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TWO-MODE BIFURCATION IN SOLUTION OF A PERTURBED
NONLINEAR FOURTH ORDER DIFFERENTIAL EQUATION

AHMED ABBAS MIZEAL AND MUDHIR A. ABDUL HUSSAIN

ABSTRACT. In this paper, we are interested in the study of bifurcation solutions
of nonlinear wave equation of elastic beams located on elastic foundations with
small perturbation by using local method of Lyapunov-Schmidt.We showed
that the bifurcation equation corresponding to the elastic beams equation is
given by the nonlinear system of two equations. Also, we found the parameters
equation of the Discriminant set of the specified problem as well as the
bifurcation diagram.

1. INTRODUCTION

It is known that many of the nonlinear problems that appear in mathematics
and physics can be written in the form of operator equation,

(1.1) F(x,\e)=b, z€0CX, beY, NeR"

where F' is a smooth Fredholm map of index zero, ¢ is small parameter indicate
the perturbation of the equation

F(z,\)=b, 2€0CX, beY, AXeR".

X, Y are Banach spaces and O is open subset of X. For these problems, the method
of reduction to finite dimensional equation,

(1.2) 0(¢Ne)=8, £€M, BeN

can be used, where M and N are smooth finite dimensional manifolds.

Vainberg [I1], Loginov [5] and Sapronov [6] [7] are dealing with equation
into equation by using local method of Lyapunov-Schmidt with the conditions
that, equation has all the topological and analytical properties of equation
(1.1) (multiplicity, bifurcation diagram, etc).

Definition 1.1. Suppose that F and F' are Banach spaces and A: E — F be a
linear continuous operator. The operator A is called Fredholm operator, if

1- The kernel of A, Ker(A), is finite dimensional,

2- The Range of A, Im(A), is closed in F,
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3- The Cokernel of A, Coker(A), is finite dimensional.
The number dim(Ker A) —dim(Coker A) is called Fredholm index of the operator A.

Definition 1.2. The discriminate set X of equation (L.1)) is defined to be the union
of all A = A for which the equation (|1.1)) has degenerate solution Z € O:

_ r -
F(z,\e)=b, Codim (Img—m(f,)\,e)) >0.

The oscillations and motion of waves of the elastic beams located on elastic
foundations can be described by means of the following PDE,
Py Oy D%y dy
a.92 a. )‘u y) = )
gz T gpt T Vgpz TPy g oAg) =Y
f/ - (y, Yus Yz Yzaxs ymatzm) .

where y is the deflection of beam, €1, €5 indicates the perturbation parameters,
1 = Ep(x) (€ — small parameter) is a continuous function and g(A,¢) is a generic
nonlinearity. It is known that, to study the oscillations of beams, equilibrium state
(w(z) = y(z,t)) should be consider which is describe by the equation
4 2
(1.9 T0 oY (B et el 4 g(0) = .
'[Z) — (U}, wl7w1/,w/1/’w////)

When g(\, @) = —kw?, (k is a parameter) [4], » = 0 and &1 = g2 = 0 equation
has been studied as follows: Thompson and Stewart [10] showed numerically
the existence of periodic solutions of equation for some values of parameters.
Sapronov [9] applied the local method of Lyapunov-Schmidt and found the bifurca-
tion solutions of equation when g(\, @) = w3, ¢ = 0 and €1, e5 # 0 with the
boundary conditions,
w(0) = w(n) =w"(0) =w"(r) =0
in his study he solved the bifurcation equation corresponding to the equation
and found the bifurcation diagram of a specify problem. When g(\, @) = w?,
€1 = g2 = 0 and ¢ # 0, equation has been studied with the boundary
conditions,
w(0) = w(1) =w"(0) =w"(1) =0

by Abdul Hussain [I]. He showed that by using local method of Lyapunov-Schmidt
the existence of bifurcation solutions of equation . When g(\, @) = w? + w3
¥ =0, and €1 = €2 = 0 equation was studied by Sapronov [8], in his work
he found bifurcation periodic solutions of equation by using local method
of Lyapunov-Schmidt. Also, he solved the bifurcation equation corresponding to
the equation and found the bifurcation diagram of a specify problem. When
g\, ) = w? + w?, ¥ # 0 and 1,62 # 0 equation was studied with the
boundary conditions,

w(0) = w(m) =w"(0) =w"(7) =0

by Abdul Hussain [2]. He found the bifurcation solutions of equation (1.3)) by using
local method of Lyapunov-Schmidt.
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In this paper we used the local method of Lyapunov-Schmidt to find two modes
bifurcation solutions of boundary value problem,
d*w d?w dw 9
(14) F—'_adz (ﬁ+€1$)w+52%+’w :’(/J,
w(0) =w(l) =w"(0) =w"(1) =0

where €1 and €5 are small parameters indicates the perturbation and ¢ = ép(z)
(¢ — small parameter) is a symmetric function with respect to the involution

I: () = $(1 — ).
2. REDUCTION TO BIFURCATION EQUATION

To the study problem (1.4) it is convenient to set the ODE in the form of
operator equation, that is;

@+a@+(ﬁ+€ T)w+ e d—w+w2
dz? da? ! > dx

Where F: E — M is nonlinear Fredholm map of index zero from Banach space F to
Banach space M, E = C*([0, 1], R) is the space of all continuous functions that have
derivative of order at most four, M = C°([0,1], R) is the space of all continuous
functions and w = w(z), z € [0, 1], A = (o, B). In this case, the bifurcation solutions
of equation is equivalent to the bifurcation solutions of operator equation

(2.2) F(’U),)\,El,Eg):’gb, I/)EM

It is clear that when e£; and €5 are both equal to zero, then the operator F
have variational property that is; there exist a functional V: @ — R such that
F(w, A,0,0) = grad; V(w, A, 0) or equivalently,
ov
ow
where ((-,-) g is the scalar product in Hilbert space H )and

1 7”2 "2 2 3
(w”) (w) w?w
A ) = ( - v ) dz .
V(w,,zb)/O 5 et —wy)de
In this case the solutions of the equation F(w, A,0,0) = ¢ are the critical points of
the functional V' (w, A, v), where the critical points of the functional V(w, A, ) are
the solutions of Euler-Lagrange equation

ov
ow

The bifurcation solutions of problem (I.4) when €; = €2 = 0 have been studied by
Abdul Hussain [I], in his work he showed that the discriminate set of problem (1
is given by the parameter equation 5(62 — q) = 0, where the parameters ﬁ and
q depend on « and . Also, he showed the existence and stability solutions of a
specify problem. If €1 and 5 are not both equal to zero, then the operator F' should
be lose the variational property, in this case we go to seek the existence of regular
solutions of problem in the plane of parameters by using local method of
Lyapunov-Schmidt. It is well known that by finite dimensional reduction theorem

(2.1) F(w, )\751,62) =

Z(w, A\, 0k = (f(w,\,0,0),h)y, YweQ, heE

1
(w, \,0)h = /( " 4o + Bw +wh dr = 0.
0
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the solutions of problem is equivalent to the solutions of finite dimensional
system with 2 = dim(ker F, (0, A)) variables and 2 = dim(Coker F,,(0, A)) equations,
so first step in this work we shall find this system and then we analyze the results
to find the bifurcation solutions of problem . Our purpose is to study the
bifurcation solutions of problem near the bifurcation solutions of the problem

d*w d*w 9
dat T gy Tt W=y
w(0) = w(1) = w”(0) =w’(1) =0.
The first step in this reduction is determines the linearized equation corresponding
to the equation (2.2), which is given by the following equation:
Ah=0, heEFE,
of d* d?

A:%(O,)M0,0):@“FOZ@"—,B, 1’6[0,1]7

h(0) = h(1) = h"(0) = h"(1) =0.
The solution of linearized equation which is satisfied the boundary conditions is
given by
ep = cpsin(prx), p=1,2,3,...
and the characteristic equation corresponding to this solution is
pirt —ap?nt + 5 =0.
This equation gives in the a3-plane characteristic lines £,. The characteristic lines
¢, consist the points (, 3) in which the linearized equation has non-zero solutions.
The point of intersection of characteristic lines in the af-plane is a bifurcation
point [8]. So for equation (2.2) the point («, 3) = (572, 47*) is a bifurcation point.
Localized parameters «, 8 as follows,

a=512+61, [B=4n+06y, 61, dare small parameters
lead to bifurcation along the modes
e1(z) = e sin(nzx), ea(x) = cosin(2mx)

where || €1 ||z=]| €2 |[z= 1 and ¢; = ¢z = v/2. Let N = ker(A) = span {e;, e },
then the space E can be decomposed in direct sum of two subspaces, N and the
orthogonal complement to N,

E=N®N*+, Nt={veE:vlLN}.

Similarly, the space M can be decomposed in direct sum of two subspaces, N and
the orthogonal complement to IV,

M=N@®N+, N'={veM:vlN}.

There exist two projections P: E — N and I — P: E — N1 such that Pw = u,
(I — P)w = v and hence every vector w € E can be written in the form

2
w=u+uv, uszieiEN, veNLT, &= (we).
i=1
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Similarly, there exist projections Q: M — N and I — Q: M — N~ such that
QF(w, A\ e1,e2) = Fi(w, A\ e1,€2),
(I —Q)F(w,\e1,e2) = Fa(w, A\, e1,€2),
and hence,
F(w,\e1,e2) = Fi(w, A\, e1,82) + Fa(w, A\ e1,e2),

Fi(w, )\ e1,e9) = ivi(w, \er,e9)e; € N, Fo(w, N\ eq,e9) € Nt
vi(w, \,€1,€2) = 2F1(w,)\,51,52),e¢>.
Since 1 € M implies that 1) = 1), +1)a, 11 = t1€1+tses € N, 9y € N+, Accordingly,
equation can be written in the form
QF (w, A\, e1,82) = 91,
(I —Q)F(w,\ e1,82) = 1o
or
QF (u+ v, A e1,82) =1,
(I—-Q)F(u+v,\e1,e2) = ).
By implicit function theorem, there exists a smooth map ®: N — N+ (depending
on \), such that, ®(w, A, e1,e2) = v and
(I —-Q)F(u+ ®(w, A\ e1,€2),\,€1,82) = g

To find the solutions of the equation F'(w, A, e1,€2) = ¢ in the neighbourhood of
the point w = 0 it is sufficient to find the solutions of the equation

(2.3) QF (u+ ®(w, \,e1,€2),\,€1,82) = 1.

Equation (2.3)) is called bifurcation equation of the equation (2.1)) and then we
have the bifurcation equation in the form

®(£aA751a52):¢17 52(51752)7 )\:(O[75>
where
@(f, )\,81,52) = Fl(u + <I>(w, )\,61,82), /\,61,62) .
Equation can be written in the form,
Flu+v,\e1,62) = Alu+v)+ Blu+v)+T(u+0v)
ZAU+€1JSU+EQU/ +u? 4.

where B(u+v) = e1x(u+v) + ea(u+v), T(u+v) = (u+v)? and the dots denote
the terms consists the element v. Hence

O(&, N\ e1,62) = Fi(u+wv, A e1,e2)

2
(2.4) = Z(Au+€1xu+52u'+u27ei>ei+ ce=
=1
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where ((-,-)y is the scalar product in Hilbert space L2([0, 1], R)). Equation
implies that

2
(2.5) Z(Au +erau+ e’ +ut e)e; - =tieg +taes.

i=1
After some calculations of equation (2.5)) we have the following result
(ALE] + A2l + Ay — Aubo)er + (Bi€i&a + Ba&y + Bs&a)ea =11 €1 + b €2

where A61 = 5[1()\)61, A62 = 6&2()\)62

5 8v/2 4 32v2 €1
A = —B = — A = —A = A: = — o) )\
1=gb 35 2= g 157 3 9 + a1 (N)
862 1661 882 1661 €1 -
A, = —2 By = —=2 — By = — A
1= 3 o 2T gn2 5=5 Tl

and éq, dg are smooth functions. The symmetry of the function ¢ (x) with respect
to the involution I: ¥(x) — (1 — ) implies that t5=0, then we have stated the
following theorem

Theorem 2.1. The bifurcation equation
@(67 >\7 €1, 62) = Fl (U + Q(w7 A? €1, 62)3 )‘7 €1, 52) - wl
corresponding to the equation (2.2) have the following form

T (ALE] + AsES + As& — Aulo — tl) 2 2 _
CICIPYES ( Bi&1& + Ba&i + Bséo +o(§]7) + O(|¢7)0(9) = 0

where £ = (&1,62), A = (As,A4, By, By,t1) € R, § = (61,82). The equation
O(&,\) =0 is symmetric contact equivalent to the equation

@Méﬂ=(§+gﬁM5f&@ﬁ%
g 2 €180 + A3&1 + Mo
where v = (A1, A2, A3, A\a, q1) € R°.

)+d@%+m£%m®=o

Contact equivalence implies that the study of the Discriminant set of the equation
O(&,A) = 0 in the space of parameters As, Ay, Ba, Bs, t1 is similar to the study
of the Discriminant set of the equation O (f ,7v) = 0 in the space of parameters
A1, A2, A3, Ay and ¢;. The discriminate X set of the equation O¢(£,7) = 0 is locally
equivalent in the neighborhood of the point zero to the discriminate set of the
following equation [3],

(G E+ME b +a
(2.6) 01667 = ( 261862 + A3 + Ao ) =0

this means that, to study the discriminate set of the equation © (5, v) =0 it is
sufficient to study the discriminate set of the equation ©1(&,~) = 0. By changing
variables,

N L
771—51-*-77 772—52-1—?,
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we have equation (2.6)) is equivalent to the following equation

2 2
N ni+n— b >
2.7 0,(n, \) = ~ f —0
2.7) 1(mA) <2771772+/\1771+)\2772—52

where n= (77177}2)5 X = (X13x27ﬁ1a62) € R4'

3. ANALYSIS OF BIFURCATION

From Section [2[ we note that the point a € E is a solution of equation (2.1) if
and only if

2
a= Zﬁiei + (7, A)

i=1

where 7 is a solution of the equation
(3.1) ©1(n,A) =0,

also, the Discriminant set of equation is equivalent to the Discriminant set
of equation . This section concerning the determination of Discriminant set
of equation and then the determination of solutions of equation as \
varied. There are two ways to determine the Discriminant set,

1. By finding a relationship between the parameters and variables given in the
equation (3.1)).

2. By finding the parameters equation, that is; equation of the form,
h’(j‘):O? X:(5‘17X27617[32)6}%4

such that the set of all A = (5\1, A2, B1, (B2) in which equation has degenerate
solutions that satisfy the equation h(j\) = 0, where h: R* — R is a map. In
this section we used the two ways, the first for the geometric description of the
Discriminant set and the second for the theoretical description of the Discriminant
set. Let

N+ M -4p

p1=5\1, b2 4 )
C 2X0f — 4N By B2 -5

p?)_Ta p4_fa

~ _5\1 ~ _5\%"‘5\%—16,81

pl_?’ P2—1—67

= MB AR = Xop

p3 = Pa=——F+—

4 16 ’
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o = 3N o =
1 — 9 ) 2 — 4 )
MAS 5\2ﬂ2 + X MA2B2 62
az = —2 1 2 ay = 2#2’
\ 32 432
by = S1P1 ol o B B3+ Nap — e
° 4 9 4 1 :
A 1-X2- 32
n= oo MR
A3 _35\ + ﬁ B MAofBs 2 + &
c3 = —2 22+ + A, cg = —* Prt 7 ;
4 2
and
d__nﬁ—ﬂda_Smei&
b 32 2 ’
~ ~ o~ 32372 N4
4y — TP = BM ol + Ae g 2
8 b
5 2 Y 5y 2 ~ 1273
4y — )\1251 _ )\1)\82ﬁ1 _ 3>\§52 + /\:1)’51 + Al);fﬂQ
4 )

k= \/d2 — Adyds .

Then the following result has been stated

Theorem 3.1. The Discriminant set of equation (3.1)) in the space of parameters
(A1, A2, B1, B2) is given by the following surface
[(4(d2B1 — d3) + dyda)s + 8d1d3)* + (4dy — di )y )2K?
— (2d2B) + d2 — 2d,ds)2d3 \2]?
—[(2d1 M1 — 8do)(4(d3B1 — d3) + dida)y + 8d1ds) + 2d3daN3]*k? = 0.
Proof. The set of singular points of the map (2.7)) is given by the equation
2’17% — 277% + ;\27]1 — :\1772 =0.
Hence, the surface can be found by solving the following system in terms of

(A1, 5\2,51,62). The system is

ni 4+ 0 =0,
(3.2) 2mne + A+ Aane + B2 =0,
277% — 27]% + )\2771 — )\17]2 =0.
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By using the substitution and subtracting between the equations of system (3.2])
we have the following three quartic equations

N3 + P13 + pans + pan2 +pa =0,
(3.3) n3 + D13 + Pan3 + P3nz + Pa =0,
n3 + a1ns + azn3 + asnz +as = 0.

Similarly, by using the substitution and subtracting between the equations of
system (3.3) we have the following two cubic equations

(3 4) bl'flg + bzﬁ% + b3772 +bs=0,
clng’ + cm% +c3me+c4=0.

System (3.4]) gives rise to the quadratic equation of the form dyn3 + dane + d3 = 0.
Solve this equation in terms of 72, (d1 # 0) and then substitute the result in the
third equation of system (3.2)) we have the required surface. (I

To study the Discriminant set of the equation (3.1]) it is convenient to fixed the
values of A1, Ao and then find all sections of the Discriminant set in the 31 3>-plane.
To do this, we used the following parameterization

B = 77% + 7]5 )
Ba = 2mne + M + Aame

and then we describe the Discriminant set of equation (3.1)) in the (;32-plane for
some values of A1, Ao with the number of regular solutions in every region in the
following figures, (all figures were drawn by Maple 11).

Figure 1: Describe the Discriminant set of equation (3.1) when A; = 0, Ay = 5.
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Figure 2: Describe the Discriminant set of equation (3.1)) when M =3, A =5.
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Figure 3: Describe the Discriminant set of equation (B.1) when A, = —3, Ay = 5.

[\

In figures (1), (2) and (3) the complement of the Discriminant set I' = R*\X
is the union of three open subsets I' = I'g U I'y U I'4 such that if \e Iy then
equation has no regular solutions, if A € T, then equation has two
regular solutions with topological indices 1, -1 and if X € Ty then equation
has four regular solutions with topological indices 1,-1,1,-1. If \; = Ay = 0 then
the complement of the Discriminant set is a union of two open subsets I' = T U Ty
in which we have zero or four regular solutions.

Acknowledgement. I would like to thank the referee for useful discussions and
suggestions, and for his comments.

REFERENCES

1

Abdul Hussain, M. A., Corner singularities of smooth functions in the analysis of bifurcations
balance of the elastic beams and periodic waves, Ph.D. thesis, Voronezh University, Russia.,
2005.

[2] Abdul Hussain, M. A., Bifurcation solutions of elastic beams equation with small perturbation,
Int. J. Math. Anal. (Ruse) 3 (18) (2009), 879-888.

[3] Arnol’d, V. 1., Singularities of differential maps, Math. Sci. (1989).
[4] Ishibashi, Y. J., Phenomenological theory of domain walls, Ferroelectrics 98 (1989), 193-205.

[5] Loginov, B. V., Theory of Branching nonlinear equations in the conditions of invariance
group, Fan, Tashkent (1985).



TWO-MODE BIFURCATION 37

6

Sapronov, Y. L., Regular perturbation of Fredholm maps and theorem about odd field, Works
Dept. of Math., Voronezh Univ. 10 (1973), 82-88.

Sapronov, Y. 1., Nonlocal finite dimensional reduction in the variational boundary value
problems, Mat. Zametki 49 (1991), 94-103.

Sapronov, Y. 1., Darinskii, B. M., Tcarev, C. L., Bifurcation of extremely of Fredholm
functionals, Voronezh Univ. (2004).

Sapronov, Y. L., Zachepa, V. R., Local analysis of Fredholm equation, Voronezh Univ. (2002).

7

8

[9
[10] Thompson, J. M. T., Stewart, H. B., Nonlinear Dynamics and Chaos, Chichester, Singapore,
J. Wiley and Sons, 1986.

[11] Vainbergm, M. M., Trenogin, V. A., Theory of branching solutions of nonlinear equations,
Math. Sci. (1969).

A. A. MI1zEAL: UNIVERSITY OF THI-QAR,

COLLEGE OF COMPUTER SCIENCE AND MATHEMATICS,
DEPARTMENT OF MATHEMATICS, THI-QAR, IRAQ
E-mail: aam_mb@yahoo.com

M. A. A. HussAIN: UNIVERSITY OF BASRAH,

COLLEGE OF EDUCATION, DEPARTMENT OF MATHEMATICS,
BasraH, IRAQ

E-mail: mud_abd@yahoo . com


mailto:aam$_$mb@yahoo.com
mailto:mud$_$abd@yahoo.com

		webmaster@dml.cz
	2013-09-19T16:04:16+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




