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On special partitions of Dedekind- and Russell-sets

Horst Herrlich, Paul Howard, Eleftherios Tachtsis

This paper is about one of the most bizarre areas of set theory
From the referee’s report on our original manuscript

Abstract. A Russell set is a set which can be written as the union of a countable
pairwise disjoint set of pairs no infinite subset of which has a choice function
and a Russell cardinal is the cardinal number of a Russell set. We show that
if a Russell cardinal a has a ternary partition (see Section 1, Definition 2) then
the Russell cardinal a + 2 fails to have such a partition. In fact, we prove that
if a ZF-model contains a Russell set, then it contains Russell sets with ternary
partitions as well as Russell sets without ternary partitions. We then consider
generalizations of this result.

Keywords: Axiom of Choice, Dedekind sets, Russell sets, generalizations of Rus-
sell sets, odd sized partitions, permutation models

Classification: 03E10, 03E25, 03E35, 05A18

1. Introduction, terminology and known results

The Axiom of Choice AC, i.e., the statement that for every family A consisting
of non-empty sets there is a function (called a choice function) f : A → ⋃A such
that for every x ∈ A, f(x) ∈ x, was formulated by Zermelo in 1904 as part of
his development of axiomatic set theory (Zermelo-Fraenkel set theory). In spite
of the controversy which first surrounded the axiom due to its non-constructive
nature (it asserts the existence of f but suggests no way to construct it) it is
accepted and used by most mathematicians today. This fact is basically due to
the work of Kurt Gödel who constructed a model for Zermelo-Fraenkel set theory
in 1938, the model of constructible sets , in which AC was true and thus consistent
with the rest of the axioms of set theory. As a result, mathematicians could be
released from any fears of introducing inconsistencies by using AC.

The consequences of AC include such fundamental results as “Every vector
space has a basis”, “The Tychonoff product of compact topological spaces is
compact” (in fact, the latter two propositions are equivalent to AC in Zermelo-
Fraenkel set theory minus AC; see, e.g., [9] or [3]), “Every infinite set has a count-
ably infinite subset” and the countable union theorem (The union of a countable
collection of countable sets is countable.) There are, however, some non-intuitive
(and perhaps even undesirable) consequences of the axiom. For example the ex-
istence of a non-Lebesgue measurable set and the Banach-Tarski paradox which
asserts that it is possible to partition a ball into a finite number of pieces and
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reassemble the pieces to form two balls of the same size as the original. If one is
considering replacing the axiom of choice by some weaker statement or possibly
eliminating choice altogether then it seems desirable to investigate the degree to
which mathematics without choice may differ from mathematics with it.

One possible difference was described by Bertrand Russell when he described
how the union of a countable set of pairs might fail to be countable in his metaphor
about choosing from an infinite collection of pairs of shoes versus pairs of socks.
But it was Fraenkel who first proved that without the axiom of choice it was
possible for many of the results, which were regarded as fundamental, to fail if
the axiom of choice was not assumed. He did this by constructing models in
which all of the set theoretic axioms other than the axiom of choice held and then
noting that other standard theorems also failed in the models. For example, in
Fraenkel’s first model there was an infinite set without a countably infinite subset
and in his second model a countable set of pairs whose union had no countable
subset.

Actually, Fraenkel’s models (which are now called Fraenkel-Mostowski models
or permutation models) were models of a version of Zermelo’s set theory weak-
ened to permit the existence of atoms, elements which were not themselves sets.
It was not until 1963 that Cohen discovered his method of forcing by which he
constructed models of the full Zermelo-Fraenkel set theory (without the axiom of
choice) in which there were infinite sets without countable subsets and in partic-
ular, in the second Cohen model, a countable set of pairs whose union had no
countable subset. We refer the reader to [10] for details.

Sets like the one existing in the second Cohen model which are the union of
a countable set of pairs but have no countable subset and which live in some
universe of set theory are called Russell sets . They were introduced in [7] after
Bertrand Russell’s metaphor about choosing from an infinite collection of pairs of
shoes versus pairs of socks.

In several recent papers Russell sets and their properties have been investigated
(see [7], [4], [8], [6], [5]). We shall continue the research here proving a number
of results about Russell sets and generalizations of Russell sets. Before giving an
overview of the aims and the orientation of this paper, let us first supply some
terminology.

Definition 1. Let X and Y be sets.

1. |X | ≤ |Y | if there exists an injection f : X → Y .

2. |X | = |Y | if there exists a bijection f : X → Y .

3. |X | < |Y | if |X | ≤ |Y | and |X | 6= |Y |.
Definition 2. 1. A Russell sequence is a (countable) sequence (Xi)i∈ω of

disjoint pairs no infinite subset of which has a choice function. A Russell
set X is the union X =

⋃
i∈ωXi of a Russell sequence. A Russell cardinal

is the cardinal number of a Russell set.

2. Let n be an integer such that n ≥ 2. An n-Russell set is a set X which
can be written X =

⋃
k∈ωXk where
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(a) for each k ∈ ω, |Xk| = n,
(b) for i and j in ω, if i 6= j then Xi ∩Xj = ∅,
(c) no infinite subset of {Xk | k ∈ ω} has a choice function.
The sequence (Xk)k∈ω is called an n-Russell sequence. An n-Russell
cardinal is the cardinal number of an n-Russell set. According to this
terminology a Russell cardinal (from part (2)) is a 2-Russell cardinal.

3. For n ∈ N (= the set of positive integers), an n-ary partition of a set X is
a partition of X into sets each with exactly n elements. n-ary partitions
with odd n are called odd sized partitions .

4. Let n ∈ N. A cardinal a is divisible by n if and only if there exists a
cardinal c with a = nc. (Equivalently, if X is any set, |X | is divisible by
n if and only if there exists a set Y such that |X | = |n× Y |).

5. A set X is called a Dedekind set if it is infinite and Dedekind finite, i.e.,
ℵ0 6≤ |X | (if and only if |A| < |X | for every proper subset A of X if and
only if |X | < |X |+1, where |X |+1 is the cardinality of X ∪{x}, x /∈ X).
A Dedekind cardinal is the cardinal number of a Dedekind set.

Definition 3. ZF will denote Zermelo-Fraenkel set theory minus the Axiom of
Choice and ZFA will denote ZF set theory with the axiom of extensionality weak-
ened to allow the existence of atoms.

In [8] Herrlich and Tachtsis have studied the possible partitions of a Russell
set in set theory without the Axiom of Choice. Among other results, the authors
in [8] established the following propositions which concern odd sized partitions of
Russell sets and which shall be useful to us in the sequel.

Proposition 1 ([8, Proposition 2.1, Proposition 2.2, Theorem 2.6]).

(1) For any positive integer n and any Russell set X , the set X×n is a Russell
set that has an n-ary partition.

(2) Any odd sized partition of a Russell set is a Dedekind set.

(3) No Russell set has a countable odd sized partition.

(4) For odd n, a Russell set X has an n-ary partition if and only if its cardinal
number |X | is divisible by n.

Lemma 1 ([8, Lemma 2.4]). Let n be odd and let V = {Vi : i ∈ I} be an n-ary
partition of the Russell set X =

⋃
m∈NXm. Define the trace map tr : I −→

Pfin(N), where N is the set of positive integers and Pfin(N) is the set of all finite
subsets of N, by tr(i) = {m ∈ N : Xm ∩ Vi 6= ∅}, and let J consist of those i ∈ I
for which there exists some i′ ∈ I, i′ 6= i, with tr(i) = tr(i′). Then I − J is finite.

A question left open in [8] is the following:

Is there a model of ZF in which Russell sets exist and all Russell
sets can be partitioned into 3-element sets?
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In Section 2 we answer this question in the negative. Herrlich and Tachtsis
also asked the same question with 3 replaced by an arbitrary odd natural num-
ber n. We shall also answer this more general question in the negative. In
particular, in Theorem 2 we prove that if the Russell set X =

⋃
i∈ω Xi (where

(Xi)i∈ω is a Russell sequence) has a p-ary partition, where p is an odd natural
number greater than 1, then the Russell set Y =

⋃
i∈ω,i>0Xi does not have such

a partition. In Corollary 1 we provide the negative answer to the above question
by concluding that if a ZF-model contains a Russell set, then it contains Russell
sets with p-ary partitions, p an odd integer greater than 1, as well as Russell sets
without p-ary partitions.

With regard to n-Russell sets, n ≥ 3 (see Definition 2), the natural ques-
tion1 which arises is the following generalization of the Herrlich-Tachtsis question,
namely

Problem 1. Given n, k ∈ ω, is it consistent with set theory without AC that
there is an n-Russell set and all n-Russell sets have a k-partition?

The primary purpose of this paper is to give a partial answer to this problem.
First we note that for every natural number n ≥ 2 it is consistent with set theory
without choice that n-Russell sets do exist. Indeed, for n = 2, the second Fraenkel
model (see the discussion above for this model) contains Russell sets (actually
infinitely many; see Proposition 1(1)). For every n ≥ 3, a permutation model
is constructed in the proof of Theorem 11 which contains an n-Russell set (but
no Russell sets). Now if k is a multiple of n, say k = sn, X is an n-Russell set
and X =

⋃
i∈ωXi where (Xi)i∈ω is a disjoint sequence of n-element sets, then

grouping them by taking the union of the first s of the Xis, the union of the
second s of the Xis and so on yields a k-partition of X . So, in this case (of n,
k = sn) the answer to Problem 1 is in the affirmative.

The situation becomes obscure when n and k are relatively prime. As we have
stated in the paragraph preceding Problem 1, the answer to the problem is in the
negative when n = 2 and k = 3. We also generalize this fact in Corollary 2 where
we consider partitions P of Russell sets such that for every z ∈ P , |z| is an odd
multiple of a given odd natural number p > 1.

For the case n = 3 and k a natural number relatively prime to 3, we also
provide a negative answer to Problem 1. This is the result of Corollary 3. The
keys for its proof are the results of Theorem 4 (for any 3-Russell set X and any
integer p relatively prime to 3, the condition “X has a partition consisting of sets
such that the cardinality of each is a multiple of p which is relatively prime to 3”
is equivalent to the condition “X has a p-ary partition”), of Theorem 6 (If p > 1
is a natural number which is relatively prime to 3, then a 3-Russell set X has
a p-ary partition if and only if |X | is divisible by p) and of Theorem 1 (If a is
Dedekind cardinal, p and n are natural numbers, p positive, then p | (pa + n) if
and only if p | n, where | means “divides”).

1We are grateful to the referee for suggesting this question which provided a focus for our
results.
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For n ≥ 5, things change dramatically. First we note that here, our results
are incomplete. We show among other things that the method used for the cases
n = 2 and n = 3 will not work if n ≥ 5. That is, we cannot show:

(1)

If the n-Russell set X =
⋃

i∈ωXi (where (Xi)i∈ω is a Russell sequence)

has a p-ary partition then the n-Russell set Y =
⋃

i∈ω,i>0Xi

does not have such a partition.

We do this by constructing a modelM of set theory in which there is an n-Russell
set for which (1) is false. Specifically, we show that for all natural numbers n and
p both greater than or equal to 5, there is (inM) an n-Russell sequence (Xi)i∈ω

with the property that both
⋃

i∈ωXi and
⋃

i∈ω,i>0Xi have p-ary partitions which
are in the model; see Theorem 8. Moreover, the permutation model of Theorem 8
sheds light on Problem 1 for the case n = 5 and k > 6. In particular, we show
in Theorem 9 that in the model of Theorem 8, every 5-Russell set has a k-ary
partition for every k > 6 and consequently the answer to Problem 1 is in the
affirmative for the case n = 5 and k > 6.

For n = 4 and p relatively prime to 4, the question of whether (1) holds is
open.

In Theorem 10 we establish that the results of Proposition 1(4) and Theorem 6
cease to be true if n ≥ 5. Therefore, one should no longer expect to rely on similar
such results (for n ≥ 5) in order to attack Problem 1.

Finally, in Section 4 we study partitions of generalized Russell sets (see Defi-
nition 4 for this notion) and prove results via the method of Fraenkel-Mostowski
permutation models (Theorems 12 and 13) which clarify that the situation, as
far as 3-ary partitions, divisibility by 3 and their interrelation are concerned, is
strikingly different from the corresponding one for Russell sets.

2. Odd sized and other partitions of Russell sets

In this section we answer the question of Herrlich and Tachtsis from [8] men-
tioned in the introduction, namely “Is there a model of ZF in which Russell sets
exist and all Russell sets can be partitioned into 3-element sets (or in general into
n-element sets, n an odd natural number).”

Theorem 1. If a is Dedekind cardinal, p and n are natural numbers, p positive,
then p | (pa+ n) if and only if p | n, where | means “divides”.

Proof: (→) Assume that pa+n = pb for some cardinal number b. Then pa ≤ pb,
hence by a result of Tarski [11] (in ZF, given a natural number m 6= 0 and two
arbitrary cardinals p and q, if mp ≤ mq, then p ≤ q) we obtain that a ≤ b. So
there exists a cardinal x such that a+ x = b. Therefore,

pa+ px = p(a+ x) = pb = pa+ n.
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Since pa is a Dedekind cardinal, this implies that px = n, thus p | n as required.

(←) This is straightforward. �

Theorem 2. If X is a Russell set, p is an odd natural number greater than 1,
and X has a p-ary partition, then the set Y obtained from X by the removal (or
addition) of a finite number n of pairs has a p-ary partition if and only if 2n is
divisible by p. Consequently, if the Russell set X =

⋃
i∈ωXi (where (Xi)i∈ω is a

Russell sequence) has a p-ary partition then the Russell set Y =
⋃

i∈ω,i>0Xi does
not have such a partition.

Proof: Immediate from the fact that a Russell set is a Dedekind set and from
Theorem 1 and Proposition 1(4). �

Corollary 1. Let p be an odd natural number greater than 1. Then the following
holds: If a ZF-model contains a Russell set, then it contains Russell sets with p-ary
partitions as well as Russell sets without p-ary partitions.

Proof: This follows from Theorem 2 and Proposition 1(1). �

Theorem 3. Assume that p is an odd natural number greater than 1. Then the
Russell set X =

⋃
i∈ωXi (where (Xi)i∈ω is a Russell sequence) has a partition P

such that ∀z ∈ P , |z| is an odd multiple of p if and only if X has a p-ary partition.

Proof: (←) This is straightforward.

(→) We first need the following slight modification of Lemma 1.

Lemma 2. Let R be a partition of the Russell set X =
⋃

i∈ωXi such that for
all z ∈ R, |z| is an odd natural number greater than 1. Then the set R0 = {z ∈
R : g ↾ z is injective}, where for r ∈ X we let g(r) = the unique i ∈ ω such that
r ∈ Xi, has a finite complement in R.
Proof: We use the idea from the proof of Lemma 2.4 in [8] (Lemma 1 in this
paper). Let R1 = {z ∈ R : ∃i ∈ ω,Xi ⊂ z} then R1 = R − R0 so the proof
will be completed by showing that R1 is finite. Assume that z ∈ R1. Then there
is some i ∈ ω such that Xi ⊆ z. Therefore for any other w ∈ R1, Xi ∩ w = ∅
and hence i ∈ g[z] but i /∈ g[w]. It follows that g[z] 6= g[w]. This shows that the
function h on R1 defined by h(z) = g[z] for all z ∈ R1, is injective. But the range
of h is a subset of the collection of all finite subsets of ω which is countable. It
follows that R1 is either finite or countably infinite. Suppose that R1 is countably
infinite. Since every z ∈ R1 is odd-sized and |Xi| = 2 for all i ∈ ω, it follows
that for every z ∈ R1 there is an nz ∈ ω such that |z ∩Xnz | = 1. On this basis
and via induction we may define a subsequence of (Xi)i∈ω with a choice function.
This contradicts the fact that X is a Russell set. Therefore, R1 is a finite set as
required. �

By Lemma 2 the set P0 = {z ∈ P : g ↾ z is injective} has a finite complement
in P . For every z ∈ P , let kz be the odd natural number such that |z| = kzp. Since
for every z ∈ P0, g ↾ z is injective and g[z] is well ordered (being a subset of ω),
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we may effectively define (i.e., using no choice principles) a well ordering of z and
consequently we may define a partition {Uz,j : j ∈ kz} of z such that |Uz,j | = p
for all j ∈ kz. On the other hand, since P1 = P − P0 is a finite family of finite
sets, it follows that

⋃P1 is well ordered, hence for every z ∈ P1 we may similarly
define a p-ary partition {Uz,j : j ∈ kz} of z. Then U = {Uz,j : z ∈ P , j ∈ kz} is a
p-ary partition of X . This completes the proof of the theorem. �
Corollary 2. Assume that p is an odd natural number greater than 1. If the
Russell set X =

⋃
i∈ωXi (where (Xi)i∈ω is a Russell sequence) has a partition P

such that ∀z ∈ P , |z| is an odd multiple of p then the Russell set Y =
⋃

i∈ω,i>0Xi

does not have such a partition.

Proof: The result follows from Theorem 3 and from Theorem 2. �

3. Partitions of n-Russell sets, n ≥ 3

Proposition 2. n-Russell sets are Dedekind sets.

Proof: This follows immediately from Definition 2. �
Question 1. Assume that X =

⋃
i∈ω Xi is an n-Russell set where (Xi)i∈ω is

an n-Russell sequence and that X has a partition P such that ∀z ∈ P , there is
an integer k such that k is relatively prime to n and |z| = kp. Is it possible for⋃

i∈ω,i>0Xi to have such a partition?

We are able to answer this question for n = 3. For n = 4 the question remains
open. For n > 4 we have an answer for all p > 4. The remaining cases are open.

Next we answer Question 1 in the negative for the case n = 3.

Theorem 4. Assume

(1) X =
⋃

i∈ωXi is a 3-Russell set where (Xi)i∈ω is a 3-Russell sequence;

(2) p is a natural number which is larger than 1 and relatively prime to 3;

(3) X has a partition P such that ∀z ∈ P , there is an integer k such that k
is relatively prime to 3 and |z| = kp.

Then X has a p-ary partition.

Proof: We first prove the following replacement for Lemma 2.

Lemma 3. Let R be a partition of the 3-Russell set X =
⋃

i∈ωXi such that
∀z ∈ R, there is an integer k such that k is relatively prime to 3 and |z| = kp.
Then the set R0 = {z ∈ R : g ↾ z is injective}, where g is defined as in the
statement of Lemma 2, has a finite complement in R.
Proof: The proof is by contradiction. Assume the hypotheses of the lemma
and assume that R1 = {z ∈ R : g ↾ z is not injective} is infinite. If z ∈ R1

then ∃i ∈ ω such that |z ∩ Xi| > 1. Therefore we can write R1 = R2 ∪ R3

where R2 = {z ∈ R : ∃i ∈ ω such that |z ∩ Xi| = 2} and R3 = {z ∈ R :
∃i ∈ ω such that |z ∩Xi| = 3}. If R2 is infinite we get a choice function for the
infinite set {Xi : ∃z ∈ R such that |z ∩Xi| = 2} by defining F (Xi) =

⋃
(Xi \ z)
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where z is the unique element of R such that |z ∩Xi| = 2. This is not possible
since (Xi)i∈ω is a 3-Russell sequence. It follows that R3 is infinite. The function
H : R3 → Pfin(ω) defined by H(z) = {i ∈ ω : |z ∩ Xi| = 3} is injective and
therefore R3 is well orderable, say by 4. Further, for each z ∈ R3, ∃i ∈ ω such
that |z ∩Xi| = 2 or |z ∩Xi| = 1 (since |z| is not a multiple of 3). It follows that
the set Z = {Xi : i ∈ ω and ∃z ∈ R3 such that |z ∩Xi| = 1 or |z ∩Xi| = 2} is
infinite. For Xi ∈ Z and z such that |z ∩Xi| = 1 or |z ∩Xi| = 2, let

fz(Xi) =

{
z ∩Xi, if |z ∩Xi| = 1

Xi \ z, if |z ∩Xi| = 2
.

We arrive at a contradiction by defining a choice function for Z by K(Xi) =⋃
fz(Xi) where z is the 4 least element of R3 such that |z∩Xi| = 1 or |z∩Xi| =

2. �
By Lemma 3 the set P0 = {z ∈ P : g ↾ z is injective} has a finite complement

in P . For every z ∈ P , let kz be the natural number which is relatively prime to
3 and is such that |z| = kzp. We may finish off the proof now as in the proof of
(→) of Theorem 3. �

Theorem 5. Let p > 1 be a natural number which is relatively prime to 3 and
let V = {Vi : i ∈ I} be a p-ary partition of the 3-Russell set X =

⋃
m∈ωXm. Let

tr : I −→ Pfin(ω), tr(i) = {m ∈ ω : Xm ∩ Vi 6= ∅}, i ∈ I, be the trace map and let
J consist of those i ∈ I for which there exist i′, i′′ ∈ I, i, i′, i′′ pairwise distinct,
with tr(i) = tr(i′) = tr(i′′). Then I − J is finite.

Proof: We follow the ideas of the proof of [8, Lemma 2.4]. First, by virtue of
Lemma 3, we may assume without loss of generality that for every i ∈ I if m ∈ ω
is such that Vi ∩ Xm 6= ∅, then |Vi ∩ Xm| = 1. Let R = tr[I] be the countable
range of the function tr (since R ⊆ Pfin(ω) and it is known that, in ZF, Pfin(ω) is
countable). Clearly, R = R1 ∪R2 ∪R3, where

Ri = {r ∈ R : tr−1(r) has precisely i elements}, i = 1, 2, 3.

Let Ji = tr−1(Ri), i = 1, 2, 3. Then I = J1 ∪ J2 ∪ J3. The function tr is injective
on J1 and since R is countable and (Xm)m∈ω has no subsequence with a choice
function, we may easily conclude that R1, hence J1, is a finite set.

Now assume that the set R2 is infinite. Put J ′
2 = {tr−1(r) : r ∈ R2}. Then

the function h : J ′
2 → R2 defined by h(j) =

⋃{tr(u) : u ∈ j} for all j ∈ J ′
2 is

injective. Since R2 is countable, J ′
2 is countable and let J ′

2 = {jk : k ∈ ω} be an
enumeration of J ′

2. Put W = {⋃ jk : k ∈ ω}. Clearly, W is a countable set. Since
for each m ∈ ω, Xm is a 3-element set and for each m ∈ ω and each k ∈ ω such
that Xm ∩ (

⋃
jk) 6= ∅ we have that |Xm\(

⋃
jk)| = 1 we may easily define via

induction a subsequence of (Xm)m∈ω with a choice function. But this contradicts
the fact that X is a 3-Russell set. Therefore, we may conclude that R2 is a finite
set and consequently J ′

2, hence J2 =
⋃
J ′
2 is also a finite set.
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From the above we deduce that J3 is a cofinite subset of I. Furthermore, note
that for every i ∈ J3, tr(i) has exactly p elements, say m1(i) < . . . < mp(i)
and there exists a unique pair (i′, i′′) of pairwise distinct elements of J3\{i} with
tr(i) = tr(i′) = tr(i′′). Clearly, for every i ∈ J3, Vi∪Vi′∪Vi′′ = Xm1(i)∪· · ·∪Xmp(i).
Letting J = J3, the proof of the theorem is complete. �
Theorem 6. If p > 1 is a natural number which is relatively prime to 3, then a
3-Russell set X has a p-ary partition if and only if |X | is divisible by p.

Proof: This can be established using the result of Lemma 3 or the result of
Theorem 5 and following the proof of [8, Theorem 2.6 (1), p. 187], so we simply
refer the reader to the latter result in [8]. �
Theorem 7. Assume

(1) X =
⋃

i∈ωXi is a 3-Russell set;

(2) p is a natural number which is larger than 1 and relatively prime to 3;

(3) X has a partition P such that ∀z ∈ P , there is an integer k such that k
is relatively prime to 3 and |z| = kp.

Then the 3-Russell set Y =
⋃

i∈ω,i>0Xi does not have such a partition.

Proof: By Theorem 4 we may assume without loss of generality that P is a
p-ary partition of X , hence by Theorem 6 |X | is divisible by p. If Y has also a
partition as in the statement of the Theorem, then again by Theorem 4 Y has a
p-ary partition, hence by Theorem 6 |Y | = pa for some infinite cardinal a. Then
|X | = |Y | + 3 = pa+ 3 and since Y is a Dedekind set (being a 3-Russell set), a
is a Dedekind cardinal. Thus, by Theorem 1, 3 is divisible by p. Since p > 1 this
contradicts our assumption that 3 and p are relatively prime. Therefore, Y has
no such partitions and the proof of the theorem is complete. �
Corollary 3. Let p > 1 be a natural number which is relatively prime to 3. Then
the following holds: If a ZF-model contains a 3-Russell set, then it contains 3-
Russell sets with p-ary partitions as well as 3-Russell sets without p-ary partitions.

We show next that the answer to Question 1 is positive if n and p are both
greater than or equal to 5.

Theorem 8. There is a modelM of ZFA such that for all natural numbers n and
p both greater than or equal to 5, there is (inM) an n-Russell sequence (Xi)i∈ω

with the property that both
⋃

i∈ωXi and
⋃

i∈ω,i>0Xi have p-ary partitions which
are in the model.

Proof: We start with a ground model of AC with a countable setA =
⋃{Ai∪Bi :

i ∈ ω} of atoms such that:

1. for every i ∈ ω, Ai is the three element set Ai = {ai1, ai2, ai3} and Bi is
the two element set Bi = {bi1, bi2};

2. for all i ∈ ω, Ai ∩ Bi = ∅ and for all i, j ∈ ω, if i 6= j, then (Ai ∪ Bi) ∩
(Aj ∪Bj) = ∅.
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G is the group of permutations of A generated by the cycles (ai1, ai2, ai3) and
(bi1, bi2), i ∈ ω. The normal ideal I of supports is the set of all finite subsets of
A. LetM be the permutation model determined by G and I.

Lemma 4. If u and v are any natural numbers and m ≥ 5 is a natural number
then, inM,


⋃

i≥u

Ai


 ∪


⋃

j≥v

Bj




is an m-Russell set.

Proof: The proof depends on whether or not m = 6.

Case 1. Assume that m 6= 6. Then m can be written in the form m =
3r + 2s where r and s are positive natural numbers. Choose such an r and
s. Let X0 = (

⋃
u≤i<u+r Ai) ∪ (

⋃
v≤j<v+sBj) and in general for k ∈ ω, Xk =

(
⋃

u+kr≤i<u+(k+1)r Ai) ∪ (
⋃

v+ks≤j<v+(k+1)s Bj).

Since any union of the Ais and the Bis is in the model with empty support
each Xk has empty support. Therefore the sequence (Xk)k∈ω is in M with
empty support. It is also clear from the definition that for k ∈ ω, |Xk| = m
and that for k1, k2 ∈ ω, if k1 6= k2 then Xk1 ∩ Xk2 = ∅. Further, {Xk :
k ∈ ω} can have no infinite subset with a choice function since for any fi-
nite support E only finitely many of the sets Xk meet E and therefore for
all but finitely many of the sets Xk there is a permutation in G which fixes
E pointwise (and fixes Xk) but moves every element of Xk. (If A is an infi-
nite subfamily of {Xk : k ∈ ω} with a choice function, say f with support E,
then let k ∈ ω such that Xk ∈ A and Xk ∩ E = ∅. Let f(Xk) = x. Let
ψ = (

∏
u+kr≤i<u+(k+1)r(ai1, ai2, ai3)) · (

∏
v+ks≤j<v+(k+1)s(bj1, bj2)), i.e., ψ moves

all the elements of Xk but fixes pointwise all the other atoms. Since Xk ∩E = ∅,
we have that ψ fixes E pointwise hence ψ(f) = f . Furthermore since ψ(Xk) = Xk

we deduce that (Xk, ψ(x)) ∈ f . Since x ∈ Xk and ψ moves every element of Xk

we have that ψ(x) 6= x meaning that f is not a function, a contradiction.) There-
fore (Xk)k∈ω is an m-Russell sequence in the model M. We leave to the reader
the proof that

⋃
k∈ω Xk = (

⋃
i≥u Ai) ∪ (

⋃
j≥v Bj).

Case 2. Assume that m = 6. The proof proceeds as in Case 1 except that
X0 = Au∪Au+1, X1 = Bv∪Bv+1∪Bv+2, and in generalX2m = Au+2m∪Au+2m+1

and X2m+1 = Bv+3m ∪Bv+3m+1 ∪Bv+3m+2. �
Now assume that n ≥ 5. By the lemma with m = n, u = 0 and v = 0 we see

that A is an n-Russell set, A =
⋃

k∈ωXk where (Xk)k∈ω is an n-Russell sequence.
Further by the proof of the lemma X0 has the form X0 = (

⋃
i<u0

Ai)∪(
⋃

j<v0
Bj)

where u0 and v0 are in ω. Assume that p ≥ 5. Using the lemma with m = p,
u = 0 and v = 0 we get a p-Russell sequence (Ya)a∈ω whose union is A and
therefore we obtain a p-ary partition of A =

⋃
k∈ωXk. Using the lemma again
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in a similar way with m = p, u = u0 and v = v0 we get a p-ary partition of
(
⋃

i≥u0
Ai) ∪ (

⋃
j≥v0

Bj) =
⋃

k∈ω,k>0Xk. �
Remark 1. From the proof of Theorem 8 we infer that it is relatively consistent
with ZFA that there exist Dedekind sets X such that X as well as sets obtained
by adding 5k, k ∈ N, elements to X both have m-ary partitions for every natural
number m ≥ 5.

Theorem 9. In the model of Theorem 8, for every k > 6, every 5-Russell set has
a k-ary partition.

Proof: We begin by noting that every integer greater than 6 can be written in
the form 2r+3s where r and s are positive integers (as in the proof of Theorem 8,
Lemma 4, Case 1). Secondly, we note the following easy lemma.

Lemma 5. If k is a natural number which can be written in the form k = 2r+3s
where r and s are positive integers and X is a set which can be written as a
countable disjoint union X =

⋃
i∈ω Yi where ∀i ∈ ω, |Yi| = 2 or |Yi| = 3 and both

of the sets {i ∈ ω : |Yi| = 2} and {i ∈ ω : |Yi| = 3} are infinite then X has a k-ary
partition.

The theorem will now follow as soon as we prove

Lemma 6. In the modelM of Theorem 8 every 5-Russell set can be written as
a countable disjoint union X =

⋃
i∈ω Yi where ∀i ∈ ω, |Yi| = 2 or |Yi| = 3 and

both of the sets {i ∈ ω : |Yi| = 2} and {i ∈ ω : |Yi| = 3} are infinite.

Proof: We shall use the notation given in the proof of Theorem 8 for the atoms
of M and, as in Theorem 8, G will denote the group of permutations used to
constructM. In addition, for any finite set E of atoms fixG(E) or simply fix(E)
denotes the subgroup {φ ∈ G : ∀a ∈ E, φ(a) = a}. Finally, for any subgroup H
of G and any element t of M we let OrbH(t) denote the H orbit of t, that is,
OrbH(t) = {φ(t) : φ ∈ H}. For the proof of the lemma we first make the following
claim

Claim 1. For any t inM and any finite subset E of the atoms A, |Orbfix(E)(t)| =
2i3j where i and j are natural numbers.

Proof: Assume that t ∈ M and that E ⊆ A is finite. Choose a finite subset F
of A so that F is a support of t and

(2) ∀i ∈ ω, (Ai ⊆ F or Ai ∩ F = ∅) and (Bi ⊆ F or Bi ∩ F = ∅).

For φ ∈ fix(E) let φF be the function that agrees with φ on F and is equal to
the identity function outside of F . By (2) φF ∈ fix(E) and it is also the case
that φF (t) = φ(t) since φF and φ agree on a support of t. Therefore if we let
H = {φF : φ ∈ fix(E)}, OrbH(t) = Orbfix(E)(t). Let K = {ψ ∈ H : ψ(t) = t}
then the following facts are easy to verify.

1. The set of pairs {(φK, φ(t)) : φ ∈ H} is a one to one function from the
quotient group H/K onto OrbH(t).
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2. |H | = 2c13c2 where c1 and c2 are in ω. (c1 is the number of sets Bi

contained in F which do not meet E and similarly c2 is the number of
sets Ai contained in F which do not meet E.)

3. It follows from item 3 that the cardinality of the quotient group H/K is
2d13d2 where d1 and d2 are in ω.

Using items 3 and 3 we conclude that |Orbfix(E)(t)| = |OrbH(t)| = |H/K| =
2d13d2. �

Now let X be a 5-Russell set in M and say that X is the disjoint union of a
countable set of 5 element sets, X =

⋃
i∈ω Xj where the sequence (Xj)j∈ω is inM

and has support E. Then for each j ∈ ω, every φ in fix(E) fixes Xj and therefore
∀t ∈ Xj, φ(t) ∈ Xj. We therefore have that for all t ∈ Xj , Orbfix(E)(t) ⊂ Xj.
From this we conclude that the fixE orbits of elements of Xj form a partition of
Xj each element of which has support E. By the claim and the fact that |Xj | = 5
we conclude that each of the fixE orbits of an element of Xj has size 1, 2 or 3. By
taking unions of orbits if necessary this gives us a partition of Xj into two sets,
Pj of size 2 and Qj of size 3 both with support E.

We can write X as a countable disjoint union X =
⋃

i∈ω Yi as required by
Lemma 6 by letting Y2i = Pi and Y2i+1 = Qi for all i ∈ ω. �

The proof of the theorem is now complete. �
According to Proposition 1, if n is an odd natural number, then a Russell set

has an n-ary partition if and only if |X | is divisible by n (and we note that for
every set X , if |X | is divisible by n, then X has an n-ary partition) and according
to Theorem 6, if p > 1 is a natural number which is relatively prime to 3, then a
3-Russell set X has a p-ary partition if and only if |X | is divisible by p. However,
the situation with n-Russell sets, n ≥ 5, is strikingly different as shown by the
subsequent theorem.

Theorem 10. There is a modelM of ZFA and a set A inM such that for every
natural number n ≥ 5, A is an n-Russell set, hence has an n-ary partition, but
for every natural number p ≥ 2, |A| is not divisible by p.

Proof: LetM be the permutation model defined in the proof of Theorem 8 and
let A be its set of atoms. From Lemma 4 of the proof of Theorem 8 we obtain that
A is an n-Russell set for every natural number n ≥ 5. So in order to complete
the proof we need to show that |A| is not divisible by p for every natural number
p ≥ 2. To this end, fix an integer p ≥ 2 and, toward a proof by contradiction,
assume that |A| is divisible by p and let {U1, U2, . . . , Up} be a partition of A into
p pairwise equipollent infinite sets. Let f be a bijection inM from U1 to U2 and
let E be a support of f . Since A is a 5-Russell set, it is not hard to verify that
every infinite subset Y of A must satisfy that QY = {n ∈ ω : 0 < |Y ∩An| < 3} is
finite and RY = {n ∈ ω : 0 < |Y ∩Bn| < 2} is finite and for all n ∈ ω−(QY ∪RY ),
either An ⊆ Y or Bn ⊆ Y or both, i.e., Xn ⊆ Y where for n ∈ ω, Xn = An ∪Bn.
(For example, if QY is infinite, let Y ∗ = ∪{Y ∩ An : n ∈ QY } and let E be
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a support for Y ∗. Since QY is infinite, let n ∈ QY be such that E ∩ An = ∅.
Let x ∈ An − Y ∗, y ∈ Y ∩ An and let z be the third element of An. Then the
permutation ψ = (y, x, z) (ψ moves only the atoms x, y, z) fixes E pointwise hence
it fixes Y ∗. However, x = ψ(y) /∈ Y ∗, a contradiction. Similarly, one shows that
RY is a finite set.)

Now let n0 = max{n ∈ ω : E ∩Xn 6= ∅}. In view of the above observations,
there exists a natural number n > n0 such that An ⊆ U1 or Bn ⊆ U1 or Xn ⊆ U1.
Without loss of generality assume that An = {an1, an2, an3} ⊆ U1. Suppose that
f(an1) = u for some u ∈ U2. Since U1∩U2 = ∅, we have that u /∈ U1, hence u /∈ An.
We may consider now the permutation ψ to be the 3-cycle (an1, an2, an3), i.e., ψ
moves only anj , j = 1, 2, 3, and fixes all the other atoms. Then ψ fixesE pointwise,
hence it fixes the function f (not necessarily pointwise). Since ψ(an1) = an2,
ψ(u) = u, and ψ(f) = f , we may conclude that f(an2) = u meaning that f is not
injective. This contradicts our assumption on f . Therefore, |A| is not divisible
by p as required.

This completes the proof of the theorem. �
From Proposition 1 we see that it is provable in ZF that no Russell set can be

a p-Russell set, where p is an odd natural number, and vice versa. That is, for
every odd natural number p, a p-Russell set cannot be a Russell set.

On the other hand, every Russell set is easily seen to be a 2n-Russell set for
every natural number n ≥ 1. However, the reverse implication may fail to be true.
In fact, in [5, Theorem 3] we have shown that for every natural number n ≥ 3,
it is relatively consistent with ZFA that there exists an n-Russell set which is not
a Russell set. (However, there were Russell sets in each of these models; see [5,
Remark 4]). Yet, even more may be true. In particular, for every natural number
n ≥ 3 it is relatively consistent with ZFA that there is an n-Russell set and there
are no Russell sets at all. We prove this in the next theorem.

Theorem 11. Let n be a natural number such that n ≥ 3. Then there is a model
of ZFA which has an n-Russell set but has no Russell sets.

Proof: We consider two cases.

Case 1. n = 3 or n ≥ 5. We start with a ground model of AC with a countable
set A = ∪{Ai : i ∈ ω} of atoms such that:

1. for every i ∈ ω, Ai = {ai1, ai2, . . . , ain} (hence ∀i ∈ ω, |Ai| = n);

2. for all i, j ∈ ω, if i 6= j, then Ai ∩Aj = ∅.
The group G of permutations of A is the set of all permutations π such that for

every i ∈ ω, π ↾ Ai is an even permutation of Ai. The normal ideal I of supports
is the set of all finite subsets of A. Let N be the permutation model determined
by G and I.

First we note that the family A = {Ai : i ∈ ω} does not have a partial choice
function in N . Assume the contrary and let B be an infinite subfamily of A
having a choice function f ∈ N with support E. Since E is finite, we may fix an
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i ∈ ω such that Ai ∈ B and Ai ∩E = ∅. Without loss of generality assume that f
chooses ai1 from the set Ai. Consider the permutation π which is the identity on
Aj , for all j ∈ ω−{i}, and π ↾ Ai = (ai1, ai2)(ai3, ai4). Then π fixes E pointwise,
hence π(f) = f . It follows that (i, ai2) ∈ f , meaning that f is not a function, a
contradiction. Therefore, A cannot have a partial choice function in N and the
set A of atoms is an n-Russell set in N .

We show now that the model N does not admit any Russell sets. Assume the
contrary and let X =

⋃
i∈ωXi ∈ N be a Russell set. Let E = A0 ∪A1 ∪ · · · ∪Ak,

for some k ∈ ω, be a support of Xi for each i ∈ ω. We will prove that for every
i ∈ ω and for every element x ∈ Xi, E is a support of x. This will give us that
X is a well orderable set in N , hence we shall obtain a contradiction to the fact
that X is a Russell set.

To this end, assume that there exists an i ∈ ω, an element x ∈ Xi and a
permutation ψ such that ψ fixes E pointwise but ψ(x) 6= x. Let Ex be a support
of x. Since E does not support x, we may assume without loss of generality that
Ex = E ∪ Ak+1 and that ψ fixes A − Ak+1 pointwise. Let G be the subgroup
of G consisting of all permutations in G which fix A − Ak+1 pointwise. Then
G is homeomorphic to the group of even permutations of Ak+1. Let H = {π ∈
G : π(x) = x}. Then H is a subgroup of G. Furthermore, we claim that H is
a normal subgroup of G. To prove our assertion we need to show that for all
φ ∈ G, φH = Hφ. To this end, fix a permutation φ ∈ G. If φ ∈ H , then for all
π ∈ H , φπ = (φπφ−1)φ and since H is a group we have that φπφ−1 ∈ H , hence
φH ⊆ Hφ and similarly Hφ ⊆ φH . So we may assume that φ ∈ G − H . Let
Xi = {x, y}. Then φ(x) = y (since φ /∈ H) and φ(y) = x. Therefore, φ−1(x) is
also equal to y. Fix a permutation π ∈ H . Then π(x) = x, hence π(y) = y. Now,
we have that φπφ−1(x) = φπ(y) = φ(y) = x. Thus, φπφ−1 ∈ H and consequently
φπ = (φπφ−1)φ ∈ Hφ meaning that φH ⊆ Hφ. Similarly, we may prove that
Hφ ⊆ φH , and so H is a normal subgroup of G.

From group theory we know (see [2]) that for n = 3 or for n ≥ 5 the group of
even permutations on n elements has no normal subgroups other than the whole
group and the trivial one, namely {id} where id is the identity mapping. Since
H 6= G (for ψ ∈ G−H ; see above for the properties of ψ) we infer that H = {id}.
It follows that ∀φ ∈ G−H , ∀ρ ∈ G−H , if φ 6= ρ, then φ(x) = ρ(x) (= y). Now
G has at least 3 elements (since |G| = n!

2 ≥ 3 since either n = 3 or n ≥ 5) so it

has at least two distinct elements φ and ρ such that φ, ρ /∈ H . Then ρ−1φ(x) = x,
so ρ−1φ ∈ H , hence φ = ρ, a contradiction.

From the above we conclude that whenever a permutation φ fixes E pointwise,
then φ fixes X pointwise, hence X is well orderable contradicting the fact that
X is a Russell set. Therefore, the model N does not have any Russell sets as
required.

Case 2. n = 4. The suitable Fraenkel-Mostowski model N is defined as in
cases n = 3 or n ≥ 5. We show that N has no Russell sets. Assume the contrary
and let X =

⋃
i∈ωXi be a Russell set in the model N . Let E, x ∈ Xi, Ex, ψ, G,
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and H be as in cases n = 3 or n ≥ 5. Since G is homeomorphic to the group of
even permutations of Ak+1 and |Ak+1| = 4, it follows that |G| = 12. Furthermore,
since Xi is a two-element set and ψ(x) 6= x, it is easy to see that the index of
H in G is 2. Thus, |H | = 6. But this contradicts the fact that the group of
even permutations on 4 objects does not have any subgroup of cardinality 6 (see
[2]). Therefore, any permutation which fixes E pointwise also fixes X pointwise
meaning that X is well-orderable. This contradicts the fact that X is a Russell
set and completes the proof of Case 2 and of the theorem. �

4. Partitions of generalized Russell sets

Definition 4. A generalized Russell set is a set X which can be written as
X =

⋃
i∈I Xi where

1. for each i ∈ I, |Xi| = 2;

2. I is infinite;

3. for i and j in I, if i 6= j then Xi ∩Xj = ∅;
4. no infinite subset of {Xi | i ∈ I} has a choice function.

A generalized Russell cardinal is the cardinal number of a generalized Russell
set.

Proposition 3. Generalized Russell sets are Dedekind sets.

Proof: This follows immediately from Definition 4. �
In Theorem 2 we showed that if a is a Russell cardinal which has a 3-ary

partition, then the Russell cardinal a + 2 fails to have one. It is natural to ask
whether this holds also for generalized Russell cardinals or Dedekind cardinals
in general. We show next that it is relatively consistent with ZFA that there
exists a generalized Russell cardinal a, hence a Dedekind cardinal a, such that a,
a+ 1 and a+ 2 all have 3-ary partitions. Moreover, we prove that the existence
of a generalized Russell set X =

⋃
i∈I Xi such that |X | < |I| is consistent with

ZFA. Note that in view of [4] this cannot happen for Russell sets (considered as
generalized Russell sets by rearranging its elements into pairs).

Theorem 12. There exists a model of ZFA in which there is a generalized Russell
set X =

⋃
i∈I Xi, hence a Dedekind set X , such that |X | < |I| and such that |X |,

|X |+ 1 and |X |+ 2 all have ternary partitions.

Proof: We shall use the Fraenkel-Mostowski permutation model defined in the
proof of [1, Theorem 3.1]. Similarly to the observation by the authors in [1] (see
[1, Section 2]) the result can be transferred to ZF using the Jech-Sochor theorem
which provides embeddings of arbitrary long initial segments of ZFA models into
ZF models. Thus, we also obtain consistency with ZF.

The atoms are identified (for simplicity’s sake) with the elements of 2<ω, i.e.,
with finite non-empty sequences of 0s and 1s. Let A be the set of the atoms. We
may view A as two infinite binary trees, the one having 〈0〉 as its root and the



120 H. Herrlich, P. Howard, E. Tachtsis

other having 〈1〉 as its root. The set A is partially ordered by the extension of
sequences, i.e., for t, s ∈ A, t ≤ s if and only if t is an initial segment of s. Let
G be the group of all order automorphisms of (A,≤), i.e., if t ∈ A and φ ∈ G,
then t and φ(t) have the same length and if s ∈ A and t ≤ s, then φ(t) ≤ φ(s).
The normal ideal of supports is the set of all finite subsets of A. Let N be the
resulting permutation model.

For each t ∈ A, let Pt = {t̂ 0, t̂ 1}, where t̂ 0 is the sequence t with 0 adjoined
as a last element and similarly for t̂ 1. Put P = {Pt : t ∈ A} ∪ {{〈0〉, 〈1〉}}
where 〈0〉 and 〈1〉 are the sequences of length 1, i.e. the two roots. Then P is a
collection of 2-element sets which belongs to the model since it has empty support,
i.e., every permutation in G fixes P . Furthermore, the family P has no partial
choice function in the model N . To see this, assume on the contrary that P has an
infinite subset P ′ with a choice function, say f , and let E be a support for f . Since
P ′ is infinite, there is an element t ∈ A−E such that t is not the initial segment
of any element of E and Pt = {t̂ 0, t̂ 1} ∈ P ′. Consider a permutation ψ ∈ G
which fixes E pointwise but interchanges the elements of Pt. Since E is a support
of f we have that ψ(f) = f . However, (Pt, f(Pt)) ∈ f → (Pt, ψ(f(Pt))) ∈ f and
ψ(f(Pt)) 6= f(Pt), a contradiction. Therefore, P has no infinite subfamily with
a choice function and consequently A =

⋃
P is a generalized Russell set in the

model N .
Furthermore, |A| ≤ |P | in N since the function f : A→ P defined by f(t) = Pt

for all t ∈ A, is injective and belongs to the model since it has empty support.
We assert that there is no injective function g : P → A in N . Assume the

contrary and let g be such a function with support E. For each t ∈ A we denote
the length of (the sequence indexing) t by ln(t) and we note

(3)
∀n ∈ ω, n > 0, ∀t ∈ A such that ln(t) ≥ n, ∃φ ∈ G which fixes the set

{s ∈ A : ln(s) < n} pointwise and such that φ(t) 6= t.

Choose an n0 ∈ ω such that n0 > 0 and ∀t ∈ E, ln(t) < n0. We make two
assertions about g.

Lemma 7. (1) ln(g({〈0〉, 〈1〉})) < n0.

(2) ∀t ∈ A, if ln(t) < n0 then ln(g(Pt)) < n0.

Proof: We prove part 2. The proof of 1 is similar and is left to the reader.
Assume t ∈ A, that ln(t) < n0 and, toward a proof by contradiction, that
ln(g(Pt)) ≥ n0. By equation (3) there is a φ ∈ G such that φ(s) = s for all
s ∈ A with ln(s) < n0 and such that φ(g(Pt)) 6= g(Pt). Since ln(t) < n0, φ(t) = t.
Since the function r 7→ Pr is in the model with empty support we may also con-
clude that φ(Pt) = Pt. By our choice of n0, φ also fixes E pointwise and therefore
fixes g. This is a contradiction since if φ fixes g and Pt it must fix g(Pt). �

By the lemma g restricted to the set {{〈0〉, 〈1〉}} ∪ {Pt : ln(t) < n0} has range
included in the set {t : ln(t) < n0}. Since the first of these two sets has one more
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element than the second we arrive at the contradiction that g is not injective.
Therefore, |A| < |P | in the model N .

For the second assertion of the theorem, we see that due to the definition
of the group G of permutations of the set A of atoms, P = {{t, t̂ 0, t̂ 1} : t ∈
A and ln(t) is odd} is a 3-ary partition of A which lives in the model since every
permutation in G fixes (not pointwise) the family P . Now if we discard from A
the two roots, namely 〈0〉 and 〈1〉, we obtain again a generalized Russell set which,
similarly to the case of A, also has a ternary partition, namely Q = {{t, t̂ 0, t̂ 1} :
t ∈ A and ln(t) is even}. If we discard from A one of the two roots, then again
we easily see that the resulting Dedekind set also has a ternary partition. This
completes the proof of the theorem. �

Remark 2. In [1, Theorem 3.1] it is shown that it is consistent with ZF that there
exists a Dedekind set X such that for all natural numbers n, the set Y obtained
from X by removing (or adding) n elements from X has a ternary partition.
Theorem 12 above also yields the result of Theorem 3.1 in [1]. However, since it
also establishes the existence (in some model of ZF) of a generalized Russell set
X =

⋃
i∈I Xi such that |X | < |I|, the result of Theorem 12 is stronger.

Theorem 13. There is a model of ZFA in which there exists a generalized Russell
set A such that A has a 3-ary partition but |A| is not divisible by 3.

Proof: Let N be the permutation model defined in the proof of Theorem 12 and
let A be its set of atoms. According to the latter proof, A is a generalized Russell
set which has a 3-ary partition in N . Hence, we only need to show that |A| is not
divisible by 3. Assume the contrary and let P = {P1, P2, P3} be a partition of A
consisting of infinite pairwise equipollent sets. Let f1,2 : P1 → P2 be a bijection
in the model with support E and let n0 = max{ln(t) : t ∈ E}. Without loss of
generality we may assume that E contains all atoms of length less than or equal
to n0 (therefore E contains both roots 〈0〉 and 〈1〉).

Let a = t̂ 0 ∈ P1, t ∈ A, with length m > n0, i.e. a /∈ E, and suppose
that a belongs to the subtree having 〈0〉 as its root. By the fact that E is
a support of the function f1,2 and by the definition of the group G we may
conclude that b = t̂ 1 ∈ P1 = Dom(f1,2). (Let ψ ∈ fix(E) such that ψ swaps a
and b. Then ψ(f1,2) = f1,2 and (a, f1,2(a)) ∈ f1,2 → (b, ψ(f1,2(a))) ∈ f1,2, hence
b ∈ Dom(f1,2)). Let f1,2(a) = c. Then c 6= a, b since c ∈ P2, a, b ∈ P1 and
P1 ∩ P2 = ∅. We necessarily have that either a or b is a proper initial segment of
c. Otherwise, considering the permutation ψ which fixes E pointwise, swaps the
atoms a and b and fixes pointwise all the branches which contain neither a nor b,
we obtain that ψ(c) = c and ψ(f1,2) = f1,2 hence f1,2(a) = f1,2(b) = c meaning
that f1,2 is not injective, a contradiction. Without loss of generality assume that
c = r 0̂ for some atom r.

1. If a is an initial segment of c, then consider a permutation ψ ∈ G which
swaps c and d = rˆ1 and moves only c, d and their descendants. Then
ψ ∈ fix(E), hence ψ(f1,2) = f1,2, and ψ(a) = a. But then (a, c) ∈ f1,2 →
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ψ(a, c) ∈ ψ(f1,2) → (a, d) ∈ f1,2 meaning that f1,2 is not a function,
a contradiction.

2. If b is an initial segment of c, then a is neither a descendant of c nor of d.
Working exactly as in (1) we arrive at a contradiction.

Therefore, |A| is not divisible by 3 in N and the proof of the theorem is
complete. �
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