆kP (t)wk(t) dσ(t),

which gives (2.6). To prove (2.7), it is enough to note that ∆s
kP is a constant (and

hence) it is equal to its mean value on Sd−1 (see [4]). We conclude by applying
(2.6) s times. �

Theorem 2.3. Let P,Q be homogeneous polynomials of degree n and Dunkl
harmonic. Then

(2.8) [P,Q]k = ud,γ(n)(P,Q)k.

Proof: Using Lemma 2.1 and 2.2 (the latter applied to PQ instead of P ), we
obtain

n!2n[P,Q]k = ∆n
k (PQ) = n!2nud,γ(n)(P,Q)k,

which gives (2.8). �

Lemma 2.4. Let m be a positive integer and P ∈ PHk
n,1. Then for any integer

s such that m ≤ 2s, we have

(2.9) ∆m
k (|x|2sP ) = 2m[s(s− 1) . . . (s− (m− 1))]vd,γ(m,n, s)|x|2s−2mP,

where

vd,γ(m,n, s) = [(d+ 2(s+ n+ γ − 1)) . . . (d+ 2(s+ n+ γ −m))].

In particular,

(2.10) ∆s
k(|x|2sP ) = 2ss!ud,γ+n(s)P.
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Proof: It is a special case of Lemma 5.1.9, p. 178, in [2], which gives

∆k(|x|2sP ) = 2s(2γ + d+ 2s+ 2n− 2)|x|2s−2P.

A simple induction argument gives (2.9). It is clear that if m = s, then we
obtain (2.10). �

In the following, we need some facts from the theory of spherical harmonics
associated with the Dunkl Laplacian.

Let {Y k
n,j}1≤j≤ad(n,1) be an orthonormal basis of PHk

n,1 with respect to the
scalar product (·, ·)k. Then

(2.11) Zk
n(x, y) =

ad(n,1)∑

j=1

Y k
n,j(x)Y

k
n,j(y)

is the reproducing kernel of PHk
n,1 with respect to the scalar product (·, ·)k and

the function x 7→ Zk
n(x, y) is called the zonal k-harmonic of degree n and with

pole y.
Using (2.11), it is easy to show that

1

ck

∫

Sd−1

Zk
n(x, x)wk(x) dσ(x) = ad(n, 1).

Theorem 2.5. Let Y k
n,j , n ∈ N, j = 1, . . . , ad(n, 1), be an orthonormal basis of

PHk
n,1 with respect to the inner product (·, ·)k. Then the polynomials |x|2sY k

n,j ,
s ∈ N, are orthogonal with respect to the inner product [·, ·]k and we have

(2.12) ‖|x|2sY k
n,j‖2k = 2ss!ud,γ(s+ n).

Here ‖ · ‖k is the norm associated to the inner product [·, ·]k.

Proof: The proof is analogous to the one in [6, Theorem 2.2, p. 139] using (2.10)
and (2.2). �

Proposition 2.6. Let m ∈ N \ {0}. The system |x|2sY k
n−2s,j for s = 0, 1, . . . ,

min{[n2 ],m− 1} and j = 1, . . . , ad(n− 2s, 1), is an orthogonal basis of PHk
n,m.

Proof: By the Almansi theorem for Dunkl operators, (see [5]) and similarly to
the proof of Proposition 2.3, p. 140 in [6], we obtain the desired result. �

Fix a point y ∈ Rd, and consider the linear map

Λ : PHk
n,m → C

defined by

Λ(P ) = P (y).
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Because PHk
n,m is a finite-dimensional inner-product space, there exists a unique

function Zk
n,m(·, y) ∈ PHk

n,m such that

P (y) = [P,Zk
n,m(·, y)]k

for all P ∈ PHk
n,m.

Zk
n,m is called the reproducing kernel of PHk

n,m endowed with the inner pro-
duct [·, ·]k.

By standard Hilbert space theory, we have the following well known result.

Proposition 2.7. (a) If {Qn,m,j}1≤j≤ad(n,m) is an orthonormal basis of

PHk
n,m with respect to the inner product [·, ·]k, then for all x, y ∈ Rd,

Zk
n,m(x, y) =

ad(n,m)∑

j=1

Qn,m,j(x)Qn,m,j(y).

(b) Zk
n,m is real valued.

(c) Zk
n,m(x, y) = Zk

n,m(y, x), for all x, y ∈ Rd.

Theorem 2.8. The reproducing kernel Zk
n,m of PHk

n,m endowed with the scalar
product [·, ·]k is given by

(2.13) Zk
n,m(x, y) =

min{[n2 ],m−1}∑

s=0

1

2ss!ud,γ(n− s)
|x|2s|y|2sZk

n−2s(x, y).

Proof: Since the system

1√
2ss!ud,γ(n− s)

|x|2sY k
n−2s,j

for s = 0, 1, . . . ,min{[n2 ],m − 1} and j = 1, . . . , ad(n − 2s, 1) is an orthonormal

basis of PHk
n,m with respect to the scalar product [·, ·]k, by definition of the

reproducing kernel of PHk
n,m,

Zk
n,m(x, y) =

min{[n2 ],m−1}∑

s=0

ad(n−2s,1)∑

j=1

1

2ss!ud,γ(n− s)
|x|2sY k

n−2s,j(x)|y|2sY k
n−2s,j(y)

=

min{[n2 ],m−1}∑

s=0

1

2ss!ud,γ(n− s)
|x|2s|y|2s

ak
d(n−2s,1)∑

j=1

Y k
n−2s,j(x)Y

k
n−2s,j(y)

=

min{[n2 ],m−1}∑

s=0

1

2ss!ud,γ(n− s)
|x|2s|y|2sZk

n−2s(x, y).

�
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Proposition 2.9. Let qn ∈ PHk
n,m. Then for all x ∈ Rd,

(2.14)
ud,γ(n)

ck

∫

Sd−1

qn(y)Z
k
j,m(x, y)wk(y) dσ(y) = δnjqn(x).

(δij being the Kronecker symbol).

Proof: Let x ∈ Sd−1. Since Zk
j,m(x, ·) is a homogeneous polynomial of degree j,

by [2, Theorem 5.1.6, p. 177], if n 6= j, the left hand side of the relation of the
lemma vanishes. If n = j, then using (2.8), we obtain

1

ck

∫

Sd−1

qn(y)Z
k
j,m(x, y)wk(y) dσ(y) = (qn, Z

k
n,m(x, ·))k

=
1

ud,γ(n)
[qn, Z

k
n,m(x, ·)]k

=
1

ud,γ(n)
qn(x).

�
We give now some results which are used to study the convergence of orthogonal

series. Before stating these results, we recall the existence and the unicity of the
so-called Dunkl intertwining operator denoted Vk (see [1]) which relates the Dunkl
operators Dj , 1 ≤ j ≤ d, with the usual partial derivatives ∂j and is a linear
isomorphism from the space Pd

n onto itself satisfying

Vk(1) = 1, DjVk = Vk∂j , 1 ≤ j ≤ d.

Moreover, it is proved in [9] that Vk can be extended to a topological isomorphism
of the space C∞(Rd) (the space of C∞-functions on Rd) onto itself and admits for
all x ∈ Rd the following integral representation

(2.15) Vk(f)(x) =

∫

Rd

f(y) dµx(y), f ∈ C(Rd),

where dµx is a probability measure on Rd, with support in the closed ball B(‖x‖)
centered at the origin and with radius ‖x‖.

It can be easily seen that ∆k satisfies

Vk∆
n = ∆n

kVk, n ∈ N.

Lemma 2.10. Let Zk
n(x, y) be the reproducing kernel for the space PHk

n,1 with
respect to (·, ·)k. Then the following estimate holds:
For x, y ∈ Sd−1, we have

(2.16) |Zk
n(x, y)| ≤

(n+ γ + d
2 − 1)(d+ 2γ − 2)n

(γ + d
2 − 1)n!

.
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Proof: For x, y ∈ Sd−1, according to Corollary 5.3.2 in [2], the kernel Zk
n(x, y)

can be written as

(2.17) Zk
n(x, y) =

(n+ γ + d
2 − 1)(d+ 2γ − 2)n

(γ + d
2 − 1)n!

VkC̃
γ+ d

2−1
n (〈x, ·〉)(y),

where C̃
γ+d

2−1
n is the normalized Gegenbauer polynomial such that C̃

γ+ d
2−1

n (1) =
1 and (a)n is the Pochammer symbol.

From (2.15) and the fact that C̃
γ+d

2−1
n (t) ≤ 1 for |t| ≤ 1, we obtain (2.16). �

Using (2.13) and (2.16), we obtain:

Lemma 2.11. For x, y ∈ Sd−1, we have

(2.18) |Zk
n,m(x, y)| ≤ λd,γ(n,m),

where

λd,γ(n,m) =

min{[n2 ],m−1}∑

s=0

(n− 2s+ γ + d
2 − 1)(d+ 2γ − 2)n−2s

2ss!(γ + d
2 − 1)(n− 2s)!ud,γ(n− s)

.

Proposition 2.12. For x ∈ Sd−1, we have

‖Zk
n,m(x, ·)‖2k ≤ λd,γ(n,m)

and

‖Zk
n,m(x, ·)‖22,k ≤ λd,γ(n,m)

ud,γ(n)
.

Here ‖ · ‖2,k is the norm associated with the inner product (·, ·)k.

Proof: We have

‖Zk
n,m(x, ·)‖2k = [Zk

n,m(x, ·), Zk
n,m(x, ·)]k = Zk

n,m(x, x),

and

‖Zk
n,m(x, ·)‖22,k =

1

ud,γ(n)
‖Zk

n,m(x, ·)‖2k.

Hence, (2.18) completes the proof. �

Theorem 2.13. Let qn ∈ PHk
n,m(Rd). For all x ∈ Sd−1, we have

(2.19) |qn(x)| ≤
ud,γ(n)λd,γ(n,m)

ck

∫

Sd−1

|qn(y)|wk(y) dσ(y).
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Proof: By (2.14) and (2.18), we have

|qn(x)| =
∣∣∣∣
ud,γ(n)

ck

∫

Sd−1

qn(y)Z
k
n,m(x, y)wk(y) dσ(y)

∣∣∣∣

≤ ud,γ(n)λd,γ(n,m)

ck

∫

Sd−1

|qn(y)|wk(y) dσ(y).

�

Corollary 2.14. Let qn ∈ PHk
n,m. Then,

(2.20) ‖qn‖2,k ≤ ‖qn‖∞ ≤ ud,γ(n)λd,γ(n,m)‖qn‖2,k,

where ‖f‖∞ = supz∈Sd−1 |f(z)|.

Proof: The first inequality is trivial. Using the Cauchy-Schwarz inequality and
the fact that 1

ck
wkdσ is a probability measure, we obtain

1

ck

∫

Sd−1

|qn(y)|wk(y)dσ(y) ≤
(

1

ck

∫

Sd−1

|qn(y)|2wk(y) dσ(y)

) 1
2

= ‖qn‖2,k.

Hence the second inequality is a consequence of (2.19). �

Lemma 2.15. There exists a positive constant C which depends only on d and
γ such that for all x, y ∈ Sd−1, we have

(2.21) |Zk
n,m(x, y)| ≤ C

nd+2γ+m

2nn!
.

Proof: According to Lemma 2.11 the following estimate holds for n ≥ m:

|Zk
n,m(x, y)| ≤

m−1∑

s=0

(n− 2s+ γ + d
2 − 1)(d+ 2γ − 2)n−2s

2ss!(γ + d
2 − 1)(n− 2s)!ud,γ(n− s)

.

Since ud,γ(n) = 2n(d2 + γ)n ≥ 2nn! one obtains

(2.22) ud,γ(n− s) ≥ 2n−s(n− s)! ≥ 2n−s n!
ns

and therefore

|Zk
n,m(x, y)| ≤ 1

2nn!

m−1∑

s=0

ns(n− 2s+ γ + d
2 − 1)(d+ 2γ − 2)n−2s

(γ + d
2 − 1)(n− 2s)!s!

.
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On the other hand, using Stirling formula:

Γ(t+ 1) ∼
√
2πt tte−t, t → +∞,

we find that there exists a positive constant C1 which depends only on d and γ
such that

(2.23)
(n+ γ + d

2 − 1)(d+ 2γ − 2)n

(γ + d
2 − 1)n!

≤ C1 nd+2γ

and so,

|Zk
n,m(x, y)| ≤ C1

nd+2γ

2nn!

m−1∑

s=0

ns

s!
≤

[
C1

m−1∑

s=0

1

s!

]
nm+d+2γ

2nn!
≤ eC1

nm+d+2γ

2nn!

which completes the proof. �

3. Convergence of orthogonal series

Using formula (2.21), we obtain the radius of the convergence of series of Dunkl
polyharmonic homogeneous polynomials.

Theorem 3.1. Suppose that {Qk
n,m,j}1≤nj≤ad(n,m) is an orthonormal basis of

PHk
n,m for each n ∈ N and let µn,j, j = 1, . . . , ad(n,m) be complex numbers.

Then the series

+∞∑

n=0

ad(n,m)∑

j=1

µn,jQ
k
n,m,j

converges absolutely and uniformly on compact subsets of the open ball B(ρ)
centered at the origin and with radius ρ such that

1

ρ
=

1√
2
lim sup
n→+∞

(‖µn‖2√
n!

) 1
n

,

where

‖µn‖2 =

( ad(n,m)∑

j=1

|µn,j|2
) 1

2

.

Proof: By Proposition 2.7, we have

Zk
n,m(x, x) =

ad(n,m)∑

j=1

|Qn,m,j(x)|2, for all x ∈ Sd−1.
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Since Qk
n,m,j, j = 1, . . . , ad(n,m), is homogeneous of degree n,

Qk
n,m,j(x) = rnQk

n,m,j

(x
r

)
, x ∈ Rd, r = |x|.

Thus,

∣∣∣∣
+∞∑

n=0

ad(n,m)∑

j=1

µn,jQ
k
n,m,j(x)

∣∣∣∣ =
∣∣∣∣
+∞∑

n=0

rn
ad(n,m)∑

j=1

µn,jQ
k
n,m,j

(x
r

)∣∣∣∣

≤
+∞∑

n=0

rn
∣∣∣∣
ad(n,m)∑

j=1

µn,jQ
k
n,m,j

(x
r

)∣∣∣∣.

By the Cauchy-Schwarz inequality, we have

∣∣∣∣
ad(n,m)∑

j=1

µn,jQ
k
n,m,j

(x
r

)∣∣∣∣ ≤ ‖µn‖2
[
Zk
n,m

(x
r
,
x

r

)] 1
2

.

Applying the inequality (2.21), we find that there exists a positive constant C
which depends only on d and γ such that

[
Zk
n,m

(x
r
,
x

r

)] 1
2 ≤ C

n
d+m

2 +γ

√
2nn!

and so

∣∣∣
+∞∑

n=0

ad(n,m)∑

j=1

µn,jQ
k
n,m,j(x)

∣∣∣ ≤ C

+∞∑

n=0

‖µn‖2
n

m+d
2 +γ

√
2nn!

rn

which finishes the proof. �
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