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_In [1] the following problem was given:
Prove that every ring R which is the set theoretical union of a finite number of
commutative fields F; (1 = 1, 2, , m) 18 a commutative field.

However, the direct sum of ‘two prime fields of characteristic 2 gives us
a simple exa.mple of a ring which shows that the statement which has to be .
proved is not true. Of course, addltlonal conditions may be given to make
the problem correct.

1. Thus, if supposed that all covering fields §; have' the same unit element
(see [2]) it follows in an easy way that R is a division ring. Now the commuta- .
tivity law for multiplication may be proved just as it is done in paragraph 2
of this paper.

But the same is true if R is supposed to be mﬁmte Realy, if L is a left 1deal
of R, L « O, then for every z€ L, z # 0, z € ; we have §; = Fxz C L and
thus every left ideal L + O of R isaset theoretical union of some finite number
of the given fields §;. Thus both chain conditions for left ideals are satisfied
and because no left ideal may be nilpotent it follows that R is semisimple.

Now R may be decomposed into a direct sum of minimal left ideals

R=X,+X, +... + X,

If w=u +u +. —}—u,;éO and v =9, +v, 4+ ... + v %0 (with
u; € X;, v;e X; for every J=12, ..., ) belong to the same field {¥; then
u; #0< v; #0foreveryj =1, 2, ..., r,for otherwise no w € ; can satisfy.
wy = v or wv = u. Now if some X,, say X, is infinite and if r > 2 we choose
‘a fixed z; € X,, z, # 0 and we form all sums of type =, + 2, where z, runs .
_in X,. Distinct sums must belong to distinct fields according to previous

statement what is evidently impossible. We conclude that for an.infinite :
there is r = 1. Now for every aeR = X;, a # 0 we have Ra = 0 and
consequently e = R. In a similar way, taking right ideals instead of the
left ones we find aR = R for every a€R, a # 0. Thus R is a division ring.

2. The commutativity law for # may be proved by using a theorem due
to I. KaPLANSKY (see [3] page 185). Denoting by € the centre of a division
ring R and by €* and R* the corresponding multiplicative groups, we may
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state Kaplansky’s theorem in the following way: If R*/€* ¢s a torsion group
then R is commutative.

In our case the division ring R is covered by commutative fields §; (z =1,
2, ..., n) and consequently the group R* is covered by abelian groups F;*.
Now we need only to use the following lemma.

LEMMA. If a group ® (with centre 8 ) is covered by a finite number of its abelian
subgroups Wit =1, 2, ..., n), then &/F is a torsion group.

Proof: Suppose that the covering system 2; (¢ =1, 2, ..., ») is minimal.
This may be obtained of course from the original covering system by crossing
out some A (if possible) not destroying the covering property. Now let
ze€®, x¢ 3. Denote by U the union of all' %; with x € %; and by B the
union of all 9; with = ¢ %;. Il and L are not empty. Now we can find yeB
such that y ¢ 1. For every integer k¥ we have z*y¢1l and consequently
2y € B. We may find k, < &k, such that 2%y and z*=y belong to the same
%A; C B and then z*:~*1 = b2y (a*:y)~! € Wj. Thus z*2~*: belongs to all Yy, C U
and to some new ; C B. Repeating this step starting with 2*.~*: instead of
and making it again and again we get finally a positive integer m such that
ame W foralls =1,2, ..., 7 and thus af‘es. Hence ®/3 is a torsion group.
We have proved

THEOREM: If an infinite ring R is covered by a finite number of subrings F:
each of them being a commutative field then it is a commutative field.

POZNAMKA K PROBLEMU bKRUHU PdKRYTEHO TELESY

Souhrn

é)ra.cl 86 dokazuje, Ze problém dany I. H. HERSTEINEM Vv [ l] je korektni, pfedpo-
kléd li, Y6 dany okruh X je nekoneény:

ViETA: Je-li nekoneény okruh R pokryt koneénym poltem podokruhw, z nichi kaidy je
komutativnim télesem, pak R je komutativni téleso.
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