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Abstract. Let Θ = (θ1, θ2, θ3) ∈ R
3. Suppose that 1, θ1, θ2, θ3 are linearly independent

over Z. For Diophantine exponents

α(Θ) = sup{γ > 0: lim sup
t→+∞

t
γ
ψΘ(t) < +∞},

β(Θ) = sup{γ > 0: lim inf
t→+∞

t
γ
ψΘ(t) < +∞}

we prove

β(Θ) >
1

2

(

α(Θ)

1− α(Θ)
+

√

(

α(Θ)

1− α(Θ)

)2

+
4α(Θ)

1− α(Θ)

)

α(Θ).

Keywords: Diophantine approximations, Diophantine exponents, Jarník’s transference
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1. Diophantine exponents

Let Θ = (θ1, . . . , θn) be a real vector. We deal with the function

ψΘ(t) = min
x6t

max
16i6n

‖θix‖.

Here the minimum is taken over positive integers x and ‖ · ‖ stands for the distance

to the nearest integer.
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Suppose that at least one of the numbers θ1, . . . , θn is irrational. Then ψΘ(t) > 0

for all t > 1. The uniform Diophantine exponent α(Θ) is defined as the supremum

of the set

{γ > 0: lim sup
t→+∞

tγψΘ(t) < +∞}.

It is a well-known fact that for all Θ one has

1

n
6 α(Θ) 6 1.

The ordinary Diophantine exponent β(Θ) is defined as the supremum of the set

{γ > 0: lim inf
t→+∞

tγψΘ(t) < +∞}.

Obviously

(1) β(Θ) > α(Θ).

2. Functions

For each α ∈
[

1
3 , 1

)

, define

g1(α) =
α

1 − α

and

g2(α) =
α(1 − α) +

√

α(α3 + 6α2 − 7α+ 4)

2(2α2 − 2α+ 1)
.

The value g2(α) is the largest root of the equation

(2α2 − 2α+ 1)x2 + α(α − 1)x− α = 0.

Note that

g2(1/3) = g2(1) = 1,

and for 1/3 < α < 1 one has g2(α) > 1. Let α0 be the unique real root of the

equation

x3 − x2 + 2x− 1 = 0.

In the interval 1/3 < α < α0 one has

(2) g2(α) > max (1, g1(α)) .
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In the interval α0 6 α < 1 we see that

g2(α) 6 g1(α).

We define one more function. Put

(3) g3(α) =
1

2

(

α

1 − α
+

√

( α

1 − α

)2

+
4α

1 − α

)

.

Simple calculation shows that

(4) g3(α) > max(g1(α), g2(α)) ∀α ∈
(

1
3 , 1

)

.

3. Jarník’s result

In a fundamental paper [1] V. Jarník proved the following theorem.

Theorem 1. Let ψ(t) be a continuous function in t, decreasing to zero as t→ +∞.

Suppose that the function tψ(t) increases to infinity as t → +∞. Let ̺(t) be the

inverse function to the function tψ(t). Put

ϕ[ψ](t) = ψ
(

̺
( 1

6ψ(t)

))

.

Suppose that n > 2 and among numbers θ1, . . . , θn there exist at least two numbers

which, together with 1, are linearly independent over Z. Suppose that

ψΘ(t) 6 ψ(t)

for all t large enough. Then there exist infinitely many integers x such that

max
16j6n

‖xθj‖ 6 ϕ[ψ](x).

The next Jarník’s result on Diophantine exponents is an obvious corollary of The-

orem 1.
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Theorem 2. Suppose that n > 2 and among numbers θ1, . . . , θn there exist at

least two numbers which, together with 1, are linearly independent over Z. Then

β(Θ) > α(θ)g1(α(Θ)).

To obtain Theorem 2 from Theorem 1 one takes ψ(t) = t−α with α < α(Θ).

On the other hand, V. Jarník [1] proved that there exists a collection of numbers

Θ = (θ1, . . . , θn) such that 1, θ1, . . . , θn are linearly independent over Z and

β(Θ) <
α(Θ)

1 − α(Θ)
.

In the case n = 2 the lower bound in Jarník’s Theorem 2 is optimal. The following

result was proved by M.Laurent [2].

Theorem 3. For any α, β > 0 satisfying

1

2
6 α 6 1, β > αg1(α)

there exists a vector Θ = (θ1, θ2) ∈ R
2 such that

α(Θ) = α, β(Θ) = β.

This result is a corollary of a general theorem concerning four two-dimensional

Diophantine exponents.

Note that in the case n > 3 the bound in Theorem 2 in the range 1/n 6 α < 1
2 is

weaker than the trivial bound (1).

N.Moshchevitin [3] (see also [4], Section 5.2) improved Jarník’s result in the case

n = 3 and for α ∈ (1
3 , α0). He obtained

Theorem 4. Suppose that m = 1, n = 3 and the collection Θ = (θ1, θ2, θ3)

consists of numbers which, together with 1, are linearly independent over Z. Then

β(Θ) > α(Θ)g2(α(Θ)).

In the case n = 3, Theorems 2 and 4 together give an estimate which is better

than the trivial estimate (1) for all admissible values of α(Θ).

4. New result

In this paper we give a new lower bound for β(Θ) in terms of α(Θ). From (4) it

follows that this bound is better than all the previous bounds (Theorems 2 and 4)

for all admissible values of α(Θ).
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Theorem 5. Suppose that m = 1, n = 3 and the vector Θ = (θ1, θ2, θ3) consists

of numbers linearly independent, together with 1, over Z. Then

β(Θ) > α(Θ)g3(α(Θ)).

Sections 5, 6, 7 below contain auxiliary results. Theorem 5 is proved in Section 8.

5. Best approximations

For each integer x, put

ζ(x) = max
16j6n

‖θjx‖.

A positive integer x is said to be a best approximation if

ζ(x) = min
x′

ζ(x′),

where the minimum is taken over all x′ ∈ Z such that

0 < x′ 6 x.

Consider the case when all numbers 1 and θj , 1 6 j 6 n are linearly independent

over Z. Then all best approximations lead to sequences

x1 < x2 < . . . < xν < xν+1 < . . . ,

ζ(x1) > ζ(x2) > . . . > ζ(xν) > ζ(xν+1) > . . . .

We use the notation

ζν = ζ(xν).

Choose y1,ν , . . . , yn,ν ∈ Z such that

‖θjxν‖ = |θjxν − yj,ν |.

We define

zν = (xν , y1,ν, . . . , yn,ν) ∈ Z
n+1.

If ψ(t) is a continuous function decreasing to 0 as t→ ∞, with

ψΘ(t) 6 ψ(t),

then one easily sees that

(5) ζν 6 ψ(xν+1).

Some useful fact about best approximations can be found in [4].
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6. Two-dimensional subspaces

Lemma 1. Suppose that all vectors of the best approximations zl, ν 6 l 6 k lie

in a certain two-dimensional linear subspace π ⊂ R
4. Consider the two-dimensional

lattice Λ = π ∩Z
4 with the two-dimensional fundamental volume detΛ. Then for all

l from the interval ν 6 l 6 k − 1 one has

(6) C1 detΛ 6 ζlxl+1 6 2 detΛ

where C1 =
(

2
√

3(1 + (|θ1| +
1
2 )2 + (|θ2| +

1
2 )2 + (|θ3| +

1
2 )2)

)−1

. In particular,

(7) det Λ >
min(ζνxν+1, ζk−1xk)

2
.

P r o o f. The parallelepiped

Ωl =
{

z = (x, y1, y2, y3) : |x| < xl+1, max
16j63

|θjx− yj | < ζl

}

has no non-zero integer points inside for every l. Consider the two-dimensional 0-

symmetric convex body

Ξl = Ωl ∩ π.

One can see that the two-dimensional Lebesgue measure µ(Ξl) of Ξl admits the

following lower and upper bounds:

(8) 2ζlxl+1 6 µ(Ξl) 6 4

√

3
(

1 +
(

|θ1| +
1

2

)2

+
(

|θ2| +
1

2

)2

+
(

|θ3| +
1

2

)2)

ζlxl+1.

We see that there is no non-zero point of Λ inside Ξl and that there are two linearly

independent points zl, zl+1 ∈ Λ on the boundary of Ξl. So obviously

(9) 2 detΛ 6 µ(Ξl).

From the Minkowski convex body theorem it follows that

(10) µ(Ξl) 6 4 detΛ.

Now (6) follows from (8, 9, 10). Lemma is proved. �
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7. Three-dimensional subspaces

Consider three consecutive best approximation vectors zl−1, zl, zl+1. Suppose

that these vectors are linearly independent. Consider the three-dimensional linear

subspace

Πl = span(zl−1, zl, zl+1).

Consider the lattice

Γl = Πl ∩ Z
4

with the fundamental volume det Γl. Let ∆ be the three-dimensional volume of the

three-dimensional simplex S with vertices 0, zl−1, zl, zl+1. We see that

(11) ∆ >
det Γl

6
.

Consider determinants

∆1 = −

∣

∣

∣

∣

∣

∣

xl−1 y2,l−1 y3,l−1

xl y2,l y3,l
xl+1 y2,l+1 y3,l+1

∣

∣

∣

∣

∣

∣

, ∆2 =

∣

∣

∣

∣

∣

∣

xl−1 y1,l−1 y3,l−1

xl y1,l y3,l
xl+1 y1,l+1 y3,l+1

∣

∣

∣

∣

∣

∣

,(12)

∆3 = −

∣

∣

∣

∣

∣

∣

xl−1 y1,l−1 y2,l−1

xl y1,l y2,l
xl+1 y1,l+1 y2,l+1

∣

∣

∣

∣

∣

∣

.

The absolute values of these determinants are equal to the three-dimensional volumes

of the projections of the simplex S onto the three-dimensional coordinate subspaces

({y1 = 0}, {y2 = 0} and {y3 = 0} respectively) multiplied by 6.

Note that for j = 1, 2, 3 one has

(13) |∆j | 6 6ζl−1ζlxl+1.

Lemma 2. Among determinants (12) there exists a determinant with absolute

value > C2∆, where C2 = 2/
(

2 + max
16i63

|θi|
)

.

P r o o f. Consider the determinant

∆0 =

∣

∣

∣

∣

∣

∣

y1,l−1 y2,l−1 y3,l−1

y1,l y2,l y3,l

y1,l+1 y2,l+1 y3,l+1

∣

∣

∣

∣

∣

∣

and the vector

w = (∆0,∆1,∆2,∆3) ∈ Z
4.
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We see that w is orthogonal to the subspace Πl, that is

∆0xj + ∆1y1,j + ∆2y2,j + ∆3y3,j = 0, j = l − 1, l, l+ 1.

So

∆0 = −

3
∑

i=1

∆i

yi,l
xl

= −

3
∑

i=1

∆i

(yi,l
xl

− θi

)

−

3
∑

i=1

∆iθi.

As |yi,l/xl − θi| 6 1 we see that

(14) |∆0| 6
(

1 + max
16i63

|θi|
)

(|∆1| + |∆2| + |∆3|).

However,

(15) 36∆2 = ∆2
0 + ∆2

1 + ∆2
2 + ∆2

3.

From (14), (15) we deduce the inequality

∆ 6
1

6

(

2 + max
16i63

|θi|
)

(|∆1| + |∆2| + |∆3|),

and the lemma follows. �

8. Proof of Theorem 5

Take α < α(Θ). Then

(16) ζl 6 x−αl+1

for all l large enough.

Consider best approximation vectors zν = (xν , y1,ν, y2,ν , y3,ν). From the condition

that the numbers 1, θ1, θ2, θ3 are linearly independent over Z we see that there exist

infinitely many pairs of indices ν < k, ν → +∞ such that

• both the triples

zν−1, zν , zν+1; zk−1, zk, zk+1

consist of linearly independent vectors;

• there exists a two-dimensional linear subspace π such that

zl ∈ π, ν 6 l 6 k; zν−1 6∈ π, zk+1 6∈ π;
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• the vectors

zν−1, zν , zk, zk+1

are linearly independent.

Consider the two-dimensional lattice

Λ = π ∩ Z
4.

By Lemma 1, its two-dimensional fundamental volume detΛ satisfies

(17) detΛ ≍Θ ζνxν+1 ≍Θ ζk−1xk.

Consider the two dimensional orthogonal complement π⊥ to π and the lattice

Λ⊥ = π⊥ ∩ Z
4.

It is well-known that

(18) det Λ⊥ = detΛ.

Consider the lattices

Γν = (span(zν−1, zν , zν+1)) ∩ Z
4, Γk = (span(zk−1, zk, zk+1)) ∩ Z

4

and primitive integer vectors wν ,wk ∈ Z
4 which are orthogonal to Πν = span(zν−1,

zν , zν+1), Πk = span(zk−1, zk, zk+1) respectively. Obviously

wν ,wk ∈ Λ⊥.

Put

b =
1

2

(

−
α

1 − α
+

√

( α

1 − α

)2

+
4α

1 − α

)

∈ (0, 1), a = 1 − b,

so
α

1 − α
+ b = g3(α).

Then

detΛ⊥ 6 |wν | · |wk|,

where | · | stands for the Euclidean norm, and so we obtain that either

(19) det Γν = |wν | > (det Λ⊥)a = (det Λ)a
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or

(20) det Γk = |wk| > (detΛ⊥)b = (detΛ)b

(using (18)).

If (19) holds then by Lemma 2, (13), (11) and (17) we see that

ζν−1ζνxν+1 ≫ |∆j | ≫Θ det Γν ≫Θ (detΛ)a ≫ (ζνxν+1)
a

(here ∆j is the determinant from Lemma 2 applied to the lattice Γ = Γν). From the

definition of a and (16) we see that

xν+1 ≫Θ xg3(α)
ν .

We apply (16) again to obtain

ζν ≪Θ x−αg3(α)
ν .

If (20) holds then by Lemma 2, (13), (11) and (17) we see that

ζk−1ζkxk+1 ≫ |∆j′ | ≫Θ det Γk ≫Θ (detΛ)b ≫ (ζk−1xk)
b

(here ∆j′ is the determinant from Lemma 2 applied to the lattice Γ = Γk). From

the definition of b and (16) we see that

xk+1 ≫Θ x
g3(α)
k .

We apply (16) again to obtain

ζk ≪Θ x
−αg3(α)
k .

Theorem 5 is proved. �

Acknowledgement and a remark. The author thanks the anonymous referee

for useful and important suggestions. Here we would like to note that the referee

pointed out that it is possible to get a simpler proof of Theorem 5 by means of

W.M. Schmidt’s inequality on heights of rational subspaces (see [5]). For a rational

subspace U ⊂ R
n its height H(U) is defined as the co-volume of the lattice U ∩ Z

n.

Schmidt showed that for any two rational subspaces U, V ∈ R
n one has

H(U ∩ V )H(U + V ) ≪n H(U)H(V ).

To prove our Theorem 5 one can use this inequality for

U = span(zν−1, zν , zν+1), V = span(zk−1, zk, zk+1).
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