Archivum Mathematicum

Alongkot Suvarnamani; Mongkol Tatong

An extragradient approximation method for variational inequality problem on fixed
point problem of nonexpensive mappings and monotone mappings

Archivum Mathematicum, Vol. 48 (2012), No. 1, 45--59

Persistent URL: http://dml.cz/dmlcz/142091

Terms of use:

© Masaryk University, 2012

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
O with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz


http://dml.cz/dmlcz/142091
http://project.dml.cz

ARCHIVUM MATHEMATICUM (BRNO)
Tomus 48 (2012), 45-59

AN EXTRAGRADIENT APPROXIMATION METHOD
FOR VARIATIONAL INEQUALITY PROBLEM
ON FIXED POINT PROBLEM OF NONEXPENSIVE MAPPINGS
AND MONOTONE MAPPINGS

ALONGKOT SUVARNAMANI AND MONGKOL TATONG

ABSTRACT. We introduce an iterative sequence for finding the common ele-
ment of the set of fixed points of a nonexpansive mapping and the solutions of
the variational inequality problem for tree inverse-strongly monotone mappings.
Under suitable conditions, some strong convergence theorems for approxima-
ting a common element of the above two sets are obtained. Moreover, using
the above theorem, we also apply to finding solutions of a general system of
variational inequality and a zero of a maximal monotone operator in a real
Hilbert space. As applications, at the end of paper we utilize our results to
study the zeros of the maximal monotone and some convergence problem for
strictly pseudocontractive mappings. Our results include the previous results
as special cases extend and improve the results of Ceng et al., [Math. Meth.
Oper. Res., 67:375-390, 2008] and many others.

1. INTRODUCTION

Let H be a real Hilbert space with inner product (-,-), and norm || - ||, and
respectively and let C' be a closed convex subset of H. Let F' be a bifunction of
C x C into R, where R is the set of real number. The equilibrium problem for
F:(C xC — Risto find x € C such that

(1.1) F(z,y) >0, Vz,yeC.

The set of solution of is denoted by EP(F). Give a mapping T: C' — H, let
F(x,y) = (Tz,y—z) forall 2,y € C. Then z € EP(F) if and only if (Tx,y—x) > 0
for all y € C, z is a solution of the variational inequality. Numerous problems
in physics, optimization, and economics reduce to find a solution of . In
1997 Combettes and Hirstoaga introduced an iterative scheme of finding the best
approximation to initial data when EP(F) is nonempty and proved a strong
convergence theorem.
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Let A: C — H be a mapping. The classical variational inequality, denote by
VI(A,C), is to find z* € C such that

(Azx*, v —2*) >0

for all v € C. The variational inequality has been extensively studied in the
literature. A mapping A of C into H is called a-inverse-strongly monotone if there
exists a positive real number « such that

(Au — Av,u —v) > a || Au— Av ||?

for all u,v € C. We denote by F(S) the set of fixed point of S. For finding an
element of F(S) NVI(A,C), Takahashi and Toyoda [I6] introduced the following
iterative scheme:

(1.2) Tna1 = QnTp + (1 — ap)SP(x, — A\yAzy,)

for every n =0,1,2,..., where 2o = z € C, «a, is a sequence in (0, 1), and X, is a
sequence in (0, 2«). Recently, Nadezhkina and Takahashi [I0] and Zeng and Yao
[24] proposed some new iterative schemes for finding element in F(S)NVI(A,C).
In 2006, Yao and Yao [22] introduced the following iterative scheme.

Let C be a closed convex subset of real Hilbert space H. Let A be an a-inverse-
-strongly monotone mapping of C' into H and let S be a nonexpansive mapping of
C into itself such that F(S)NVI(A,C) # 0. Suppose 1 = u € C and {z,}, {yn}
are give by

(13) {yn = PC(z, — \yAx,,)

Tn+1 = Cpl + ﬁnxn + A/nSPC(yn - )\nAyn)

where {an}, {8.}, {7a} are three sequences in [0,1] and {\,} is a sequenced in
[0, 2cr]. They proved that the sequence {x,} converges strongly to common element
of the set of fixed point of a nonexpansive mapping and the set of solutions of the
variational inequality for a-inverse-strongly monotone monotone mappings under
some parameters controlling condition. Moreover, Takahashi and Takahashi [15]
introduced an iterative scheme by the viscosity approximation method for finding
a common element of the set of solution of an equilibrium problem and the set
of fixed points of a nonexpansive mapping in a Hilbert space. They also proved a
strong convergence theorem which is connected with Combettes and Hirtoaga’s
result [4] and Wittmann’s result.

In this paper motivated by the iterative schemes, we will introduce a new
iterative process below for finding a common element of the set of fixed point of
a nonexpansive mapping, the set of solutions of an equilibrium problem, and the
solution set of the variational inequality problem for an a-inverse-strongly monotone
monotone mappings in a real Hilbert space. Then, we prove a strong convergence
theorem which is connected with Yao and Yao’s result [22] and Takahashi and
Takahashi’s result [15].

A mapping A: C — H is called a-inverse-strongly monotone if there exists a
positive real number a > 0 such that

(Az — Ay,z — ) > oAz — Ay|]?, Ve,y € C
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(see Browder and Petryshyn 1967 [2]; Liu and Nashed 1998 [9]). It is obvious
that every a-inverse-strongly monotone mapping A is monotone and Lipschitz
continuous. A mapping S: C' — C is called nonexpansive if

1Sz =Syl < llz —yll,  Va,yeC.

We denote by F(S) the set of fixed points of S and by Pc the metric projection of
H onto C. Recall that the classical variational inequality, denoted by VI(A,C), is
to find an 2* € C such that

(Az*,v—2") >0, VzxeC.

The set of solutions of VI(A, C) is denoted by I'. The variational inequality has been
widely studied in the literature; see, e.g. [1l, [§], [20], [21], [24] and the references
therein.

For finding an element of F'(5)NT', Takahashi and Toyoda (2003) [I6] introduced
the following iterative scheme:

(1.4) Tyl = QpTpn + (—an)SPo(zy + A\Azy,),

for every n =0,1,2,..., where 2o = z € C, {a,,} is a sequence in (0,1), and {\,}
is a sequence in 0,2a. On the other hand, for solving the variational inequality
problem in the finite-dimensional Euclidean space R™, Korpelevich (1976) [7]
introduced the following so-called extragradient method:

ro=x € C,
(15) Yn = PC(mn - )\nAmn) P
Tni1 = Po(xn — AAyn)

for every n =0,1,2,..., where A\, € (0, ) Recently, Nadezhkina and Takahashi
(2006) [10] and Zeng and Yao (2006) [25] proposed some iterative schemes for
finding elements in F(S) N T by combining and (L.5). Further, these iterative
schemes are extended in Yao and Yao (2007) [22] to develop a new iterative scheme
for finding elements in F(S)NT.

Consider the following problem of finding (z*,3*) € C x C such that (see cf.
Ceng et al. (2008) [3]).

(1.6) (MNy* +2* —y*,xz —x*) >0, Ve e C,
’ (uBz* +y* —a*,x —y*) >0, Ve e C,

which is called a general system of variational inequalities where A > 0 and p > 0
are two constants. In particular, if A = B, then problem (1.6 reduces to finding
(z*,y*) € C x C such that

(MNAy* + 2* — y*,x — a*)
(pAz* +y* —x*, . — y*)

Ve e C,
Ve C,

which is defined by Verma (1999) [I7] and Verma (2001) [1§], and is called the new
system of variational inequalities. Further, if 2* = y*, then problem (1.7]) reduces
to the classical variational inequality VI(C, A).

>0,
1. -
(L.7) >0,
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In 2008 Ceng et al. [3], introduced a relaxed extragradient method for finding
solutions of problem . Let the mappings A, B: C' — H be a-inverse-strongly
monotone and [-inverse-strongly monotone, respectively. Let S: C — C be a
nonexpansive mapping. Suppose x; = u € C and {x,} is generated by

(1.8) {yn = Po(xy — pBxy) ,

Tpt+1 = QR + ann + ’VnSPC(yn + )‘nAyn) P

where A € (0,2«), u € (0,20), and {an}, {Bn}, {1} are three sequence in [0, 1]
such that au, + Bn + v, = 1,Vn > 1. First, problem (|1.6)) is proven to be equivalent
to a fixed point problem of nonexpansive mapping.

2. PRELIMINARIES

Let C be a nonempty closed convex subset of a real Hilbert space H. For every
point = € H, there exists a unique nearest point in C, denoted by Pcx, such that

lo - Poxll < lz—yll, VyeC.
Pc is call the metric projection of H onto C'.

Lemma 2.1 (see Zhang, Lee and Chan [25]). The metric projection Pc has the
following properties:

(i) Po: H — C is nonexpansive;
(ii) Po: H — C is firmly nonexpansive i.e.,

||ch—Pcy||2§<ch—PCy,x—y>, vayGH;
(iii) for each x € H,
z=Po(z) e (z—22—y)>0=, VyeC.

Let C be a nonempty closed convex subset of a real Hilbert space H. Let A,
B, C: C — H be three mappings. We consider the following problem of finding
(x*,y*,2*) € C x C x C such that

(MNz*+2* —z* 2 —a*) >0, Ve e C,
(2.1) (uBy* + z* —y*,x — z*) > 0, Vo e C,

(tCx* +y* —a*,x —y*) >0, Ve e C,
which is called a general system of variational inequalities where A > 0, u > 0 and
7 > 0 are three constants.

In particular, if A = B = C, then problem (2.1)) reduces to finding (z*, y*, z*) €
C x C x C such that

(MNz* +a* — 2" —2*) >0, Ve e C,
(2.2) (WAY* + z* —y* o —2z*) >0, Ve eC,
(TAz* +y* — 2,2 —y*) >0, Ve e C.
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Lemma 2.2. For given z*, y*, z* € C x C x C, (z*,y*,2z*) is a solution of
problem (2.1)) if and only if x* is a fixed point of the mapping G: C' — C defined
by
G(z) = Po{Pc|[Pc(z — AAz) — uBPc(z — M\Az)]
— 7CPo[Po(z — AMAz) — uBPc(z — MAz)]}, VreC,
where y* = Po(z* — MAz*).

Lemma 2.3 (see Osilike and Igbokwe [I1]). Let (E,(-,-)) be an inner product
space. Then for all x, y, z € E and «, 3, v € [0,1] with a + f+ v =1, we have
law+ By +2l* = allz]*+ Bllyll* +1l21* — aBlle —yl* - ayllz = 2|* = Bylly —2|1*-

Lemma 2.4 (see Suzuki [I4]). Let {z,} and {y,} be bounded sequences in a
Banach space X and let {3,} be a sequence in [0,1] with 0 < liminf,, o B, <

limsup,,_, . Bn < 1. Suppose xp11 = (1 — Bn)Yn + Bnxyn for all integers n > 0 and
limsup,, o ([[¥n+1 = Ynll = [[Tns1 — zal]) < 0. Then, limy, . ||yn — 2nl| = 0.

Lemma 2.5 (see Xu [19]). Assume {a,} is a sequence of nonnegative real numbers
such that

an+1§(1_an)an+6na TLZO

where {a,} is a sequence in (0,1) and {0,} is a sequence in R such that
(i) 225 an = o0
(i) limsup,,_, 2—2 <0 or Y07 10, < oo.

Then lim,, ., a, = 0.

Lemma 2.6 (Goebel and Kirk [5]). Demi-closedness Principle. Assume that T is
a nonexpansive self-mapping of a nonempty closed convexr subset C' of a real Hilbert
space H. If T has a fived point, then I — T is demi-closed; that is, whenever {x,}
is a sequence in C converging weakly to some x € C (for short, x, — x € C), and
the sequence {(I —T)x,} converges strongly to some y (for short, (I —T)x, — y),
it follows that (I — T)x =vy. Here I is the identity operator of H.

The following lemma is an immediate consequence of an inner product.
Lemma 2.7. In a real Hilbert space H, there holds the inequality
o +yl* < ll2l* + 2{y, 2 +y), Vao,y€H.
Remark 2.8. We also have that, for all u, v € C' and A > 0,
I(Z = AA)u — (I = XA)w|* = [|(u — v) = A(Au — Av)||?
= |lu —v||® = 2\ (u — v, Au — Av) + \?|| Au — Av|)?
(2.3) < lu —v||* + A\ = 2a) || Au — Av||*.

So, if A < 2a, then I — AA is a nonexpansive mapping from C to H.
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3. MAIN RESULTS

In this section, we introduce an iterative precess by the relaxed extragradient
approximation method for finding a common element of the set of fixed points of
a nonexpansive mapping, the set of solutions of an equilibrium problem, and the
solution set of the variational inequality problem for two inverse-strongly monotone
mappings in a real Hilbert space. We prove that the iterative sequences converges
strongly to a common element of the above three sets.

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert
space H. Let the mapping A, B, C: C — H be a-inverse-strongly monotone,
B-inverse-strongly monotone and y-inverse-strongly monotone, respectively. Let S
be a nonexpansive mapping of C into itself such that F(S)NQ #£ (. Let f be a
contraction of H into itself and given xo € H arbitrarily and {x,} is generated by

F(up,z) + %(w — Up, Up — Tp) >0
(31) Yn = (1 - ’Yn)un + ’anc(un - AnAun)
Tnit1 = (1 — Qp — ﬂn)xn + anf(yn) + ﬁnSPc(mn - AnAyn)
where X\, € (0,2a), p, € (0,28), 7, € (0,2y) and {an}, {Bn}, {7n} are three
sequences in [0,1] such that
<i> Oén"’ﬁn""'yn =1,
(ii) limy,—oo ay = 0,1limy, 00 6, = 0 and Y oo | @ = 00,
(iii) 0 < liminf, o By <limsup,, . Bn < 1.
Then {x,} converges strongly to T € F(S) N, where T = Pp(s)naf(z).

Proof.
St;)[()) 1. z,, is bounded. Indeed, put ¢, = Po(x, — \yAy,). Let 2* € F(S) N Q.
Then z* = Po(a* — A\, Ax™).
tn —x*|| = [|[Po(zn — AnAyn) — Po(z™ — A\ Az™)||
< ||(xn - )‘nAyn) - (x* - )‘nAx*)H
(3.2) < o — 7))+ Anll Ay — Az"]|.
We observe that

1 (yn) = 2% = £ (yn) = f(z7) + f(z") — 2]
<fCyn) = F@EO + ([ (27) — 27| < allyn — 27| + [[f(=7) — 27|
= a[[[(1 = ) (un — %) + 0 (Po(un — A Aun)
= Po(a® = A A2")|] + 1 f(2") = 27|
< af(1 = yn)llun — 2|+l (un — AnAug) — (27 — Ay Az™)]]
I @) — 2" < a(1—ya)llun — 2] + 90 ([lun — 27|
+ Aol Aup = Az"[[)] + [ f (") — 27|
= allup — ™| + aypAn| Aup — Az + || f(27) — 27|
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By (3.2) and, we obtain

[Znt1 =2 = (1 = an = Ba)Zn + @ f(Yn) B Sty — z*||

< (L —an = Bp)llzn — 27| + anll f(yn) — 2" + Bulltn — ™|

= (1 —an = B)llwn — ™[l + anfallun — ™[ + ava || (Au, — Az™)|
1) = 2] + Bulllen — 2| + AallAys — Az*|]]

= (1= an = Ba)llzn — 2" + anallun — 2*|| + anayn || (Au, — Az")||
+ ol f(@) — 2" + Bullzn — 27| + BuAnllAyn — Az™||

= (1= an)llzn — 2" + anallun — 2°|| + anayn || (Aun — Az”)||
+ an || f(*) = 2*|| + Bun|| Ayn — Az*||

< max {|Jzn — 2", | f(@*) — 2*(|} + anallu, — ¥

+ apal|Auy, — Az + B, || Ay, — Az™|| .

Therefore, ||z, is bounded, the set {t,}, {St,}, {Az,} and {Ay,} are also boun-
ded.

Step 2. lim,, o ||Znt1 — 2n]| =0

[tn41 = tull = [[Pc(@nt1 — Ans1AYnir) — Po(@n — AnAys )|
< M@nt1 — A1 AYnt1) — (@0 — AnAyn)||
= H(xn+1 - )‘n+1Ayn+1) - (xn - )‘nAyn) + A1 Ay, — )‘n+1Ayn)”
= H(anrl = A1 AYnt1) = (Tn — A1 AYn) + (AnAyn — >\n+1Ayn)”
< @nsr = AnprAyns) = (@0 = AnprAyn) |+ A = Anga|[[ Agn |
= [|Znt1 = A1 AYns1 — Tn + Anp1Aynl| + [An — Anga ||| Ayn |
(3.3) < znt1 — 2all + 1A — Anga | Ayn |

and

[9n+1 = ynll = (L = Ynt1)tns1 + Yns1Po(Uns1 — Angp1Atin1)

= (1 = Y1) un + 1 Po(un — AnAuy) ||

= H(l - 'Yn+1)un+1 - (1 - 'Yn)un + 'Yn+1PC(Un+1 - >‘n+1Aun+1)
+ Y Po(un — AnAun) ||

= [Un+1 = Ynt1Unt1 — Un + VnUn + Yn41Un — Ynt1ln
+ Y1 P (Uns1 = Angp1Atin 1) + Y1 Po(un — AnAug)
+ Yn+1Po(un — ApAuy) — v Po(un — A Auy,) ||

= [[(1 = Yng1) (Unt1 — Un) = (Y1 — Yn)Un
+ Yni1 (Pc(unﬂ — Ant14unt1) — Po(uy, — )\nAun))
+ (Yn+1 — ) Po(un — AnAuy) ||
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= [|(1 = Yn41)(Un+1 — un) = (Yn41 — Yn)tn
+ Y1 Po(Uny1 — Ang1AUng1) — Ynr1Po(un — AnAuy,)
+ Yn+1Po(tn — AnAun) — Yo Po(tn — AnAuy) ||
= H(l - 7n+1)(un+1 - un) - (7n+1 - 'Vn)<PC(un — M Auy) — un)
+ Tn+1 (PC(“nJrl = A1 Auny1) — PC(un)‘nAun)) |
< (@ =y ) [ (g1 = un) | + [msr = nlAnl| Aun|
+ Y1 (||“n+1 — Unl| + Ans1[[Aunia ]l + >‘n||Aun||)
< Muntr = un)ll + AnllAun| + Ansa[[Avuna ]l + An || Aun |
= [[(Unt1 = un) |l + 2Anl| Aun || + Ans1 | Atina || -

Define a sequence z,, by
Tnt+l = OnTn + (1 - Qn)zn n >0
where 0, = lay,, — B, n > 0. Then we have

Tn+2 — On+1Tn+1 Tn+1 — Ondn

T T T e 1o,
_ On+1Tn+1 + an,+1f(yn+1) + ﬂn+1Stn+l — On+1Tn+1
1 - QnJrl
_ OnTn + anf(yn) + ﬂnStn — OnTn
1- On
_ an+1f(yn+1) + ﬁn+15tn+l _ anf(yn) + 6nStn
]- - Qn+1 ]- — On
= O )+ s 0y, + sy
1_Qn+1 " 1_Qn+1 " 1_Qn " 1_Qn "
Apt1 ﬁn+1 Qp 1 —an—on
=l L Sty — " f () + —— 2y
L T R A WAL S
Qp41 ﬂn-&-l
= + — 5t
1- Qn+1f(yn+1) L=gpp "
(679 Oy 1- On
— St — St
1_an(yn)+1_gn nT g0
On41 ﬁn-‘rl Qn Qn
= + ———-5t — + St, —St
1 Qn+1f(yn+l) 1— Oni1 n+1 1_an(yn) 1— on n n
On41 ﬂn-‘rl Qn
Y R S
1-— On+1 ( TL+1) 1- On+1 s 1-—- On ( n)

« 1-—
LM gy (ﬂ)Stn
1—o0n 1- On+1
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Qp41 ﬁn+1 n
179n+1f(y +1) 1— oni1 +1 1*an( )
+ S, — (7@”1 - a"+1>Stn

1— o0, 1—on41

Qn1 Bt an

_ . St, n
1_Qn+1f(y +1)+1_Qn+1 +HT o nf(y)
Pt gy o On g Ot g

1- On+1 — On 1- On+1

On41 o ﬁn 1
1_Q++ F(Ynt1) — 1 f(yn) + 1_;+1(Stn+1*5tn)

(077 Qp41
+ ( - )Stn
1- On 1—- On+1

(8% 87
——— (St — Sty) + ( r_ _ _oh )Stn
0 l—0n 1—0n11

= T (Fynin) = () — (T ) f ()
+1

/6n+1 7% Qi1
3.4 + L (St — St) + ( _ )Stn.
(3.4) 1—0n+1( +1 ) T S
Intl Q1
lZn41 — znll < 17||f(yn+1) flyn)ll + ’ (yn)||
On 1-
ﬂn—&-l Qi1
t1- || 1 — St + 1 -
O[OZn+1 ’ Qpt1 O ‘
S T gy 10 n - )| — ISty
*1—@L”y“ wll+ T 1_Qn(nfw)nu )
ﬁn-‘rl
+ ———|tns1 — tn
1— Ont1 H +1 H
Qo
< 17“ [ltnt1 = tnll + 220 | Aun || + Ang1]| At 1]
— On+1
On+1 (a7
ot = (1 ) - 1St
p
T [fnen = 2all + ha = A [ Agal]
— On+1

S wng1 — znll + 1A = g1l Ayall
(07705

«
| T - (1) - D5t
o
1- On+1

[”Un—H = Un || 4+ 2An || Aun || + )‘n+1||AUn+1H]



54 A. SUVARNAMANI AND M. TATONG

which implies that

i1 = Zall = s = @all < An = Mg Aga
Qn41 Qn
— —||St
o 1 | ()l = 1St
ax
gy — w4+ 2o At 4+ A [ At ]
— On+1

This together with (ii) and (v) imply that

limsup(||zn41 = 2nll = [Znt1 — @al)) <0

n—oo

by lemma, we obtain ||z, — || — 0 as n — co. Consequently

(3.5) T (e = 2all) = T (1= 00)l|20 — 2 = 0.

Step 3. lim,, o0 [|STn — || = limy o0 [|Str — L]

[yn = tall = [|(1 = ) (Pottn — Po(@n — AnAyn))
+ Y (Pc(un — MAuy,) — Po(x, — )\nAyn)) H
< (1= )| Poun — Pol(zn — AnAy,)||
+ %LHPC(un — MAuy,) — Po(x, — )\nAyn)H
< tn = (@n = A Ayn)|| + || (wn — AnAug) — (20 — XAy ||
= [[(un — @0) + A Ayn|| + || (Un — z0) + (=An) (Au, — Ayy)||
< lun = znll + AnllAynll + [Jun — zpl| + Anl|Avp — Ayn|| — 0

th - xn” = ”tn —Yn +Yn — mnH
< th _ynll + ||yn - an —0

and hence

1Sy = Tngall = [1Syn — Stn + Stn — T |
= [[(Syn — Stn) + (St — zpia)|
< |[Syn — Stall + [[Stn — Tnia|
< lyn = tall +[[Stn — [(1 —ay = Bn)rn + anf(yn) + ﬂnStn] I
< lyn = tall + (1 — an = Bo)[|Stn — 2all + anllStn — f(yn)ll
= [[yn—tnll + anllStn— f(yn) |+ (1 —n—B,)||Stn — S2p + Sy — 24|
< yn = tall +anllStn = flya)ll+(1 = an = Ba) [[1Stn = Swnll + [Szn — zall]
< lyn = tall + anllStn = fyn)ll + It — 2nll + (1 = Ba)[[Szn — 20|
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thus from the last three inequalities we conclude that
[S2n — 2p|| = |ST0 — Syn + SYn — Tnt1 + Tns1 — Tl

< lzn = Yall + 1Syn — Zptall + (|01 — 24|

< |lzn = Yull + [1Syn — [(1 — ap = Bn)Tn + anf(yn) + ﬂnStn] [
+ |Zn+1 — 24|

< lan = ynll + (1 = an = Bu)l1Syn — all + anllSyn — fyn)
+ BallSyn — Stull + |Tns1 — znl

< lzn = ynll + llyn — tall + anllSyn — f(yn)ll
+ (1= an — Bn)|Syn — S + Sy, — 20|l + |Tnt1 — x|

< lzn = ynll + 1yn = tnll + nllSyn — f(yn)ll
+ (1= an = Bu)[I1Syn = Szall + 120 = znll] + [|2nt1 — 24

= |20 — yull + [lyn — tall + [l Syn — f(ya)ll
+ (1 —an = Bn)[[Syn — S|
+ (I —an = Bu)lISzn — znll + [|Tn+1 — 24|

< len = ynll + lyn = tnll + anllSyn — f ()l + lyn — 2l
+ (1 = Bu)llSzn — anl + l2ntr — 24l

<20z = ynll + lyn — toll + anllSyn — f(yn)ll
+ (L= Bu)S2n — @all + [|2ns1 — 2nl|

since
0 <liminf g, <limsupf, <1, ISz, — x| — 0.

n—oo n—00

Consequently
1St — tn|| = ||Stn — Sxp + Sy, — T + Tpy — 0|
< 1Sty = Szl + [|Szn — 20l + llzn — ta|
<|ltn — @l + 1S70 — ol + (|20 — tal|

=2[[tn — |l + |Szy — 20| — 00

Step 4. limsup,, . (f(q) — ¢,z — q) < 0. Pick a subsequence x,,, of x,, so that
limsup(f(q) = ¢,z — q) = limsup(f(q) = ¢, xn; = q) -

Let z,, = 2 € C. Then Let z,, = & € C. Then
limsup(f(q) — ¢, zn — ¢q) = limsup(f(q) — ¢, & — q)

n—oo n—oo

to show (f(q) —¢,2 —gq) <0, and to show & € F(S)NQ. By Lemma[2.2]and Step 3,
we have £ N Q. Let

Av+ Nev, if veC,
Tv =
0, if v&C.
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Then T is maximal monotone and 0 € Tw if and only if v € 2. Let (v,w) € G(T).
Then w € Tv = Av+ Newv and hence w — Av € Newv. Therefore (v —u, w— Av) >0
for all w € C. Taking u = x,,, we have

(v — &, w) = liminf(v — x,,, w) > liminf{v — x,,, Av)

11— 00

= liminf[(v — y,, Av — Az, + (U — 2y, Axy,))

> liminf(v — a,,, Az,,) > liminf(v — z,,, Az,) >0

11— 00 11— 00

and so (v — Z,w) > 0. Since T is maximal monotone, & € Q. Thus & € F(S) N Q.
Therefore by property of the metric projection, limsup,, . (f(q) — ¢,z, — ¢) < 0.

Step 5. limsup,, . ||z, — q|| = 0 where ¢ = Pp(s)naf(q) we get

[Znt1 = gqll* = (1 = an = Bu) (@0 — @) + n(f(yn) — @) + Bu(Stn — 9)|1?
< (1 = an = Bn)(@n — @) + Bn(Stn — @)|?

+ 200 (f(Yn) — .1 — an = Bu(@n — @) + B(stn — q) + anf(yn) — q)
< (1 = an = Bn)(@n — @) + Bultn — QI + 200 (f(Yn) — ¢, Tny1 — @)
< [(1 = an = Bu)llzn — all + Balltn — all]” + 200 (F (yn) — @, T2 — q)
= [(1 = an = B) s = all + Bull Po(2n — AnAya) — q]”

+ 200 (f(Yn) — ¢, Tny1 — )
< [(1 = an = Ba)llzn — all + Ballzn — all + AnAyn)]®

+ 20 (f (Yn) — ¢ Tpt1 — q)
= [(1 = )|z = gl + AnAyn)* + 200 [(F(yn) = f(2n), Tns1 — )

+ (f(zn) = (@) n1 — @) + (f(@) — @ Tny1 — )]
< (1= an)?en = gl” + 201 = an)llzn — ¢ A Ayn + AnAyn)?

+ 2ap [allyn — zalllznt1 — qll

+ allzn — gl — gl + (f(@) — ¢ Zns1 — Q)]
= (1= an)?lzn — ql® + A Ayn (21 — ) |2 — gl + XnAya)

+ 2ap [allyn — zallllzn1 — gl

+allzn, = qll|lzner — gl + (F(@) = ¢, Tny1 — @)
= (1= an)?[lzn — ql” + aanllz, — gl* + aanllzag — gl

+ 20 [@lyn — wallllzns — all + (F(9) — ¢ Tnsr — )]

+ A Ayn 2llzn — qll + X Ayn)

which implies that

(1= acy)||zni1 —gl” < ((1 — )’ + aan) 120 — gl + 20 [aHyn — o ||zt — 4|
+ <f(Q) —q;Tn+1 — Q>] + AnAyn(QHxn - (JH + AnAyn)
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(1 — an)Q + aop 2

e —dF+ ——
1—ao, 1— ooy

Ay,
(@) = @@ — @] + T2 2 — gl + MaAyn)

70

Hxn-i-l - q”2 < [O‘Hyn — Zn|| ||xn+1 - q”

2 2 2 2_2 2
= (1- 20, + 200, + (T2 RO
1-—aa,

2a
+ a"an [allyn — ol l2n1 — all + (f(0) = ¢, Tns1 — @)
/\nAyn
2 n - )\nA n
+717aan(llfc qll + AnAyn)
a? + 20202 — 2002
(1-20 ~ @)y s e — gl
+ 2% [allgn — ol [nss — gl + (@) = @ Tnsr — )]
1— aa, Yn n n+1 q q 4, Tn+1 q
AnAyn
AnIn 9\, — A Ay
+1_aan(llw qll + A Ayn)

a? 5
< (1—2(1—04)an71 >||xn—q\|
— aay,

200,

T aan [llyn — znllllznis — all + (f(q) — ¢ Tnt1 — )]
AnAyn
2 n - )\nA n
+ 220 3l — gl + A Apa)

1
(1—-a)(1—aay,)

= (1-2(1 - a)ay)llzn — q* +2(1 — @)ay,

(67
% | St lwn = al* + allgn = wall lons1 = all + (£(@) = g 2ns1 — )]
AnA
+ (2], — gl + AnAyn)
— oy,

but limy, oo a, = 0 and Y~ 1 2(1 —a)a, = oo. Since limsup,, _, o (f(q) — ¢, Tp+1—
q) <0, limy,— oo ||yn — 2nl = 0 and ||z, — ¢|| is bounded. We imply that

1
i
lfflsolip (1-a)1 - aay)

«
x [ S an = all? + allyn = @alllznss = all + (£(@) = ¢, 2011 — @] <0

and
— 1
> T MY 2llzn — gl + AnAyn) < o0,
—1—aay,
by Lemma [2.1] we conclude ||z, — ¢| — 0. O
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