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Abstract. We deal with the problems of four boundary points conditions for both differen-
tial inclusions and differential equations with and without moving constraints. Using a very
recent result we prove existence of generalized solutions for some differential inclusions and
some differential equations with moving constraints. The results obtained improve the re-
cent results obtained by Papageorgiou and Ibrahim-Gomaa. Also by means of a rather
different approach based on an existence theorem due to O.N.Ricceri and B.Ricceri we
prove existence results improving earlier theorems by Gupta and Marano.
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1. Introduction and preliminaries

Let Lk(I,Rn) be the space of all measurable functions ψ : I → R such that

‖ψ‖Lk(I,Rn) = (
∫ 1

0
|ψ(t)|k)1/k < ∞ (k ∈ [1,∞[); W 2,k(I,Rn) the space of func-

tions u ∈ C1(I,Rn) such that u̇ is absolutely continuous and ü(t) ∈ Lk(I,Rn),

where I = [0, T ]. Let Pck(R
n) be the set of all compact convex subsets of Rn;

F : I × R
n × R

n → Pck(R
n).

In this paper we are concerned with the following problems:

(1) Existence of generalized solutions in W 2,1(I,Rn) for the second order differ-

ential inclusion under four boundary conditions,

(P e)

{

ü(t) ∈ extF (t, u(t), u̇(t)), a.e. on I,

u(0) = 0, u(η) = u(θ) = u(T ),
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where 0 < η < θ < 1 and extF (., u(.), u̇(.)) is the set of extremal points of

F (., u(.), u̇(.)).

(2) Existence of solutions in C1(I,Rn) for the second order differential inclusion

under four boundary conditions,

(P )

{

ü(t) ∈ F (t, u(t), u̇(t)), a.e. on I,

u(0) = 0, u(η) = u(θ) = u(T ),

where 0 < η < θ < 1.

(3) Existence of “state-control” pairs in W 2,1(I,Rn) × L1(I,Rn) for the single

valued boundary value problem with multivalued moving constraints;

(Qm)











ü(t) = b(t, u(t), u̇(t), x(t)), a.e. on I,

u(0) = 0, u(η) = u(θ) = u(T ),

x(t) ∈ K(t, u(t), u̇(t)) a.e. on I,

where 0 < µ < θ < T , b : I × R
n × R

n × R
m → R

nand K : I × R
n × R

n → Pk(Rm)

while Pk(Rm) is the set of all compact subsets of Rm.

(4) Existence of generalized solutions inW 2,k(I,R) for the second order differential

equation under four boundary conditions,

(Q)

{

ü(t) = f(t, u(t), u̇(t)), a.e. on [0, 1],

u(0) = 0, u(η) = u(θ) = u(1),

where 0 < η < θ < 1 and f is a real function on [0, 1]× R× R.

By an admissible “state-control” pair we mean two functions u(.) and x(.) such

that (u, x) ∈ W 2,1(I,Rn) × L1(I,Rn) and which satisfy all the constraints in (Qm).

Moreover, by a generalized solution of (Q) we mean a function u ∈ W 2,k([0, 1])

(k = 1, 2) such that u(0) = x0, u(η) = u(θ) = u(T ) and ü(t) = f(t, u(t), u̇(t)) for

almost all t ∈ [0, 1].

Let X , Y be two topological spaces and F : X → 2Y . F is called lower semicon-

tinuopus (l.s.c.) at x0 ∈ X if for every open subset V in Y , F (x0) ∩ V 6= ∅, there

exists an open subset U in X such that x0 ∈ U and F (x) ∩ V 6= ∅ for all x ∈ U. We

say F is (l.s.c.) if it is (l.s.c.) at each x0 ∈ X. Let C(I, E) be the Banach space of all

continuous functions u from I to the Banach space E, endowed with the supremum

norm, and let C1(I, E) be the Banach space of all continuous mappings u : I → E

with continuous derivative, equipped with the norm

‖u‖C1 = max
{

max
t∈I

‖u(t)‖,max
t∈I

‖u̇(t)‖
}

.
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For closed subsets A and B of E, the Hausdorff distance between A and B is defined

by

h(A,B) = sup(e(A,B)), e(B,A))

where

e(A,B) = sup
a∈A

d(a,B) = sup
a∈A

( inf
b∈B

‖a− b‖)

stands for the excess ofA overB. Let (Ω,Σ) be a measurable space andX a separable

Banach space. A multifunction F : Ω → Pf is said to be measurable if for all x ∈ X ,

z 7→ d(x, F (z)) = inf{‖x − w‖ : w ∈ F (z)} is measurable. We say F (.) is graph

measurable if Gr(F ) = {(z, x) ∈ Ω×X : x ∈ F (z)} ∈ Σ×B(X), where B(X) is the

Borel σ-field of X. For further details we refer to [9], [5], [1].

Definition 1.1. Let E be a Banach space and let Y be a metric space. A mul-

tifunction G : I × Y → Pck(E) is said to have the Scorza-Dragoni property (the SD-

property) if for every ε > 0 there exists a closed set A ⊂ I such that the Lebesgue

measure, µ, of (I−A) is less than ε and G
∣

∣

A×Y
is continuous. The multifunction G is

called integrably bounded on compacta in Y if for any compact subset Q ⊂ Y , we can

find an integrable function µQ : I → R
+ such that sup{‖y‖ : y ∈ G(t, z)} 6 µQ(t)

for almost every z ∈ Q.

Theorem 1.2 [11]. Let Y be a complete metric space, E a sparable Banach space,

Eσ the Banach space E endowed with the weak topology; M : I × Y → Pck(Eσ);

K a compact subset of C(I, Y ). Further, let R : K → 2L1(I,E) be a multifunction

defined by

R(y) = {g ∈ L1(I, E) : g(t) ∈M(t, y(t)) a.e. on I}.

If M has the SD-property and is integrably bounded on compacta in Y, then the set

AK = {f ∈ C(K,L1
w(I, E)) : f(y) ∈ R(y) ∀ y ∈ K}

is a nonempty complete subset of the space C(K,L1
w(I, E)). Moreover, AK = Aext K

where L1
w(I, E) is the set of equivalence classes of Bochner-integrable functions v :

I → E with the norm ‖v‖w = sup
t∈T

‖
∫ t

0 v(s) ds‖ and

Aext K = {f ∈ C(K,L1
w(I, E)) : f(y) ∈ extR(y) ∀ y ∈ K}.

We use the following lemma, for 0 < η < θ < T, which is useful in the study

of four points boundary problems for the differential equations and the differential

inclusions; moreover, it summarizes some properties of a Hartman-type function.
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Lemma 1.3 [6]. Let G : I×I → R be the function defined as follows: if 0 6 t < η,

G(t, τ) =



































−τ if 0 6 τ 6 t,

−t if t < τ 6 η,

t(τ − θ) + (τ − η)

θ − η
if η < τ 6 θ,

T − τ

T − θ
if θ < τ 6 T ,

when η 6 t < θ,

G(t, τ) =











































−τ if 0 6 τ 6 η,

τ(t − θ + 1) + η(τ − t− 1)

θ − η
if η < τ 6 t,

t(τ − θ) + (τ − η)

θ − η
if t < τ 6 θ,

T − τ

T − θ
if θ < τ 6 T ,

finally if θ 6 t 6 T,

G(t, τ) =











































−τ if 0 6 τ 6 η,

η(τ − t− 1) + τ(t − θ + 1)

θ − η
if η < τ 6 θ,

T − τ

T − θ
+ (t− τ) if θ < τ 6 t,

T − τ

T − θ
if t < τ 6 T .

Then:

(i) If u ∈ W 2,1(I,Rn) with u(0) = x0, u(T ) = u(θ) = u(η), then u(t) = x0 +
∫ T

0
G(t, τ)ü(τ) dτ, ∀t ∈ I;

(ii) if w ∈ L1(I,Rn), then for all t ∈ I,

∫ T

0

G(t, τ)w(τ) dτ =

∫ t

0

(t− τ)w(τ) dτ −

∫ η

0

t(τ − η)(t+ 1)

θ − η
w(τ) dτ

+

∫ θ

0

t(τ − θ) + (τ − η)

θ − η
w(τ) dτ +

∫ T

θ

T − τ

T − θ
w(τ) dτ,

(iii) sup
t,τ∈I

|G(t, τ)| 6 max{2, 2T }, sup
t,τ∈I

|∂G(t, τ)/∂t| 6 1.
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Theorem 1.4 [15]. Let (I,G, µ) be a finite non-atomic complete measure space;

V a non-empty set; (X, ‖‖X), (Y, ‖‖Y ) two separable real spaces, with Y finite-

dimentional; p, q, s ∈ [1,∞], with q < ∞ and q 6 p 6 s; Ψ: V → Ls(I, Y ) a bi-

jective operator; Φ: V → L1(I,X) an operator such that, for every v ∈ Ls(I, Y )

and every sequence {vn} in Ls(I, Y ) weakly converging to v in Lq(I, Y ), the se-

quence {Φ(Ψ−1(vn))} converges to Φ(Ψ−1(v)) in L1(I,X); ϕ : [0,∞[→ [0,∞] a non-

decreasing function such that

ess sup
t∈I

‖Φ(u)(t)‖X 6 ϕ(‖Ψ(u)‖Lp(I,Y ))

for all u ∈ V.

Further, let F : I × X → 2Y be a multifunction, with non-empty closed convex

values, satisfying the following conditions:

(i) for µ-almost every t ∈ I, the multifunction F (t, .) has closed graph;

(ii) the set {x ∈ X : the multifunction F (., x) is G −measurable} is dense in X ;

(iii) there exists r > 0 such that t → sup
‖x‖X6ϕ(r)

d(0Y , F (t, x)) belongs to Ls(I) and

its norm in Lp(I) is less than or equal to r.

Under such hypotheses, there exists ũ ∈ V such that

{

Ψ(ũ)(t) ∈ F (t,Ψ(ũ)(t)), µ-a.e. in I,

‖Ψ(ũ)(t)‖Y 6 sup
‖x‖X6ϕ(r)

d(0Y , F (t, x)) µ-a.e. in I.

2. Existence results for (P e) and (P )

Let c1, c2, a ∈ Lp(I,R+), 1 < p < ∞, and let L be the linear operator defined

from C(I,R) × C(I,R) into C(I,R) × C(I,R) by L(f, g) = (f, g) such that, for all

t ∈ I,

f(t) =

∫ T

0

|G(t, τ)|(c1(τ)f(τ) + c2(τ)g(τ)) dτ

and

g(t) =

∫ T

0

∣

∣

∣

∂G(t, τ)

∂t

∣

∣

∣
(c1(τ)f(τ) + c2(τ)g(τ)) dτ.
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Theorem 2.1. Let F be a multifunction from I ×R
n ×R

n to Pck(R
n) satisfying

the following conditions:

(a) for each (x, y) ∈ R× R, the multifunction F (., x, y) is measurable;

(b) for each t ∈ I the function (x, y) −→ F (t, x, y) is continuous with respect to the

Hausdorff metric h;

(c) for each (x, y, t) ∈ I × R
n × R

n

‖F (t, x, y)‖ 6 sup{‖v‖ : v ∈ F (t, x, y)} 6 a(t) + c1(t)‖x‖ + c2(t)‖y‖;

(d) the spectral radius r(L) of L is less than one.

Then problem (P e) admits a solution.

P r o o f. First, we can say that ‖F (t, x, y)‖ 6 a1(t) a.e. on I for some

a1 ∈ Lp(I,R+). Indeed, if we assume u ∈ W 2,1(I,Rn) then from Lemma 1.3

part (i), for each t ∈ I we have u(t) = x0 +
∫ T

0 G(t, τ)ü(τ) dτ and u̇(t) =

x0 +
∫ T

0 (∂G(t, τ)/∂t)ü(τ) dτ. Now if

L(‖u‖, ‖u̇‖) = (‖u‖, ‖u̇‖),

then

‖u‖(t) =

∫ T

0

|G(t, τ)|(c1(τ)‖u(τ)‖ + c2(τ)‖u̇(τ)‖) dτ

and

‖u̇‖(t) =

∫ T

0

∣

∣

∣

∂G(t, τ)

∂t

∣

∣

∣
(c1(τ)‖u(τ)‖ + c2(τ)‖u̇(τ)‖) dτ.

If u is a solution of (P ), then condition (c) yields

‖u(t)‖ 6 ‖x0‖ +

∫ T

0

|G(t, τ)|(a(τ) + c1(τ)‖u(τ)‖ + c2(τ)‖u̇(τ)‖).

So,

‖u(t)‖ − ‖u(t)‖ 6 ‖x0‖ +

∫ T

0

|G(t, τ)|a(τ) dτ = h1(t).

Also

‖u̇(t)‖ − ‖u̇(t)‖ 6 ‖x0‖ +

∫ T

0

∣

∣

∣

∂G(t, τ)

∂t

∣

∣

∣
a(τ) dτ = h2(t).
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Now, if Id is the identity mapping, then (Id− L)(‖u(.)‖, ‖u̇‖) 6 (h1, h2). By virtue

of condition (d), (Id− L)−1 exists and (Id− L)−1 =
∞
∑

k=0

Lk. Further,

(‖u‖, ‖u̇‖) = (Id− L)−1(‖u‖ − ‖u‖, ‖u̇‖ − ‖u̇‖)

=

∞
∑

k=0

Lk(‖u‖ − ‖u‖, ‖u̇‖ − ‖u̇‖)

6

∞
∑

k=0

Lk(h1, h2)

= (Id− L)−1(h1, h2).

Consequently, there exists M > 0 such that for every solution of (P ) we have

‖u‖C(I,Rn), ‖u̇‖C(I,Rn) 6 M. Thus we may assume that ‖F (t, x, y)‖ < a1(t) a.e.

on I fore some a1 ∈ Lp(I,R+). Let h ∈ L1(I,Rn) and let u ∈ W 1,2(I,Rn) be the

unique solution of the problem

(∗)

{

ü(t) = h(t), a.e. on I,

u(0) = 0, u(η) = u(θ) = u(T ).

From Lemma 1.3 we have u(t) = x0 +
∫ T

0 G(t, τ)h(τ) dτ, ∀t ∈ I. Thus we can define

the function f : L1(I,Rn) → W 2,1(I,Rn) such that f(h) is the unique solution of

(∗). Let V = {u ∈ L1(I,Rn) : ‖u(t)‖ 6 a1(t) a.e. on I}. By the Dunford-Pettis

theorem V is weakly compact and then we can show that f(V ) is a convex and

compact subset of C1(I,Rn). Let Y = R
n × R

n. If K = f(V ), R : K → 2L1(I,Rn) is

a multifunction defined by R(u) = {g ∈ L1(I,Rn) : g(t) ∈ F (t, u(t), u̇(t)) a.e. on I}

andM : I×R
n×R

n withM(t, (x, y)) = F (t, x, y), thenM has the SD-property [14].

It is easy to show that R is a nonempty and convex subset of L1(I,Rn). From the

fact that the values of F are closed, if fn is a sequence in R(u) for some u ∈ K, then

lim
n→∞

fn(t) = f(t) ∈ F (t, u(t), u̇(t)). Therefore the values of R are weakly compact.

According to Theorem 2.1 there exists a continuous function r : K → L1
w(I,Rn) with

r(u) ∈ ext(R(u)) for all u ∈ K. From Benamara [2] we have

ext(R(u)) = {g ∈ L1(I, Y ) : g(t) ∈ ext(M(t, u(t), u̇(t))) a.e. on I}.

So r(u)(t) ∈ ext(M(t, u(t), u̇(t))) a.e. on I, which implies

r(u)(t) ∈ ext(F (t, u(t), u̇(t))) a.e. on I,

which yields

r(u)(t) ∈ ext(F (t, u(t), u̇(t))) a.e. on I.
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If u ∈ f(V ), then ‖r(u)(t)‖ 6 a1 and so r(u) ∈ V. Put θ : f(V ) → W 2,1(I,Rn) such

that θ(u) = f(r(u)), thus θ is a continuous function from f(V ) into f(V )[13]. By

Schauder’s fixed point theorem there exists x ∈ f(V ) such that x = θ(x) = f(r(x)),

which means that there is x ∈W 2,1(I,Rn) such that ẍ(t) ∈ ext(F (t, x(t), ẋ(t))). �

Theorem 2.2. Let F : I ×R
n ×R

n → Pck(R
n) be a multifunction satisfying the

following conditions:

(a) for each (x, y) ∈ R× R the multifunction F (., x, y) is graph measurable;

(b) for each t ∈ I the function (x, y) −→ F (t, x, y) is l.s.c.;

(c) for each (x, y, t) ∈ I × R
n × R

n

‖F (t, x, y)‖ 6 sup{‖v‖ : v ∈ F (t, x, y)} 6 a(t) + c1(t)‖x‖ + c2(t)‖y‖,

where a, c1, c2 ∈ L1(I,R+);

(d) the spectral radius r(L) of L is less than one.

Then the solution set S of problem (P ) is a nonempty subset of C1(I,Rn).

P r o o f. As in Theorem 2.1 we can assume ‖F (t, x, y)‖ 6 γ(t) a.e. on I,

where γ ∈ L1(I,R+). Put V = {u ∈ L1(I,Rn) : ‖u(t)‖ 6 γ(t) a.e. on I} and let

f : L1(I,Rn) → C1(I,Rn) is the function as in the proof of Theorem 2.1, thus f(V )

is a compact convex subset in C1(I,Rn). Moreover, if ψ is a multifunction from f(V )

into Pf (L1(I,Rn)), the set of all closed subsets of L1(I,Rn), defined by

ψ(u) = {g ∈ L1(I,Rn) : g(t) ∈ F (t, u(t), u̇(t)) a.e. on I},

then ψ(.) is l.s.c. and has decomposable values [12]. By Theorem 3 in [3] there exists

a continuous selection s : f(V ) → L1(I,Rn) of ψ. Now if we define θ : f(V ) → f(V )

by θ(u) = f(s(u)), then θ is continuous [13]. By Schauder’s fixed point theorem θ

has a fixed point x = θ(x), which means that S 6= ∅. �

3. Existence results for (Qm) and (Q)

First, in this section we need the following hypotheses on the data.

H(b). b : I × R
n × R

n × R
m → R

n is a function such that

(1) t 7→ b(t, u, v, x) is measurable,

(2) (u, v, x) → b(t, u, v, x) is continuous,

(3) ‖b(t, u, v, x)‖ 6 a(t) + c(t)(‖u‖) + (‖v‖) + (‖x‖) a.e. with a, c ∈ L1(I,R).

Also we introduce hypotheses on K.
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H(K). K : I × R× R
n → Pk(Rm) is a multifunction such that

(i) (t, u, v) 7→ K(t, u, v) is graph measurable,

(ii) (u, v) 7→ K(t, u, v) is l.s.c., a.e.,

(iii) ‖K(t, u, v)‖ 6 c1(1 + ‖u‖) + (‖v‖), c1 > 0. a.e. with a, c ∈ L1(I,R).

Theorem 3.1. If hypotheses H(b), H(K) and condition (d) in Theorem 2.1 hold,

then problem (Qm) admits a “state-control” pair.

P r o o f. Let Γ: I × R
n × R

n → Pk(Rn) be defined by

Γ(t, u, v) = b(t, u, u, U(t, u, v)) =
⋃

{b(t, u, v, x) : x ∈ K(t, u, v)}.

Now from [4] we have

Gr(Γ) = {(t, u, v, z) : z ∈ Γ(t, u, v)}

= projI×Rn×Rn×Rn{(t, u, v, y, x) : y = b(t, u, v, x), (t, u, v, x) ∈ Gr(K)}

∈ B(I) ×B(Rn) ×B(Rn) ×B(Rn).

Thus (t, u, v) → Γ(t, u, v) is graph measurable. Now if (un, vn) → (u, v) in R
n × R

n

and y ∈ Γ(t, u, v), then y = b(t, u, v, x) with x ∈ K(t, u, v). By H(K), part (ii),

K(t, ., .) is l.s.c., so there exist un ∈ K(t, xn, yn) for all n ∈ N with un → u in R
m.

Therefore, by H(b) part 2, if yn = b(t, un, vn, xn), then yn → y with yn ∈ Γ(t, un, vn).

Hence (u, v) → Γ(t, u, v) is l.s.c., and from H(b) part (2) we have

‖Γ(t, u, v)‖ 6 a∗(t) + c∗(t)(‖u‖) + ‖v‖, a∗, c∗ ∈ L1(I,R+).

According to Theorem 2.2 the problem

{

ü(t) ∈ Γ(t, u(t), u̇(t)), a.e. on I,

u(0) = 0, u(η) = u(θ) = u(T ),

has at least one solution u(.) ∈ W 2,1(I,Rn). Let

G(t) = {x ∈ K(t, u(t), u̇(t)) : ü(t) = b(t, u(t), u̇(t), x)}.

Because of H(b), parts (1) and (2) and H(K), part (iii) we have Gr(G) ∈ B(I) ×

B(Rn). Thanks to Aumann’s selection theorem there exists a measurable selection

x of G, that is x(t) ∈ G(t) for all t ∈ I. Then (u, x) is the desired admissible “state-

control” pair for (Qm). �

The following lemma will be useful in the sequel.
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Lemma 3.2. Let G : I × I → R be the function defined as in Lemma 1.3 and let

k ∈ [1,∞[. Then for every t ∈ [0, T ] one has

(j)
(∫ T

0 |G(t, τ)|k dτ
)1/k

6 31/k max{(T + 2)1+1/k, (2T + 1)1+1/k},

(jj)
(∫ T

0
|∂G(t, τ)/∂t|k dτ

)1/k
6 T 1/k.

P r o o f. (j) If 0 6 t < η < τ 6 θ then

|G(t, τ)| 6
t(θ − τ) + (τ − η)

θ − τ
6 T +

τ − η

θ − η
6 T + 1,

∫ T

0

|G(t, τ)|k dτ 6 tT k + T k(η − t) + (T + 1)k(θ − η) + (T − θ)

6 T tk + T k(T − t) + (T + 1)k(θ − η) + (T − t)

6 3(T + 1)k+1

and consequently

(
∫ T

0

|G(t, τ)|k dτ

)1/k

6 31/k(T + 1)1+1/k.

If η 6 t < θ (η < τ 6 t) then

|G(t, τ)| 6
τθ − τt+ ηt− ητ + τ − η

θ − η

6
(τ(θ − η) + τ − η)

θ − η

6 T + 1,

and if η 6 t < τ 6 θ 6 T then

|G(t, τ)| =
∣

∣

∣

tτ − tθ + τ − η

θ − η

∣

∣

∣

6
tθ − tτ + τ − η

θ − η

6 T + 1,

thus

∫ T

0

|G(t, τ)|k dτ 6 ηT k + (T + 1)k(t− η) + (θ − t)(T + 1)k + (T − θ)

6 ηT k + (T + 1)k(T − η) + (θ − t)(T + 1)k + (T − η)

6 3(T + 2)k+1,
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and hence in this case

(
∫ T

0

|G(t, τ)|k dτ

)1/k

6 31/k(T + 2)1+1/k.

If θ 6 t 6 T (η < τ 6 θ) then

|G(t, τ)| =
∣

∣

∣

ητ − tη − η + τt − τθ + τ

θ − η

∣

∣

∣

6
τθ − ητ + tτ − tη + τ − η

θ − η

6
τ(θ − η) + t(τ − η) + τ − η

θ − η

6 2T + 1,

so

∫ T

0

|G(t, τ)|k dτ 6 ηT k + (2T + 1)k(θ − η) + (t− θ)(T + 1)k + (T − θ)

6 ηT k + (T + 1)k(T − η) + (θ − t)(T + 1)k + (T − η)

6 3(2T + 1)k+1

and hence
(

∫ T

0

|G(t, τ)|k dτ

)1/k

6 31/k(2T + 1)1+1/k,

which completes the proof of (j).

(jj) If 0 6 t < η, then

∂G(t, τ)

∂t
=



























0 if 0 6 τ 6 t,

−1 if t < τ 6 η,

τ − θ

θ − η
if η < τ 6 θ,

0 if θ < τ 6 T ,

when η 6 t < θ, then

∂G(t, τ)

∂t
=



































0 if 0 6 τ 6 η,

τ − η

θ − η
if η < τ 6 t,

τ − θ

θ − η
if t < τ 6 θ,

0 if θ < τ 6 T ,
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and finally, if θ 6 t 6 T, then

∂G(t, τ)

∂t
=



























0 if 0 6 τ 6 η,

τ − η

θ − η
if η < τ 6 θ,

1 if θ < τ 6 t,

0 if t < τ 6 T .

Then it is easy to check that
( ∫ T

0 |∂G(t, τ)/∂t|k dτ
)1/k

6 T 1/k. �

Theorem 3.3. Let f be a function from [0, 1]×R×R to R satisfying the following

conditions:

(a) for each (x, y) ∈ R× R, the function f(., x, y) is measurable;

(b) for a.e. t ∈ [0, 1] the function (x, y) 7→ f(t, x, y) is continuous;

(c) there exist p, q, r ∈ L1([0, 1]) such that for almost every t ∈ [0, 1] and every

x, y ∈ R one has

|f(t, x, y)| 6 ‖r(t)‖L1([0,1]) + ‖p(t)‖L1([0,1])|x| + ‖q(t)‖L1([0,1])|y|;

(d) ‖p‖L1([0,1]) + ‖q‖L1([0,1]) < 1.

Then problem (Q) admits a generalized solution u ∈ W 2,1([0, 1]).

P r o o f. We apply Theorem 1.4, in this case, choose p = q = s = 1; I =

[0, 1] with the Lebesgue measure structure; X = R
2 endowed with the norm ‖z‖ =

max{|x|, |y|}, where z = (x, y) ∈ R
2; V = {u ∈ W 2,1([0, 1]) : u(0) = 0, u(η) =

u(θ) = u(1)}; F (t, z) = {f(t, z)} for all t ∈ [0, 1], z ∈ R
2; Ψ(u) = ü for all u ∈ V ;

Φ(u)(t) = (u(t), u̇(t)) ∈ R
2 for all u ∈ V , t ∈ [0, 1]; ϕ(λ) = λ for all λ ∈ [0,∞[.

Thanks to conditions (i), (ii) of Lemma 1.3, Ψ is bijective and for every w ∈ L1([0, 1])

one has

Ψ−1(w)(t) =

∫ t

0

(t− τ)w(τ) dτ −

∫ η

0

t(τ − η)(t + 1)

θ − η
w(τ) dτ

+

∫ θ

0

t(τ − θ) + (τ − η)

θ − η
w(τ) dτ +

∫ 1

θ

1 − τ

1 − θ
w(τ) dτ

for every t ∈ [0, 1], and thus

Φ(Ψ−1(w))(t) =

(
∫ t

0

(t− τ)w(τ) dτ −

∫ η

0

t(τ − η)(t+ 1)

θ − η
w(τ) dτ(1)

+

∫ θ

0

t(τ − θ) + (τ − η)

θ − η
w(τ) dτ +

∫ 1

θ

1 − τ

1 − θ
w(τ)dτ,

∫ t

0

w(τ) dτ −

∫ η

0

(τ − η)(t+ 1)

θ − η
w(τ) dτ +

∫ θ

0

τ − θ

θ − η
w(τ) dτ

)

.
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Let {vn} be a sequence weakly converging to v in L1([0, 1]). From (1), for every

t ∈ [0, 1] we have

Φ(Ψ−1(vv))(t) =

(
∫ t

0

(t− τ)vn(τ) dτ −

∫ η

0

t(τ − η)(t+ 1)

θ − η
vn(τ) dτ

+

∫ θ

0

t(τ − θ) + (τ − η)

θ − η
vn(τ) dτ +

∫ 1

θ

1 − τ

1 − θ
vn(τ) dτ,

∫ t

0

vn(τ) dτ −

∫ η

0

(τ − η)(t+ 1)

θ − η
vn(τ) dτ +

∫ θ

0

τ − θ

θ − η
vn(τ) dτ

)

.

The sequence {Φ(Ψ)−1(vn)} converges pointwise to Φ(Ψ)−1(v) on [0, 1]. From con-

dition (iii) in Lemma 1.3 we have for each t ∈ [0, 1], n ∈ N

∥

∥

∥

∥

∫ b

0

G(t, τ)vn(τ) dτ

∥

∥

∥

∥

6 sup
t,τ∈[0,1]

|G(t, τ)|

∫ 1

0

‖vn‖ dτ 6 2

∫ 1

0

‖vn‖ dτ,(2)

∥

∥

∥

∥

∫ 1

0

∂G(t, τ)

∂t
vn(τ) dτ

∥

∥

∥

∥

6

∫ 1

0

‖vn‖ dτ.(3)

Since {vn} is bounded in L1([0, 1]), by virtue of (2), (3) we can find c > 0 such

that ‖Φ(Ψ−1(vn))(t)‖ 6 c for each t ∈ [0, 1] and n ∈ N. Hence by the Lebesgue

dominated convergence theorem, {Φ(Ψ−1(vn))} converges strongly to Φ(Ψ−1(v)) in

L1([0, 1], X). Now

(4) max
t∈[0,1]

|u(t)| 6

∫ 1

0

|u̇(t)| dt 6 max
t∈[0,1]

|u̇(t)|,

and if u ∈ V then there exists θ ∈]0, 1[ such that u̇(θ) = 0, thus

(5) max
t∈[0,1]

|u̇(t)| 6

∫ 1

0

|ü(t)| dt.

From (4) and (5)

ess sup
t∈[0,1]

‖Φ(u)(t)‖X 6

∫ 1

0

|ü(t)| dt = ϕ(‖ü‖L1([0,1])).

Finally, we consider the multifunction F : (t, z) → {f(t, z)}. It is obvious that F

satisfies conditions (i) and (ii) of Theorem 1.4; moreover, if we choose ̺ such that

‖r‖L1([0,1]) < ̺(1 − (‖p‖L1([0,1]) + ‖q‖L1([0,1]))), so thanks to (c) we have

∫ 1

0

sup
‖z‖X6ϕ(̺)

|f(t, z)| dt =

∫ 1

0

sup
‖z‖X6̺

|f(t, z)| dt

6 (‖p‖L1([0,1]) + ‖q‖L1([0,1]))̺+ ‖r‖L1([0,1]) 6 ̺,
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and hence condition (iii) of Theorem 1.4 holds. Now we are allowed to apply Theo-

rem 1.4. Therefore there exists u ∈ V such that ü(t) = f(t, u(t), u̇(t)) for almost all

t ∈ [0, 1] and this completes the proof. �

Theorem 3.4. Let f be a function satisfying conditions (a), (b) of Theorem 3.3.

Further, suppose that:

(c′) there exist p, q, r ∈ L2([0, 1]) such that for almost every t ∈ [0, 1] and every

x, y ∈ R one has

|f(t, x, y)| 6 ‖r(t)‖L2([0,1]) + ‖p(t)‖L2([0,1])|x| + ‖q(t)‖L2([0,1])|y|;

(d′) 9‖p‖L2([0,1]) + ‖q‖L2([0,1]) < 1.

Then problem (Q) admits a generalized solution u ∈ W 2,2([0, 1]).

P r o o f. We apply Theorem 1.4 in the particular case q = 1, p = s = 2; I = [0, 1];

X = R
2 endowed with the norm ‖z‖ = max{ 1

9 |x|, |y|}, where z = (x, y) ∈ R
2;

V = {u ∈ W 2,2([0, 1]) : u(0) = 0, u(η) = u(θ) = u(1)}; F (t, z) = {f(t, z)} for all

t ∈ [0, 1], z ∈ R
2; Ψ(u) = ü for all u ∈ V ; Φ(u)(t) = (u(t), u̇(t)) ∈ R

2 for all u ∈ V ,

t ∈ [0, 1]; ϕ(λ) = λ for all λ ∈ [0,∞[. Now Lemma 3.2 and Lemma 1.3 yield

|u(t)| =

∣

∣

∣

∣

∫ 1

0

G(t, τ)ü(τ) dτ

∣

∣

∣

∣

6

(
∫ 1

0

|G(t, τ)|2 dτ

)
1

2

(
∫ 1

0

|ü|2 dτ

)
1

2

6 9‖Ψ(u)‖L2([0,1])

and

|u̇(t)| =

∣

∣

∣

∣

∫ 1

0

∂G(t, τ)

∂t
ü(τ) dτ

∣

∣

∣

∣

6

(
∫ 1

0

|
∂G(t, τ)

∂t
|2 dτ

)
1

2

(
∫ 1

0

|ü|2 dτ

)
1

2

6 ‖Ψ(u)‖L2([0,1]).

Therefore

ess sup
t∈[0,1]

‖Φ(u)(t)‖ = max
{ |u(t)|

9
, |u̇(t)‖

}

6 ‖Ψ(u)‖L2([0,1]).

Moreover, choosing ̺ such that ‖r‖L1([0,1]) < ̺(1 − (9‖p‖L1([0,1]) + ‖q‖L1([0,1]))),

thanks to (c′) we have

∫ 1

0

sup
‖z‖X6ϕ(̺)

|f(t, z)| dt =

∫ 1

0

sup
‖z‖X6̺

|f(t, z)| dt

6 (9‖p‖L1([0,1]) + ‖q‖L1([0,1]))̺+ ‖r‖L1([0,1])

6 ̺.

At this point, the proof goes exactly as that of Theorem 3.3. �
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4. Conclusion

Papageorgiou [13] proved the existence of solutions for (P e) and obtained “state-

control” pairs for (Qm) with two boundary conditions u(0) = x0, u(1) = x1, where

I = [0, 1]. Moreover, in [8] Ibrahim-Gomaa consider the same problems with three

boundary conditions u(0) = x0, u(µ) = u(T ). Therefore Theorem 2.1 improves The-

orem 3.1 in [13] and Theorem 2 in [8], Theorem 2.2 improves Theorem 3 of [8] and

Theorem 3.1 improves Theorem 6.1 of [13] and that of [8]. Furthermore, Theorem 3.3

improves Theorem 2 of [7] with Theorem 1 of [10], while Theorem 3.4 improves The-

orem 3 of [10]. In [7] Gupta considers the differential equation ẍ(t) = f(t, x(t), ẋ(t)),

t ∈ [0, 1] with three boundary conditions x(0) = 0, x(η) = x(1) and in [10] Marano

studies the same problem and obtains Theorem 1 which improves Theorem 2 of

Gupta, while Theorem 3.4 improves Theorem 3 of [10].
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