Zdeněk Sekanina Some problems of cometary physics investigated on the basis of photometric data (Part two)

Acta Universitatis Carolinae. Mathematica et Physica, Vol. 4 (1963), No. 2, [1]-130

Persistent URL: http://dml.cz/dmlcz/142157

Terms of use:

© Univerzita Karlova v Praze, 1963

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ*: *The Czech Digital Mathematics Library* http://dml.cz

1963 ACTA UNIVERSITATIS CAROLINAE - MATHEMÁTICA ET PHYSICA NO. 2, PAG. 1-130

SOME PROBLEMS OF COMETARY PHYSICS INVESTIGATED ON THE BASIS OF PHOTOMETRIC DATA

PART TWO

ZDENĚK SEKANINA

Astronomical Institute of the Faculty of Mathematics and Physics of the Charles University, Prague

Director Prof. Dr. J. M. Mohr

PREFACE TO PART TWO

This paper is the continuation of the thorough analysis of cometary problems, the first part of which was published in this journal last year.

Part One contained the portions as follows:

(1) Preface to Part One.

(2) Chapter One. History and Evolution of Photometry of Comets.

(3) Chapter Two. A Comet Dust-Gas Model. Fundamental Methods of Determining Its Physical Parameters.

(4) Chapter Three. Influence of the Dust on the Photometric Properties of Comets. Solution of the Dust-Gas Model in Detail.

(5) Chapter Four. Some Applications of a Comet Dust-Gas Model. Comets with Strong Continuous Spectra.

(6) Chapter Five. Interaction between a Comet and Dust Constituent of Interplanetary Matter.

(7) Chapter Six. Development of the Cometary Atmosphere during the Approach of a Comet to the Sun.

(8) Chapter Seven. General Results and Conclusions (Part One).

This continuation comprises next four chapters:

(1) Chapter Eight. Changes of Physical Characteristics of Comets Due to the Changes of Solar Activity.

(2) Chapter Nine. Systematic Variations in Brightness Connected with the Comet's Interior Structure.

(3) Chapter Ten. General Results and Conclusions (Part Two).

(4) Chapter Eleven. A Catalogue of Physical Characteristics of Comets from the Years 1610 to 1954.

In the first of the four chapters the influence on comets of the periodicity of the solar activity is discussed in detail. I am comparing various results reached so far and trying to make a hypothesis consistent with the most abundant observational material available at present. The classification of cometary characteristics is also given according to the form of the curve during an eleven-year solar cycle.

Irregular short-term variations of the comet brightness connected with the solar activity (Beyer's method) are studied together with "solar" periodic changes. Short-term fluctuations in • the colour-index of the Arend-Roland comet and the perihelion asymmetry of the light curves of comets are discussed separately in the second of the four chapters. On principle I try to give the observational material used, and if it is not possible because of the extent of the paper I consistently indicate the reference. The synopsis of physical characteristics of comets distributed according to the solar cycles is appended (the last chapter). It may serve for contingent further statistical investigations.

CHAPTER EIGHT

CHANGES OF PHYSICAL CHARACTERISTICS OF COMETS DUE TO THE CHANGES OF SOLAR ACTIVITY

8.1. Introduction

Many quantities characterizing in any way whatever changes of the . cometary activity within the eleven-year solar cycle were the subject of studies carried out by various authors. The number of discovered comets in dependence on the phase of the solar cycle, for instance, was studied by LINK and VANYSEK (1947), LINK (1952), and later on by DOBROVOLSKY (1954, 1958), the variations of the absolute magnitude of short-period comets were studied by DOBROVOLSKY (1957), and the variations of the dispersion of the observed brightnesses of comets by BEYER (1933, 1937a, 1937b, 1938, 1942, 1947, 1950a, 1950b, 1955), and on the basis of his material also by DOBROVOLSKY (1958). Some relations within the brightness of the Encke comet associated with the solar activity were studied by LINK (1948). The variation of the diameter of the coma of the Encke comet during the eleven-year cycle was investigated in BOUŠKA's and Švestka's work (BOUŠKA, ŠVESTKA, 1949), and the change of many physical parameters of the comet 1943 I with the solar activity during several months was analyzed by Воиšка (1950a).

All these works specialized in the solution of a certain part of the problem, and the results are, on the whole, rather divergent. Until now, the best agreement has been obtained in the study of the number of discovered comets in dependence on the phase of the solar cycle. Here, it became apparent that the curve of cometary discoveries reveals during the cycle a double-wave. This fact clearly results from all the mentioned studies (LINK, VANÝSEK, 1947, LINK, 1952, DOBROVOLSKY, 1954, 1958), and also is fully confirmed in this paper.

The present chapter has three main parts, which deal with the following aspects of the problem, respectively:

1. The systematic course of cometary characteristics within the elevenyear cycle, their long-term changes in the odd and even cycles, and the way in which the eighty-year period of solar activity reveals itself in cometary statistics

2. The variation of the absolute brigtness, fluctuations of the dispersion

of the observed brightness estimates and variation of the head diameter of the Encke comet as related to the changes of solar activity in the elevenyear cycle.

3. Discussion of the Beyer method of cometary brightness dispersion as a criterion of cometary activity.

8.2 The statistical dependence of the cometary characteristics on the solar activity in the eleven-year cycle

First, 563 comets are studied, comprised in VSEKHSVIATSKY's Catalogue of absolute magnitudes of comets (VSEKHSVIATSKY, 1956, 1958), which were observed within the interval of 1610 till 1954, that is, during 31 elevenyear solar cycles, and which had not been looked up in the ephemeris. This criterion is very important, since short-period comets (with an orbital period of an order smaller than 100 years) which, particularly in the last decennia, were looked up almost exclusively in the ephemeris, have quite different physical parameters.

In this part of the study, on the whole eleven cometary characteristics are investigated which, with regard to their essential features, may be classified into three groups:

- A) characteristics of the comet as a whole;
- B) characteristics of the cometary head;
- C) characteristics of the cometary tail.

The characteristics under A) are as follows:

- a) N_{y} number of comets discovered per year;
- b) τ_y value of the function of the visual importance of the tails of the comets observed within one year; the tail visible with naked eye has $\tau = 2$, that visible with a telescope $\tau = 1$, and a comet without tail has $\tau = 0$;
- c) r the heliocentrical distance of the comet at the time of discovery;
- d) Δ the geocentrical distance of the comet at the time of discovery;
- e) H_{10} the absolute magnitude of the comet according to VSEKH-SVIATSKY's definition, see VSEKHSVIATSKY (1956, 1958);
- f) m the apparent magnitude of the comet at the time of discovery;
- g) n the seasonal index introduced by DOBROVOLSKY (1957).

The characteristics under B) are as follows:

- h) D the maximum apparent coma diameter;
- i) D_0 the maximum linear coma diameter.
- Finally, the characteristics under C) are as follows:
- j) C the maximum apparent length of the cometary tail;

k) S — the maximum linear length of the cometary tail.

As can be seen, some of the characteristics under A) are in a certain relation to the group B), eventually C) as well. This is particularly the function of the visual importance of tails. We, however, consider this quantity as a characteristic of the appearance of the comet and classify it, therefore, under A). Similarly, the magnitudes m, and H_{10} which approach the characteristics of the cometary coma are, as tradition requires, classified under A), too.

For each of the 563 comets, moreover, the phase-shift Φ with regard to the minimum of the sunspot numbers R has been determined, which is defined by the formula:

(8.1)
$$\Phi = \frac{t_0 - T}{P},$$

P is the length of the respective eleven-year cycle of solar activity, *T* the time of minumum solar activity, and l_0 the time of measurement of the given characteristic. In the case of quantities N_y , r, Δ , and m it is the time of discovery of the comet, in the case of quantity H_{10} , the middle from the interval of the observation of the comet, in the case of quantities D_0 and *S* it is, as a rule, the moment close to the time of the passage of the comet through the perihelion, and in the case of quantities τ_y , *D* and *C*, in addition, the time of minimum geocentrical distance of the comet plays a part. Generally, from the succession of moments *T* we select such a moment that

$$T \leq t_0 < T + P$$

The dependence of each of the mentioned eleven characteristics on the phase of the eleven-year solar cycle has been studied both for all cycles together and separately for the odd and even cycles. Out of the 563 comets, 259 are available in odd cycles and 304 in even.

Table 39 is a synopsis of the distribution of the total number of comets under consideration according to the place of discovery.

Region	Discoveries		
West Europe	50.3 per cent		
North America	24.5 per cent		
South Africa	8.7 per cent		
East Europe	8.1 per cent		
Far East	3.1 per cent		
Australia and New Zealand	2.7 per cent		
South America	2.3 per cent		
Near and Middle East	0.3 per cent		

Table 39. Distribution of comet discoveries

year cycle (weighted values).

Quantitatively, the approximate form of the curves of each of the studied characteristics (generally already designed as X) will be described by the following parameters:

1. $\Phi_i(X)$ — position of the individual extremes, i = 1, 2, ...;

2. $A_i(X)$ - semi-amplitudes of the individual extremes;

3. \overline{X} — mean value of quantity X within the cycle.

In the following, index i, if odd, stands for the minimum, if even, for the maximum.

The course of each characteristic from group A) with the phase of the average solar cycle has been determined both by weighted and not-weighted values. The weighted values, in which each cycle is represented by a weight equal to the number of actually studied comets, somewhat overvaluate the latest solar cycles; the not-weighted values, in which all solar cycles are represented by an equal weight, rather considerably overvaluate the old cycles.

The course of the characteristics from groups B) and C), as well as the course of all characteristics within the odd and even cycles, is derived — owing to less abundant material — only from weighted values.

8.2.1. Statistics of the number of discovered comets, and function of the visual importance of cometary tails

The number of discovered comets, reduced to one year, N_y , reveals within the eleven-year cycle a characteristic double-wave which is very well apparent both in the weighted values (Figure 33, Table 40) and in the not-weighted values (Table 40). This fact fully confirms the previous investigations carried out in this respect. Quite analogous is also the course of the function of the visual importance of tails τ_y , as follows from Figure 33 and Table 41. Parameters of the two magnitudes are included in Table 42.

In the odd and even cycles, too, the courses of quantities N_y and τ_y are entirely analogous, as can be seen from Figure 34 and Tables 43-46, so that their appearance may be described together.

: 4 A	Weig	hted values	Not-weig	ghted values
Int Ψ	Φ	, N _y	Φ.	N _y
0.951 - 0.250	0.106	1.63 ± 0.08	0.102	1.51 ± 0.14
0.051 - 0.350	0.202	1.75 ± 0.04 \cdot	0.201	1.84 ± 0.09
0.151 - 0.450	0.292	1.77 ± 0.03	0.296	1.79 ± 0.10
0.251 - 0.550	0.380	1.58 ± 0.11	0.392	1.73 ± 0.13
0.351 - 0.650	0.490	1.53 ± 0.09	0.493	1.56 ± 0.06
0.451 - 0.750	0.606	1.59 ± 0.12	0.597	1.64 ± 0.08
0.551 - 0.850	0.695	1.74 ± 0.04	0.697	1.69 ± 0.06
0.651 - 0.950	0.788	1.72 ± 0.06	0.800	1.71 ± 0.05
0.751 - 0.050	0.886	1.58 ± 0.06	0.894	$1.45 \stackrel{-}{\pm} 0.12$
0.851 - 0.150	0.998	1.54 ± 0.04	0.998	1.50 ± 0.14
	1.00			

Table 40 Statistics of N_{ν}

	Weighted values		`Not-w	eighted values
$\operatorname{int} \boldsymbol{\varphi}$	Φ	τ,	Φ	τ,,
0.951 - 0.250	0.111	1.34 + 0.07	0.106	1.35 ± 0.15
0.051 - 0.350	0.207	1.42 + 0.05	0.205	1.65 + 0.05
0.151 - 0.450	0.297	1.51 + 0.02	0.300	1.61 ± 0.06
0.251 - 0.550	0.385	1.37 ± 0.09	0.396	1.44 ± 0.14
0.351 - 0.650	0.495	1.21 ± 0.12	0.497	1.15 ± 0.10
0.451 - 0.750	0,611	1.25 ± 0.15	0.601	1.21 ± 0.15
0.551 - 0.850	0.700	1.37 ± 0.14	- 0.701	1.27 ± 0.14
0.651 - 0.950	0.793	1.47 + 0.08	0.804	1.39 + 0.08
0.751 - 0.050	0.891	$1.31{\pm}0.05$	0.898	1.15 ± 0.08
0.851 - 0.150	0.003	1.26 + 0.02	0.002	1.25 + 0.13

Table 41 Statistics of τ_y

3	Weighte	ed values	Not-weigh	Not-weighted values		
	N _v	τ,	N _y	τ		
Ф.	0.975	0.988	0.931	0.923		
ϕ_{a}	0.255	0.286	0.236	0.241		
ϕ_{i}	0.487	0.532	0.512	0.532		
Φ_4	0.730	0.785	0.754	0.783		
A_1	0.12	0.10	0.25	0.25		
A_2	0.17	0.17	0.17	0.36		
A_{3}	0.11	0.18	0.10	0.26		
A_4	0.17	0.13	0.15	0.08		
$\overline{N}_{y}, \overline{\tau}_{y}$	1.64	1.35	1.64	1.35		

Table 42 Parameters of curves N_y and τ_y

Table 43Statistics of N_y in odd and even cycles.

int A	a l	Ν	v
mτΨ			even cycles
$\begin{array}{c} 0.951 - 0.250\\ 0.051 - 0.350\\ 0.151 - 0.450\\ 0.251 - 0.550\\ 0.351 - 0.650\\ 0.451 - 0.750\\ 0.551 - 0.850\\ 0.651 - 0.950\\ 0.751 - 0.050\\ 0.851 - 0.150\\ \end{array}$	$\begin{array}{c} 0.11 \\ 0.20 \\ 0.29 \\ 0.38 \\ 0.49 \\ 0.61 \\ 0.70 \\ 0.79 \\ 0.89 \\ 0.00 \end{array}$	$\begin{array}{c} 1.43 \pm 0.09 \\ 1.67 \pm 0.10 \\ 1.58 \pm 0.12 \\ 1.45 \pm 0.18 \\ 1.40 \pm 0.14 \\ 1.47 \pm 0.15 \\ 1.71 \pm 0.04 \\ 1.63 \pm 0.04 \\ 1.51 \pm 0.11 \\ 1.47 \pm 0.09 \end{array}$	$\begin{array}{c} 1.82 \pm 0.13 \\ 1.82 \pm 0.13 \\ 1.95 \pm 0.11 \\ 1.71 \pm 0.10 \\ 1.66 \pm 0.12 \\ 1.69 \pm 0.14 \\ 1.77 \pm 0.12 \\ 1.79 \pm 0.11 \\ 1.64 \pm 0.03 \\ 1.61 \pm 0.02 \end{array}$

7

y

a) in the even cycles, on the whole, more comets have been discovered than in the odd cycles—see also Link(1952) — and τ_y attains, on the average, higher values in the even cycles;

b) the mean amplitude is in the odd cycles deeper than in the even cycles;

c) in the odd cycles both maxima (in $\Phi \approx 0.3$ and $\Phi \approx 0.8$) are approximately equally high, while in the even cycles the first maximum is somewhat higher;

int A	- σ	τ,	
тт У		odd cycles	even cycles
0.951 - 0.250	0.11	1.21 + 0.08	1.47 + 0.12
0.051 - 0.350	0.21	1.39 + 0.05	1.46 + 0.12
0.151 - 0.450	0.30	1.38 + 0.05	1.64 + 0.08
0.251 - 0.550	0.39	1.27 + 0.12	1.46 + 0.10
0.351 - 0.650	0.50	1.01 ± 0.12	1.41 + 0.11
0.451 - 0.750	0.61	1.09 + 0.17	1.42 + 0.11
0.551 - 0.850	0.70	1.26 + 0.18	1.49 + 0.10
0.651 - 0.950	0.79	1.39 + 0.10	1.54 + 0.07
0.751 - 0.050	0.89	1.19 ± 0.09	1.43 + 0.01
0.851 - 0.150	0.00	1.17 + 0.08	1.34 + 0.05

Table 44 Statistics of τ_u in odd and even cycles

Table 45Parameters of curves N_{*} in odd and even cycles

	Odd cycles	Even cycles		
Φ,	0.07	0.96		
Φ^2	0.22	0.28		
Φ.	0.49	0.51		
Φ_{A}	0.72	0.76		
A,	0.15	0.18		
A,	0.16	0.22		
A.	0.13	0.10		
A	0.20	0.06		
$\frac{1}{N_y}$	1.53	1.75		

d) the phases of the individual extremes are practically independent on the cycle-type, with the sole exception of, perhaps, the minimum in $\Phi \approx 0$.

8.2.2. Statistics of the heliocentrical and geocentrical distances of comets at the time of discovery

The mean heliocentrical and geocentrical distances at the moment of discovery of the comets reveal, in distinction to the curves N_y and τ_{yr}

	Odd cycles	Even cycles
Φ,	0.98	0.99
Φ.	0.25	0.30
ϕ	10.53	0.54
Φ_{i}	0.78	0.78
<i>A</i> ,	0.08	0.14
A.	0.19	0.17
A.	0.28	0.07
A	0.17	0.08
τ,	1.24	1.47

Table 46 Parameters of curves τ_y in odd and even cycles

、 ·

Tabl	le	47	

Statistics of r

-

		Weighted values			eighted values
Int \boldsymbol{arphi}	Ø	ŗ	N	Φ	r
•	1 1	•	1		A TT
0.051 0.050	0.105		100	0.000	A.U.
0.951-0.250	0.105	1.405 ± 0.033	100	0.090	1.374 ± 0.038
0.051-0.350	0.202	1.436 ± 0.011	179	0.197	1.382 ± 0.033
0.151 - 0.450	0.293	1.435 + 0.011	181	0.301	1.372 ± 0.030
0.251 - 0.550	0.381	1.375 + 0.034	162	0.386	1.312 + 0.034
0.351 - 0.650	0.489	1.363 ± 0.033	157	0.489	1.353 ± 0.038
0.451 - 0.750	0.604	1.311 ± 0.026	161	0.600	1.294 ± 0.039
0.551 - 0.850	0.694	1.335 ± 0.019	177	0.689	1.330 ± 0.034
0.651 - 0.950	0.788	1.329 ± 0.016	174	0.796	1.302 ± 0.022
0.751 - 0.050	0.996	1.320 ± 0.010	160	0.000	1310 ± 0.017
0.751-0.050	0.000	1.336 ± 0.012	100	0.090	
0.851-0.150	0.997	1.367 ± 0.024	157	0.994	1.339 ± 0.033
J					

Table 48 Statistics of Δ

. int Ø		Weighted values		Not-weithted values	
	' Ø	Δ		Ф	۸
		A . U.			A. U.
0.951 - 0.250	0.105	1.168 ± 0.043	166	0.090	1.153 ± 0.06
0.051 - 0.350	0.202	1.197 ± 0.020	179	0.197	1.181 ± 0.04
0.151 - 0.450	0.293	1.195 ± 0.019	181	0.301	1.184 ± 0.04
0.251 - 0.550	0.381	1.103 ± 0.071	162	0.386	1.067 ± 0.08
0.351 - 0.650	0.489	1.069 ± 0.071	157	0.489	1.075 ± 0.08
0.451-0.750	0.604	1.017 ± 0.045	161	0.600	0.987 ± 0.04
0.551 - 0.850	0.694	1.089 ± 0.014	177	0.689	1.043 ± 0.00
0.651 - 0.950	0.788	1.118 ± 0.010	174	⁵ 0.796	1.064 ± 0.02
0.751 - 0.050	0.886	1.101 ± 0.023	160	0.898	1.041 ± 0.03
0.851 - 0.150	0.997	1.144 ± 0.042	157	0.994	1.113 ± 0.05

within the eleven-year cycle a single wave the phase of which, in respect to the sunspot-number curve, is shifted in phase. At the point, where in the characteristics N_y and τ_y the secondary maximum was located (i. e. in $\Phi \approx 0.8$), now only a slight local increase of the values may be found, eventually an inflexion. Again, there is no basic difference in the course of the curves obtained from the weighted and not-weighted values (Figure 33 and Tables 47-49).

Within the odd as well as even cycles, the mean heliocentrical and geocentrical distances also reveal single waves, as can be seen in Figure 34.

Fig. 34. Curves of characteristics of comets as a whole in odd and even cycles.

	Weighted values		Not-weigh	ted values
•	r	Δ	r ,	Δ
Φ_1	0.633	0.584	0.602	0.600
A_1 A_2	0.060 0.076	0.119 0.082	0.045 0.046	0.105 0.111
$\overline{r,\Delta}$	1.370	1.122	1.337	1.092

Table 49 Parameters of curves r and Δ

7

Table 50 Statistics of r in odd and even cycles

:		Odd cycle	8	Even cycles	
mtΨ	Ψ	r	N	r	N
		A. U.		A. U.	
0.951 - 0.250	0.11	1.408 ± 0.075	72	1.403 ± 0.023	94
0.051 - 0.350	0.20	1.430 ± 0.046	85	1.441 ± 0.037	94
0.151 - 0.450	0.29	1.381 ± 0.035	81	1.478 ± 0.016	100
0.251 - 0.550	0.38	1.280 ± 0.047	74	1.455 ± 0.032	88
0.351 - 0.650	0.49	1.237 ± 0.047	71	1.468 ± 0.041	86
0.451 - 0.750	0.60	1.178 ± 0.019	73	1.422 ± 0.049	88
0.551 - 0.850	0.69	1.239 ± 0.027	84	1.422 ± 0.047	93
0.651 - 0.950	0.79	1.299 ± 0.040	80	1.354 ± 0.007	94
0.751 - 0.050	0.89	1.299 ± 0.044	- 75	1.372 ± 0.013	85
0.851 - 0.150	0.00	1.375 ± 0.070	73	1.360 ± 0.015	84
ĺ	1		1		

Table 51 Statistics of \varDelta in odd and even cycles

n

:	đ	Odd cycles Even		Even cycles	cycles	
	Ψ	Δ	N	Δ	N	
		A. U.		A. U.		
0.951 - 0.250	0.11	1.163 ± 0.103	72	1.172 ± 0.022	94	
0.051 - 0.350	0.20	1.214 ± 0.051	85	1.182 ± 0.024	94	
0.151 - 0.450	0.29	1.206 ± 0.051	81	1.187 ± 0.024	100	
0.251 - 0.550	0.38	1.047 ± 0.091	74	1.150 ± 0.057	88	
0.351 - 0.650	0.49	1.020 ± 0.091	71	1.109 ± 0.055	86	
0.451 - 0.750	0.60	0.952 ± 0.060	73	1.071 ± 0.035	88	
0.551 - 0.850	0.69	1.021 ± 0.002	84	1.151 ± 0.028	93	
0.651 - 0.950	0.79	1.036 ± 0.012	80	1.189 ± 0.019	94	
0.751 - 0.050	0.89	0.983 ± 0.049	75	1.206 ± 0.011	.85	
0.851 - 0.150	0.00	1.072 ± 0.083	73	1.207 ± 0.011	84	

11

In the odd cycles, the variation of both distances is about twice as prominent as in the even cycles. At the same time, the mean value of both distances is in the odd cycles smaller, so that their maxima lie in both types of cycles on the same level. As for the phase-shifts of extremes, they attain approximately the same values in both cycle-types; in the even cycles, however, the extremes are flatter and consequently difficult to define, which is so, first of all, in the case of the maximum of the mean geocentrical distance (Tables 50-53).

	Odd cycles	Even cycles
Φ,	0.59	0.82
Φ.	0.18	0.30
A_1	0.14	0.08
A_2	0.13	0.06
-	1.31	1.42

Table 52 Parameters of curves r in odd and even cycles

		Tal	ble	e 5	3			
Parameters	of	curves	Δ	in	odd	and	even	cycles

Odd cycles	Even cycles
0.59 0.23 0.12 0.15 1.07	0.57 0.26 0.04 0.05 1.16

8.2.3. Statistics of the absolute magnitudes of comets

The dependence of the absolute brightness of comets on the solar activity may — from the physical point of view — be considered the most important, since it provides us with an idea of the average state in the number of the radiating particles in the coma within the individual phases of the solar cycle. In the total absolute magnitude, of course, the brightnesses of both coma constituents take a part, namely, the gaseous and dust components. Actually, in the changes of H_{10} , particularly the changes of the gaseous coma are reflected. In the visual region, in fact, the solar constant reveals minute variation which, of course, are true also of the light scattered on the dust particles in the coma. Therefore, the only factor that may induce changes in the dust-coma brightness during the cycle is a systematic dependence of the number of photometrically effective dust

12

(

particles in the coma on the phase Φ . The gaseous component, on the other hand, may reveal changes in the brightness owing to systematic changes both in the number of gas molecules in the coma and in the ratio of the radiating molecules to the total number of molecules during the cycle. This second cause precisely is associated to the fluctuations of the ultraviolet solar radiation ($\lambda \approx 900$ Å), which is the exciting radiation for the gas molecules constituting the coma.

× اسد ه	1	Weighted values	Not-weighted values		
int Ψ	Ø	H ₁₀	Σw	Ø	H ₁₀
0.951-0.250	0.128	$7^{m}_{}04 \pm 0^{m}_{}27$	312	0.104	$7^{m}_{}05 + 0^{m}_{}29$
0.051 - 0.350	0.224	6.93 ± 0.16	346	0.211	6.83 ± 0.15
0.151 - 0.450	0.312	6.98 ± 0.16	363	0.314	6.83 ± 0.16
0.251-0.550	0.398	7.34 ± 0.14	323	0.400	7.35 ± 0.26
0.351 - 0.650	0.504	7.50 ± 0.18	306	0.502	7.60 ± 0.28
0.451-0.750	0.623	7.73 ± 0.05	313	0.614	7.83 ± 0.15
0.551 - 0.850	0.715	7.48 ± 0.15	353	0.702	\sim 7.54 \pm 0.14
0.651 - 0.950	0.802	7.29 ± 0.12	344	0.809	7.12 ± 0.15
0.751 - 0.050	0.898	7.33 ± 0.18	308	0.911	7.25 ± 0.23
0.851 - 0.150	0.014	7.29 ± 0.21	284	0.008	7.11 ± 0.24

Table 54 Statistics of H₁₀

Table 55 Parameters of curve H_{10}

4.00	Weighted values	Not-weighted values		
		,		
Φ_1	0.607	0.596		
Φ,	0.233	0.262		
A_1	0 ^m 51	0 ^m 64		
A_{1}	0 ^m 36	0, ^m 52		
$\overline{H_{10}}$	7 ^m 28	7 ^m 24		

From the material we obtain the course of H_{10} with a phase of cycle as presented in Figure 33 and Table 54. The not-weighted values, again, reveal a very similar course to the weighted values. Furthermore, in Figure 33 and Table 55 it can be seen that similarly as in the case of quantities rand Δ , the mean absolute magnitude, too, reveals, on the whole, a single wave which again is phase-shifted relative to the curve of sunspot numbers for about the same value as both preceding curves.

Within the odd cycles, the mean absolute magnitude of comets reveals a very similar course as do the heliocentrical and geocentrical distances. In the even cycles, in distinction to r and Δ , the curve H_{10} has a rather

$\operatorname{int} \boldsymbol{\Phi} = \boldsymbol{\Phi}$		Odd cycles		Even cycles	3
	Ψ	H ₁₀	Σ_{w}	H ₁₀	Σ
$\begin{array}{c} 0.951 - 0.250 \\ 0.051 - 0.350 \\ 0.151 - 0.450 \\ 0.251 - 0.550 \\ 0.351 - 0.650 \\ 0.451 - 0.750 \\ 0.551 - 0.850 \\ 0.651 - 0.950 \\ 0.751 - 0.050 \\ 0.851 - 0.150 \end{array}$	$\begin{array}{c} 0.13\\ 0.22\\ 0.31\\ 0.40\\ 0.50\\ 0.62\\ 0.72\\ 0.80\\ 0.90\\ 0.01\\ \end{array}$	$\begin{array}{c} 7^{m}19\pm 0^{m}42\\ 6.90\pm 0.19\\ 6.87\pm 0.19\\ 7.28\pm 0.18\\ 7.70\pm 0.30\\ 8.02\pm 0.10\\ 7.78\pm 0.21\\ 7.28\pm 0.23\\ 7.41\pm 0.34\\ 7.30\pm 0.37\\ \end{array}$	$ 138 \\ 162 \\ 156 \\ 145 \\ 135 \\ 142 \\ 165 \\ 153 \\ 141 \\ 136 $	$\begin{array}{c} 6^{m}92\pm 0^{m}15\\ 6.96\pm 0.16\\ 7.06\pm 0.14\\ 7.38\pm 0.11\\ 7.34\pm 0.11\\ 7.34\pm 0.06\\ 7.22\pm 0.12\\ 7.29\pm 0.14\\ 7.27\pm 0.15\\ 7.27\pm 0.17\end{array}$	174 184 207 178 171 171 188 191 167 148

Table 56 Statistics H_{10} in odd and even cycles

			Fable	e 5	7			
Parameters	of	curves	H_{10}	in	odd	and	even	cycles

	Odd cycles	Even cycles
Φ,	0.62	0.60
Φ_2	0.27	0.16
$\overline{A_1}$	0 ^m 65	0 ^m 31
A_2	0 ^m 62	0 ^m 33
$\overline{H_{10}}$	7 <u></u> 37	7 <u></u> ^m 21

sharp maximum. As for the size of the amplitudes, their phases and mean value of absolute magnitude, the picture is quite analogous to that of the heliocentrical and geocentrical distances (Figure 34 and Tables 56, 57).

8.2.4. Statistics of the apparent magnitudes of comets at the time of discovery

In the determination of the dependence of the mean apparent magnitude of comets at the time of discovery on the phase of solar activity, a rather great obstacle consists in the considerable inaccuracy with which the individual apparent magnitudes are determined. While in the preceding paragraph we analysed a material in which the intrinsic errors of the individual absolute magnitudes ranged on the average from $\pm 0^{m}3$ to $\pm 0^{m}5$, the apparent magnitudes comprise errors of at least $\pm 1^{m}$. The deformation of the curves due to observational errors, too, is a probable reason for the finding that the apparent magnitude has been until now the only quantity studied in the present paper, in which a considerable quantitative disagreement is found in the course of the weighted and not-weighted values,

		Weighted values	Not	-weighted 'values	
int P	Φ	m	N	Φ	т
0.951 - 0.250 0.051 - 0.350 0.151 - 0.450	0.105 0.202 0.293	$7^{m}_{91} \pm 0^{m}_{16} 16$ 7.85 ± 0.15 8.02 ± 0.07	168 181 181	0.090 0.197 0.301	$7^{m}82 \pm 0^{m}16$ 7.65 ± 0.17 7.83 ± 0.16
0.251 - 0.550 0.351 - 0.650 0.451 - 0.750	0.381 0.489 0.604	$\begin{array}{c} 7.89 \pm 0.03 \\ 8.04 \pm 0.08 \\ 8.05 \pm 0.08 \end{array}$	162 157 162	0.386 0.489 0.600	$7.82 \pm 0.15 \\ 8.31 \pm 0.18 \\ 8.28 \pm 0.19$
0.551 - 0.850 0.651 - 0.950 0.751 - 0.050 0.851 - 0.150	0.694 0.788 0.886 0.997	8.07 ± 0.06 8.09 ± 0.07 8.12 ± 0.07 7.93 ± 0.17	179 176 161	0.689 0.796 0.898 0.994	$\begin{array}{c} 8.24 \pm 0.19 \\ 7.97 \pm 0.04 \\ 7.98 \pm 0.03 \\ 7.77 \pm 0.12 \end{array}$

Table 58 ⁻ Statistics of *m*

Table 59Parameters of curve m

	Weighted values	Not-weighted values
Φ,	0 853	0.538
Ф,	0.177	0.194
A_1	0 ^m 15	0, ^m 46
A_{2}	0 ^m 18	0 ^m 32
m	8, ^m 00	7. 96
	· ·	

Table 60Statistics of m in odd and even cycles

int a		Odd cycles		Even cycles	
mτΨ	Ψ	m	N	m	N
$\begin{array}{c} 0.951 - 0.250\\ 0.051 - 0.350\\ 0.151 - 0.450\\ 0.251 - 0.550\\ 0.351 - 0.650\\ 0.451 - 0.750\\ 0.551 - 0.850\\ 0.651 - 0.950\\ 0.751 - 0.050\\ 0.051 - 0.050\\ 0.051 - 0.050\\ 0.051 - 0.050\\ 0.051 - 0.050\\ 0.051 - 0.050\\$	$\begin{array}{c} 0.11\\ 0.20\\ 0.29\\ 0.38\\ 0.49\\ 0.60\\ 0.69\\ 0.79\\ 0.89\\ 0.89\end{array}$	$\begin{array}{c} 7.^{m}91 \pm 0.^{m}26 \\ 7.79 \pm 0.26 \\ 7.86 \pm 0.26 \\ 7.52 \pm 0.03 \\ 7.95 \pm 0.23 \\ 8.07 \pm 0.17 \\ 8.08 \pm 0.14 \\ 7.95 \pm 0.07 \\ 7.87 \pm 0.09 \\ 7.87 \pm 0.09 \end{array}$	73 86 80 74 71 74 86 82 76	$\begin{array}{c} 7^{m}91\pm 0^{m}16\\ 7.91\pm 0.15\\ 8.14\pm 0.08\\ 8.21\pm 0.05\\ 8.12\pm 0.05\\ 8.04\pm 0.01\\ 8.07\pm 0.03\\ 8.21\pm 0.09\\ 8.33\pm 0.07\\ \end{array}$	95 95 101 88 86 88 93 94 85

both, in fact, in the phase of extremes and in their amplitudes (Figure 33, Tables 58, 59).

In the odd and even cycles, the course of the apparent magnitude with the cycle-phase is even so irregular (Figure 34, Tables 60, 61) that it cannot

۱. _{د.}	Odd cycles	Even cycles
Φ_1	0.65	0.88
Φ_{3}	0.38	0.15
A_1	0 ^m 24	0. ^m 24
A_2	0 m 36	0. m 30
m	7 <u>*</u> 88	8 <u>*</u> 10

Table 61 Parameters of curves m in odd and even cycles

be characterized by some current curve. For the mentioned reasons, the curve of apparent magnitudes cannot, for the time being, be detailedly investigated.

8.2.5 Statistics of the seasonal indices

In his work analyzing the short-period variations of absolute magnitudes of comets with shortest orbital periods DOBROVOLSKY (1957) tries to prove that these variations are not correlated to the sunspot number nor to the values of the Holetschek criterion of the conditions of visibility of comets (HOLETSCHEK, 1916), but to the so called seasonal index which for comets with $q \leq 1$ A. U. is introduced in an opposite way than for comets with q > 1 A. U. In its essence, the seasonal index characterizes, properly speaking, the inclination of the zodiac to the horizon which, thus, according to Dobrovolsky, is the chief factor determining the value of the absolute magnitude established from observations. For comets with $q \leq 1$ A. U., it attains the highest value in January, for comets with q > 1 A. U., in July. Its values, introduced by DOBROVOLSKY definitorically in a scale of 0 to 6 are listed in Table 62. In 17 out of the total number of 33 comets

Table	62
Seasonal	index

Month	$q \leq 1 \text{ A.U.}$	q > 1 A.U.
Tenuery	6	0
February	5	1
March	4	2
April	3	3
May	2	4
June	1	5
July	0	6
August	1	5
September	2	4
October	3	3
November	4	2
December	5	1
	l.	

with an orbital period shorter than 15 years, DOBROVOLSKY finds shortperiod fluctuations of the brightness, and for each of them he constructs correlations between the absolute brightness and the seasonal index. The degree of this correlation may be best judged in the case of the Encke comet in Figures 1-2 of his study, where, in addition, two other quantities, the curve of the Holetschek criterion and that of the sunspot numbers, are presented. From these pictures one obtains the impression that all three criteria approximately equally well correlate with the absolute brightness of the Encke comet (for more details see Paragraph 8.11.1.). DOBROVOLSKY refers in the beginning of his work already to KONOPLEVA's work (KONOPLEVA 1954) who pointed at the fact that within the interval of the years of 1901-1934, the brightness of the Encke comet and the sunspot numbers did not reveal any correlation, and similar correlations cannot be found, according to her, in other short-period comets, either.

DOBROVOLSKY, moreover, constructs in his work dependences of the absolute magnitudes on the seasonal index for some more of the 17 shortperiod comets. These graphs have been constructed even in the case of comets in which the absolute brightness is known only from four returns and, moreover, one cannot find that its secular decrease would have been reduced off, so that in some of the cases it is difficult to differentiate the bend due to this decrease from that due to the short-period fluctuation. From four or six values, in fact, the secular decrease cannot be derived with sufficient reliability. If we take into consideration, moreover, that the fluctuations of the brightness are of the same order as the intrinsic errors in the absolute magnitudes of VSEKHSVIATSKY. Catalogue, we must arrive at the conclusion that a study of these fluctuations is justified only just in the case of the Encke comet, in which a sufficiently long series of H_{10} values is available.

	v	Veighted values		Not-w	eighted values
int $arphi$	Φ	n,	Σw	Φ	n
0.951-0.250	0.128	3.20 + 0.12	312	0.104	3.19 + 0.10
0.051 - 0.350	0.224	3.02 ± 0.11	346	0.211	3.02 ± 0.11
0.151 - 0.450	0.312	3.02 ± 0.10	363	0.314	2.98 ± 0.08
0.251 - 0.550	0.398	3.19 ± 0.11	323	0.400	3.18 ± 0.13
0.351 - 0.650	0.504	3.33 ± 0.04	306	0.502	3.34 ± 0.06
0.451 - 0.750	0.623	3.37 ± 0.04	813	0.614	3.45 ± 0.04
0.551 - 0.850	0.715	3.29 ± 0.05	353	0.702	3.41 ± 0.03
0.651 - 0.950	0.802	3.22 ± 0.08	344	0.809	3.26 ± 0.13
0.751 - 0.050	0.898	3.20 ± 0.08 /	308	0.911	3.18 ± 0.11
0.851 - 0.150	0.014	3.28 ± 0.09	284	0.008	3.17 + 0.10

Table 63Statistics of seasonal indices

2 63-20

In this paper the course is given of the mean values of the seasonal index during the solar cycle, determined from the 563 investigated comets. This course is presented in Figure 33 and Table 63, from which it is evident that the course of the mean seasonal index of the analyzed comets is precisely opposite to that of the mean absolute brightness (see Table 64, too). Thus, from a material about ten times more abundant, we obtain a result which is in absolute conflict with the result obtained by Dobrovolsky.

The curves of the seasonal index within the odd and even cycles presented in Figure 34 and Table 65, again attain their minimum almost precisely

	Weighted values	Not-weighted values
		4
Φ_1	0.268	0.277
ϕ	0.593	0.627
A_1	0.25	0.29
A_{2}	0.18	0.25
	3.21	3.22

 Table 64

 Parameters of curves of seasonal indices

			Table 6	55					
Statistics	of	seasonal	indices	in	odd	and	even	cycles	

		· Odd cycles		Even cycles	
$\operatorname{Int} \boldsymbol{\varphi}$	Ψ	n	Σw	n	Σω
$\begin{array}{c} 0.951-0.250\\ 0.051-0.350\\ 0.151-0.450\\ 0.251-0.550\\ 0.351-0.650\\ 0.451-0.750\\ 0.551-0.850\\ 0.651-0.950\\ 0.751-0.050\\ \end{array}$	$\begin{array}{c} 0.13\\ 0.22\\ 0.31\\ 0.40\\ 0.50\\ 0.62\\ 0.72\\ 0.80\\ 0.90\\ \end{array}$	$\begin{array}{c} 3.36 \pm 0.12 \\ 3.22 \pm 0.13 \\ 3.22 \pm 0.15 \\ 3.40 \pm 0.17 \\ 3.53 \pm 0.11 \\ 3.55 \pm 0.11 \\ 3.39 \pm 0.11 \\ 3.35 \pm 0.13 \\ 3.22 \pm 0.06 \end{array}$	135 162 156 145 135 142 165 153 138	$\begin{array}{c} 3.08 \pm 0.14 \\ 2.85 \pm 0.08 \\ 2.87 \pm 0.08 \\ 3.01 \pm 0.11 \\ 3.18 \pm 0.04 \\ 3.23 \pm 0.01 \\ 3.20 \pm 0.01 \\ 3.13 \pm 0.05 \\ 3.19 \pm 0.10 \end{array}$	177 184 207 178 171 171 188 191 170
$\begin{array}{c} 0.451-0.750\\ 0.551-0.850\\ 0.651-0.950\\ 0.751-0.050\\ 0.851-0.150\\ \end{array}$	0.62 0.72 0.80 0.90 0.01	3.55 ± 0.11 3.39 ± 0.11 3.35 ± 0.13 3.22 ± 0.06 $. 3.38 \pm 0.11$	142 165 153 138 133	$\begin{array}{c} 3.23 \pm 0.01 \\ 3.20 \pm 0.01 \\ 3.13 \pm 0.05 \\ 3.19 \pm 0.10 \\ 3.19 \pm 0.10 \end{array}$	

Table 66

Parameters of curves n in odd and even cycles

	Odd cycles	Even cycles
Φ_1	0.27	0.26
Φ_2	0.57	0.62
A_1	0.20	0.32
$\overline{A_2}$	0.24	0.14
$\frac{1}{n}$	3.36	3.09
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		)

at the phase in which the curves r,  $\Delta$  and  $H_{10}$  (brightness) reveal a maximum, and vice versa (Table 66). Besides, in the odd cycles there appears a second prominent minimum (at  $\Phi \approx 0.9$ ) which in the even cycles is almost indiscernible.

8.2.6. Statistics of the maximum apparent and linear coma diameters

For each comet of our statistics in which, according to VSEKHSVIATSKY (1958), the dimensions of the coma were measured, from the series of its measures the maximum value was selected, in the case that the coma was of an elliptic shape, again its maximum diameter was taken into account. The material, prior of being dealt with, was submitted to a statistical analysis, in the course of which the comets with D > 15', observed from distances  $\Delta \leq 0.2$  A. U., and all comets observed from distances  $\Delta \leq 0.10$  A. U. were eliminated. These values, of which there were 12, in fact, would have undoubtedly distorted the statistics of  $D = D(\Phi)$ , though their magnitude associated neither with the solar activity, nor with the meteorological conditions, but with the extraordinary small geocentrical distance of the comet.

Since the literature on 133 comets did not offer the values D, our statistics comprised a total of 418 comets. The way of treatment was entirely analogous to that in the case of the characteristics of group A), with the sole difference, that the course of the characteristic was derived only from the weighted system of values. The dependence of the size of the maximum apparent diameter of the cometary coma on the phase of the solar cycle was, again, studied both for all cycles together and separately for odd and even cycles. From the results given in Figures 33, 35 and Tables 67-69

		Weighted values	
$\operatorname{Int} \boldsymbol{\varphi}$ .	Φ	D	N
0.951 - 0.950	01	, , , , , , , , , , , , , , , , , , ,	119
0.051 - 0.350	0.2	$4.70 \pm 0.52$	124
0.151 - 0.450	0.3	5.02 + 0.40	127
0.251 - 0.550	0.4	$4.95 \pm 0.38$	121
0.351 - 0.650	0.5	$4.80 \pm 0.45$	122
0.451 - 0.750	0.6	$4.71 \pm 0.49$	127
0.551 - 0.850	0.7	$4.48 \pm 0.26$	140
0.651 - 0.950	0.8	$5.04\pm0.22$	136
0.751 - 0.050	0.9	$4.87 \pm 0.38$	124
0.851 - 0.150	0.0	$4.36 \pm 0.57$	115

2*

Table 67 atistics of D

		Odd cycles		Even cycles	
$\operatorname{int} \boldsymbol{\varphi}$	Ψ	D	N	D	N
0.951-0.250	0.1	4.66 + 0.58	52	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	66
0.051 - 0.350	0.2	4.60 + 0.54	59	$4.77 \pm 0.57$	65
0.151-0.450	0.3	$5.55 \pm 0.34$	55	$4.62 \stackrel{-}{\pm} 0.57$	72
0.251 - 0.550	0.4	$5.18\pm0.28$	56	$4.74 \pm 0.75$	65
0.351 - 0.650	0.5	$5.10\pm0.30$	58	$4.52 \pm 0.86$	64
0.451-0.750	0.6	$4.78\pm0.08$	62	$4.63 \pm 0.84$	65
0.551 - 0.850	0.7	$5.06 \pm 0.23$	67	$3.95 \pm 0.37$	73
0.651-0.950	0.8	$5.64 \pm 0.27$	59	$4.59\pm0.19$	77
0.751-0.050	0.9	$5.71\pm0.26$	54	$4.22\pm0.47$	70
0.851-0.150	0.0	$4.77 \pm 0.61$	54	$4.00 \pm 0.48$	61

Table 68Statistics of D in odd and even cycles

	Cycles			
	all	odd	even	
Ф,	0.03	0.16	0.98	
Φ,	0.32	0.35	0.33	
Φ,	0.69	0.60	0.70	
$\Phi_{\star}$	0.85	0.88	0.84	
$A_1$	0,39	0'51	0'46	
A.	0,29	0'49	0'37	
A,	0'25	0'33	0'51	
$A_{\bullet}$	0'32	0'64	0'19	
5	4'75	5'11	4'46	

Table 69Parameters of curves D

it is apparent that the dependence  $D = D(\Phi)$  reveals a suggestion of a double-wave which, however, owing to the large dispersion of values D is rather problematic.

The dispersion in the values of the maximum linear diameters of the comas available of 444 comets is substantially smaller than in the case of the apparent diameters. While the ratio between the mean and highest values was

$$\overline{D}: D_{\max} = 1:25,$$

it now is, in the linear diameters, only

$$\overline{D}_0: D_{0\max} = 1: 12.$$

The disturbing effect of different geocentrical distances is in this case eliminated, too, so that the material is ready for direct treatment; the results are contained in Figures 33, 35 and Tables 70 to 72. In them, the values  $D_{\bullet}$ 



## Table 70

Fig. 35. Curves of characteristics of the cometary head and tail in odd and even cycles.

i-1 <b>A</b>	ж	Odd cycles		Even cycles		
$\operatorname{int} \boldsymbol{\varphi} \qquad \boldsymbol{\varphi}$	Ψ	$D_0$	N	· D ₀	N	
-		E.U.	1	E.U.		
0.951 - 0.250	0.1	$30.3 \pm 5.2$	55	30.9 + 4.2	66	
0.051 - 0.350	0.2	31.0 + 4.4	63	32.7 + 3.2	65	
0.151 - 0.450	0.3	33.3 + 4.0	60	$31.4 \pm 2.8$	76	
0.251 - 0.550	0.4	26.1 + 2.1	59	27.6 + 1.7	72	
0.351 - 0.650	0.5	26.1 + 2.0	62	$27.6 \pm 1.7$	73	
0.451-0.750	0.6	$25.0 \pm 1.4$	65	24.8 + 0.8	71	
0.551 - 0.850	0.7	26.2 + 0.4	74	$28.2 \pm 2.7$	78	
0.651 - 0.950	0.8	28.0 + 1.4	65	31.2 + 2.2	80	
0.751 - 0.050	0.9	$26.2 \pm 2.1$	59	29.8 + 3.7	72	
0.851 - 0.150	0.0	$\cdot 26.1 + 2.2$	56	$29.0 \pm 4.0$	61	

Table 71 Statistics of  $D_0$  in odd and even cycles

Table 72 Parameters of curves  $D_0$ 

	Cycles				
	all	odd	even		
Ф,	0.59	0.62	0.59		
Ф,	0.28	0.27	0.19		
Ā,	3.6	2.8	4.6		
$A_2$	3.8	5.7	3.5		
n	28.6	27.8	29.3		

are expressed in linear radii of the Earth. From these figures and tables it results that the dependence  $D_0 = D_0(\Phi)$  is of a similar character as function  $H_{10} = H_{10}(\Phi)$ , that is, actually a single-wave, in this case with a somewhat more pronounced suggestion of a secondary maximum at  $\Phi = 0.8$ . Thus, in the course of the eleven-year cycle of solar activity, a greater linear diameter of the comet corresponds, too, to a greater absolute brightness.

A certain disagreement with the form of curves  $H_{10} = H_{10}(\Phi)$  may be found only in the ratio of their amplitudes in the odd and even cycles which in the case of  $D_0$  are practically equal.

# 8.2.7. Statistics of the maximum apparent and linear lenght of cometary tails

The maximum angular length of the tails of all 563 comets under observation, if put together, reveals approximately the same dispersion as the maximum apparent coma diameter. The ratio between the mean and maximum value of C is

$$\overline{C}: C_{\max} = 1:28.$$

It is for this reason that, first of all, the observational material must be again submitted to discussion. The angular length of the cometary tail depends, in addition to the observational conditions, also on its linear length S, and on its space-orientation relative to the Earth. In the case that the tail is averted directly away from the Sun, which usually is the case, the second condition is reduced to the determination of the mutual position of the members of the system Sun-Earth-comet; then, the length C may be determined from the well-known formula

(8.2) 
$$\operatorname{cotg} C = \frac{\Delta}{S} \operatorname{cosec} k + \operatorname{cotg} k$$

where k is the phase angle at the comet.

Let us investigate, first of all, the influence exerted on the course of the curve  $C = C(\Phi)$  by the dispersion in the actual length S of the cometary tails; this dispersion, in fact, attains the exceptionally high value:

$$S:S_{\max}=1:74$$

From cometary physics it is known that exceptionally powerful tails are observable only in some of the very bright comets having a considerable supply of gas. Although a sudden rise in the solar activity may result in certain anomalies in the tail of such a comet, together with a certain further extension of this tail, the existence itself of such anomalously powerful tails cannot be directly associated to the solar activity or to the observational conditions. Therefore, it is indispensable a priori to eliminate such comets from the statistics. So as to reduce the value of dispersion to the acceptable size of  $\overline{S}: S_{\max} = 1:10$  we must content ourselves with comets having S < 0.100 A. U. In curve  $S = S(\Phi)$  in this case the maximum amplitude is  $\Delta S = 0.0017$  A. U. at a mean value of  $\overline{S} = 0.010$  A. U., which in curve  $C = C(\Phi)$  may reveal itself by a maximum relative uncertainty of  $\pm 20$ 

$\operatorname{int} {oldsymbol{arPsi}}$	Weighted values					
	Φ	C	N			
	1	0 0	1			
0.951 - 0.250	0.1	$0.72 \pm 0.11$	142			
0.051 - 0.350	0.2	$0.72 \pm 0.11$	157			
0.151 - 0.450	0.3	$0.85 \pm 0.07$	157			
0.251 - 0.550	0.4	0.72 + 0.06	138			
0.351 - 0.650	0.5	0.67 + 0.07	136			
0.451 - 0.750	0.6	$0.85 \pm 0.17$	144			
0.551 - 0.850	0.7	1.22 + 0.25	159			
0.651 - 0.950	0.8	$1.27 \pm 0.23$	153			
0.751 - 0.050	0.9	$1.08 \pm 0.28$	137			
0.851 - 0.150	0.0	$0.58 \pm 0.04$	135			

		T	able	73	
Statistics	of	С	(for	S<0.10	A.U.

per cent, which, as such, cannot explain the ascertained course of the curve  $C = C(\Phi)$ , the values of which are given in Figures 33, 35, and Tables 73-75.

int <b>Ø</b>		Odd cycles	3	Even cycles		
	Ψ	C	N	C	N	
		0 0				
0.951 - 0.250	0.1	0.65 + 0.03	62	$0.77 \pm 0.18$	80	
0.051 - 0.350	0.2	0.72 + 0.04	74	0.72 + 0.18	83	
0.151 - 0.450	0.3	$0.86 \pm 0.06$	69	$0.84 \pm 0.13$	88	
0.251 - 0.550	0.4	$0.90 \pm 0.06$	64	$0.56 \pm 0.07$	74	
0.351 - 0.650	0.5	$0.77 \pm 0.12$	64	$0.59 \pm 0.07$	72	
0.451 - 0.750	0.6	$0.78\pm0.12$	68	$0.90 \pm 0.23$	76	
0.551 - 0.850	0.7	$1.09 \pm 0.26$	78	$1.33\pm0.25$	81	
0.651 - 0.950	0.8	$1.27 \pm 0.19$	73	$1.28 \pm 0.29$	80	
0.751-0.050	0.9	$1.16 \pm 0.24$	67	$1.01 \pm 0.33$	70	
0.851-0.150	0.0	$0.71 \pm 0.07$	65	$0.45 \pm 0.08$	70	
	l	•				

Table 74Statistics of C in odd and even cycles

Table 75 Paremeters of curves C

		Cycles	
	all	odd	even
$ \begin{array}{c}                                     $	0.03 0.25 0.48 0.77 0°31 0°01 0°21 0°41 0°87	0.09 0.37 0.55 0.81 0°25 0°02 0°15 0°38 0°90	0.02 0.23 0.45 0.74 0°41 0°03 0°33 0°52 0°85

The restriction in the linear length of the tails to S < 0.1 A. U., of course, offers no security that the statistics of the apparent length of the cometary tails would be devoid of all anomalies. Actually, the changes in curve  $C = C(\Phi)$  may be due to the already mentioned exceptional position of the Sun, the Earth and the comet. These effects are added up with meteorological factors, and the resulting curve  $C = C(\Phi)$  is, then, their reflexion-picture. Therefore, this curve, though it reveals a suggestion of a double-wave which we would expect in the case of a direct dependence of the tail-lengths on the meteorological factors, cannot, in itself, serve as a proof of the influence of weather on the cometary characteristics.

The maximum linear length of the tail is already freed from the influence of the geometrical situation within the system Sun-Earth-comet, it contains, however, in itself, the effect of the meteorological conditions. This effect, similarly as in the case of the linear coma diameters, cannot be entirely eliminated. We only may reduce it by confining ourselves to comets of an angular length that did not surpass a certain limit on the sky. In the same way, we also shall eliminate comets with abnormally powerful tails. So as to obtain a ratio of  $\overline{C}$ :  $C_{\max} = 1$ : 10 between the average and maximum values, we must confine ourselves to  $C \leq 10^{\circ}$ . Function  $S = S(\Phi)$ , then, has a course, which with its form again reminds the function  $H_{10} = H_{10}(\Phi)$ ; thus, to a greater absolute brightness corresponds a longer tail (Figure 33, Table 76). Figures 34-35 indicate that agreement with curve  $H_{10}$ 

int ${oldsymbol{arPhi}}$ .	Weighted values					
	Φ	S	N			
	1	A. U.				
0.951 - 0.250	0.1	0.0216 + 0.0030	153			
0.051 - 0.350	0.2	$0.0320 \pm 0.0072$	· 169			
0.151 - 0.450	0.3	$0.0279 \pm 0.0082$	165			
0.251 - 0.550	0.4	0.0300 + 0.0082	r 146			
0.351 - 0.650	0.5	$0.0120 \pm 0.0022$	139			
0.451 - 0.750	0.6	$0.0131 \pm 0.0026$	146			
0.551 - 0.850	0.7	$0.0156 \pm 0.0033$	162			
0.651 - 0.950	0.8	$0.0186 \pm 0.0015$	158			
0.751 - 0.050	0.9	$0.0196 \pm 0.0016$	146			
0.851 - 0.150	0.0	$0.0221 \pm 0.0030$	146			

Table 76 Statistics of S (for  $C \leq 10^{\circ}$ )

Table 77 Statistics of S in odd and even cycles

int ${oldsymbol arPhi}$		Odd cycles	,	Even cycles	
	Ψ	S	' N	S	N
		A. U.		<b>A.</b> U.	
0.951-0.250	0.1	$0.0251 \pm 0.0073$	67	$0.0189 \pm 0.0022$	86
0.051-0.350	0.2	$0.0374 \pm 0.0077$	81	$0.0271 \pm 0.0079$	88
0.151 - 0.450	0.3	$0.0288 \pm 0.0088$	74	$0.0272 \pm 0.0077$	91
0.251 - 0.550	0.4	$0.0305 \pm 0.0087$	68	$0.0295 \pm 0.0078$	78
0.351 - 0.650	0.5	$0.0092 \pm 0.0023$	65	$0.0145 \pm 0.0020$	74
0.451 - 0.750	0.6	$0.0096 \pm 0.0023$	68	$0.0162 \pm 0.0024$	78
0.551 - 0.850	0.7	$0.0143 \pm 0.0042$	80	$0.0169 \pm 0.0025$	82
0.651-0.950	0.8	$0.0180 \pm 0.0025$	75	$0.0191 \pm 0.0008$	83
0.751-0.050	0.9	$0.0180 \pm 0.0026$	70	$0.0209 \pm 0.0018$	76
0.851-0.150	0.0	$0.0254 \pm 0.0070$	69	$0.0191 \pm 0.0023$	77
	1			4. •	

 $= H_{10}(\Phi)$  is attained also in the ratio of the depth of the amplitudes within the odd and even cycles. A further finding of interest is the fact that the meteorological agents affect the resulting curves fundamentally less than the curves of the linear coma diameters, as well as of the absolute magnitudes.

The course of S in the odd and even cycles is included in Table 77. The parameters of the S-curves are in Table 78.

	Cycles					
	all	odd	even			
Þ,	0.54	0.54	0.56			
$\Phi_{a}$	0.28	0.27	0.28			
$\overline{A_1}$	0.010	0.014	0.007			
$\overline{A_2}$	0.012	0.016	0.009			
s	0.0214	0.0219	0.021			

	Tahle 78	
Para	ameters of curves	S

## 8.3. Causalities in the form of the curves of cometary characteristics within the solar cycle

A study of the form of the curves of cometary characteristics revealed that during the solar cycle not all of them change in the same way. Nine cometary characteristics reveal a qualitatively equal form of curves in both cycle-types. From the form of the curves it is apparent that these characteristics are divided into two classes:

1. Characteristics of the first class. The curve reveals within the cycle a double-wave with maxima at  $\Phi \approx 0.3$  and  $\Phi \approx 0.8$ , while, at the same time, both are either equally high, or the second is higher. This class contains the characteristics as follows: cometary discoveries  $N_y$ , the function of the visual importance of tails  $\tau_y$ , the maximum apparent diameters D, and the maximum apparent length of cometary tails C; out of them, the most reliably determined are the first two characteristics, while the remaining may be considered rather only probable elements of this class.

The mutual agreement as well as differences between the individual characteristics of the first class may be assessed from Table 79. In it, for each characteristic, the phases of all four extremes, their weights, the mean relative semi-amplitude expressed in per cent, and the total number of comets used for the computation are given. The agreement in the position of the extremes, determined from the individual characteristics is very good both in the odd, and even cycles separately as well as together. From column  $\overline{A}$  it is obvious that the greatest changes within the solar cycle are

Characteristic	Cycles	$\Phi_1$	$w(\mathbf{\Phi_1})$	Φ,	$w(\mathbf{\Phi_2})$	Φ,	$w(\mathbf{\Phi_3})$	$\Phi_4$	w( <b>P</b> 4)	Ā	N
DT	all	0.98	3.0	0.26	4.9	0.49	. 1.1	0.73	3,4	9 %	563
(weighted	odd	0,07	1.7	0.22	1.6	0.49	0.9	0.72	5.Q	11 %	259
values)	even	0.96	7.2	0.28	2.0	0.51	0.8	0.76	0.9	8 %	304
N	all	0.93	2.1	0.24	1.9	0.51	3.0	0.75	2.7	10 %	551
(not-weighted	odd	-	_		_	-		-	,	-	
values)	even	-	_	-	-	-		-	-	-	
Ť	all	0.99	5.0	0.29	8.5	0.53	1.4	0.79	1.6	11 %	563
(weighted	odd	0.98	1.0	0.25	3.8	0.53	2.1	0.78	1.5	15 %	259
values)	even	0.99	2.8	0.30	2.1	0.54	0.6	0.78	1.1	8 %	304
τ	all	0.92	2.8	0.24	6.5	0.53	2.2	0.78	0.9	18 %	551
(not-weighted	odd	-	-		-	-	-	-	-		
values)	even	-	-	-	-	-	-		_		
. D (weighted values)	all	0.03	0.7	0.32	0.7	0.69	1.0	0.85	1.1	7 %	418
	odd	0.16	0.9	0.35	1.6	0.60	4.1	0.88	2.5	10 %	192
	even	0.98	1.0	0.33	0.6	0.70	1.4	0.84	0.6	8 %	226
C	all	0.03	5.2	0.25	0.1	0.48	3.0	0.77	1.7	27 %	486
(weighted	odd	0.09	8.3	0.37	0.3	0.55	1.3	0.81	2.0	22 %	228
values)	even	0.02	4.1	0.23	0.2	0.45	4.7	0.74	1.9	38 %	258

 Table 79

 Comparison of parameters of the characteristics of the first class

revealed in the angular length of the tails, the least in the angular coma diameters. The resulting values of the phases determined from all characteristics of the first class are for all cycles together as well as for the odd and even cycles separately given in Table 80. It becomes evident that in the odd cycles, the basic minimum is shifted for 0.1 period in the direction of the increasing phase with regard to the same minimum in the even cycles. In the remaining three minima, there are no systematic differences in their position in the odd and even cycles.

T۶	hle	80	
тc	LDIU	00	

Cycles	${\it I}\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	$arPsi_2$	$arPsi_{s}$	$\Phi_{4}$
all	$0.98\pm0.01$	$0.27\pm0.01$	$0.52\pm0.02$	$0.76 \pm 0.01$
odd	$0.08\pm0.01$	$0.27\pm0.02$	$0.56\pm0.02$	$0.78\pm0.01$
even	$0.98\pm0.01$	$0.29\pm0.01$	$0.51 \pm 0.04$ .	0.77 ± 0.01

2. Characteristics of the second class. The curve reveals during the cycle, in principle, a single wave with a prominent maximum at  $\Phi \approx 0.2$  and a minimum at  $\Phi \approx 0.6$ ; at  $\Phi \approx 0.8$ , there is either a local maximum with an amplitude substantially smaller than that of the primary maximum, or even only an inflexion. This class, contains first of all, the curve of the absolute brightness  $H_{10}$ , then the curves of the heliocentrical r and geocentrical  $\Delta$  distances of the comet at the time of discovery, as well as the curves of the maximum linear coma diameters  $D_0$ , and of the maximum linear length of tails S. The curves of these characteristics reveal altogether higher amplitudes in the odd cycles and, with the exception of S, their mean levels are somewhat higher in the even cycles. The curves are, moreover, characterized by several prominent deviations from the curves of the sunspot numbers:

a) it is, first of all, a considerable phase-shift which in the maxima of both curves exceeds 0.1 of the period and in the minima even almost 0.4 of the period;

b) this phase-shift is of such nature that both to the maximum and minimum in the curve of sunspot numbers corresponds precisely the mean value of each of the characteristics of the second class;

c) while the curve of the sunspot numbers reveals a steeper increase and a slower drop, in our curves just the reverse is the case.

All these deviations from the curve of sunspot numbers R are also fully reflected in the value of the correlation-factor  $\psi$  as well, indicating the relationship between the sunspot number and the value of the characteristics of the second class. For the absolute magnitude and both distances at the time of discovery of the comet, the mentioned correlation factor attains in an average cycle the following values:

$\psi(\mathbf{R},$	$H_{10}$	) =	-0.12	$\pm 0.04,$
$\psi(R,$	<b>r</b> )	=	+0.07	$\pm$ 0.04,
$\psi(R,$	⊿)	==	+0.07	$\pm$ 0.04,
	H	۱	0.04	1.0.06

in the odd cycles

 $\begin{array}{l} \Psi(R, H_{10}) = -0.04 \pm 0.06, \\ \psi(R, r) = +0.05 \pm 0.06, \\ \psi(R, \Delta) = +0.06 \pm 0.06, \end{array}$ 

and in the even cycles

$\psi(R, H_{10})$	=	$-0.17 \pm 0.06$ ,
$\boldsymbol{\psi}(\boldsymbol{R}, \boldsymbol{r})$	=	$+0.09 \pm 0.06$ ,
$\psi(R, \varDelta)$	===	$+0.03 \pm 0.06$ .

Thus, altogether a very low (practically zero) degree of correlation is concerned; therefore, the influence of solar activity on the cometary characteristics of the second class decidedly cannot be understood as a linear

relation between them and the sunspot number. The mutual relations between the individual characteristics of the second class can be seen in

	-1								
Characteristic	Cycles	$\boldsymbol{\varPhi}_1$	w( <b>P</b> ₁ )	Φ,	w( <b>P</b> ₂ )	A	Φ,	A ₀	N
	all	0.63	2.6	0.25	6.9	5%	0.74	0.4 %	558
(weighted	odd	0.59	6.5	0.18	2.5	11 %	0.85	0.2 %	256
values)	even	0.82	8.9	0.30	3.3	5 %	0.91	0.5 %	302
	all	0.60	1.2	0.19	1.4	3 %	0.70	1.1 %	507
(not-weighted	odd	-	-	`	-		-	-	-
values)	even	1-	-		-	_	<u> </u>	-	
· 1	all	0.58	2.9	0.24	. 4.1	9 %	0.80	0.9 %	558
(weighted	odd	0.59	1.9	0.23	.2:9	13 %	0.77	3.0 %	256
values)	even	0.57	2.7	0.26	1.7	4 %	0.95	1.7 %	302
	all	0.60	2.4	0.25	2.3	10 %	0.78	1.4 %	507
(not-weighted	odd	-			-		-,	-	
values)	even	-	-		-			-	
Н	all	0.61	7.3	0.23	4.4	39 %	0.82	2.4 %	563
(weighted)	odd	0.62	6.5	0.27	3.3	61 %	0.81	6.4 %	259
values)	even •	0.60	4.4	0.16	2.2	31 %	0.73	3.8 %	304
H	all	0.60	4.0	0.26	3.4	53 %	0.82	6.4 %	515
(not-weighted	odd			_	-	_	-		_
values)	even	-	-		<u> </u>	-	_	-	-
	all	0.59	7.2	0.28	1.2	13 %	0.81	3.5 %	444
(weighted	odd	0.62	2.3	0.27	1.4	16 %	0.78	3.7 %	206
values)	even	0.59	5.1	0.19	1.1	14 %	0.82	4.0 %	238
s	all	0.54	4.2	0.28	1.5	52 %	0.95	1.8 %	510
(weighted	odd	0.54	6.1	0.27	1.9	69 %	0.85	0.0 %	239
values)	even	0.56	3.2	0.28	1.2	38 %	0.90	6.1 %	271

 Table 81

 Comparison of parameters of the characteristics of the second class

Table 81, where for each of them the phases of the extremes of the single wave and their weights, the mean relative semi-amplitude  $\overline{A}$  of the single wave, then, the phase  $\Phi_0$  of the local maximum (eventually of the inflexion) on the increasing part of the curve and its relative semi-amplitude  $A_0$  (if  $A_0 = 0$ , it is a case of an inflexion point), and, finally, the total number of comets used for the computation are given. In the absolute magni-

tude, the value of amplitudes  $\overline{A}$  and  $A_0$  must be understood as variations of the brightness. Column  $\overline{A}$  indicates that during the solar cycle the greatest changes may be found just in the absolute brightness of the comets and in the linear length of the tails. The results of Table 81 persuade us, moreover, that the amplitude of the local maximum at  $\Phi \approx 0.8$  is of a lower order than that of the principal extremes, since for their ratio we obtain on the average the value  $0.08 \pm 0.01$ . As for the phases of the extremes, there is between the individual characteristics again, on the whole, a good agreement, although the dispersion of the values in the even cycles in somewhat greater. The resulting values of the phases of the extremes are presented in Table 82.

Cycles	$\varPhi_1$	$\varPhi_2$	$\varPhi_0$
all	$0.59\pm0.01$ ,	$0.25\pm0.01$	$0.80\pm0.02$
odd	$0.59\pm0.01$	$0.24\pm0.01$	$0.81\pm0.01$
even	$0.67\pm0.04$	$0.25\pm0.02$	$0.86\pm0.03$

 Table 82

 Resulting values of phases of extremes in the curves of the characteristics of the second class

The most essential difference between the characteristics of the first and second class, encountered up till now, is the unequal period which is reflected in their form: the characteristics of the first class have a period of 5.5 years, those of the second class of 11.

In two characteristics, namely, the apparent brightness of the comet at the time of discovery and the Dobrovolsky seasonal index, qualitative differences in the form of the curves in both cycle-types are encountered. In the apparent brightness, these differences may be explained by the great inaccuracy in the original values, that is, by observational errors. In the seasonal index, they are probably due to the unappropriate, too rough way of defining of this quantity which, in all probability, does not correspond to the actual state of things.

#### 8.4. Analysis of the material for the study of long-period changes

In using for the determination of the form of curves of the cometary characteristics within the eleven year solar cycle the method described in Section 8.2., we tacitly assumed that in the results both the individual differences between the comets and the secular changes as well as the differences associated with the unequally intense solar activity in individual cycles will become balanced. As long as the individual differences do not reveal a maximum relative dispersion from the average value exceeding more than one order — and the characteristics of those comets not satisfying this condition have been eliminated from the statistics — their influence on the resulting form of the curves (provided the material is abundant enough) may be considered as of a secondary nature.



Fig. 36. Secular changes of the cycle-values of the characteristics  $N_{r}$ ,  $\tau_{r}$ , m.

The influence of the secular changes in the cometary characteristics of group A) on their course within an average eleven-year cycle may be observed by comparing their weighted and not-weighted values; from this comparison it cannot be seen that during the long periods systematic changes in the depth of the amplitudes and in the phases of extremes of the curves would occur. Systematic differences between the weighted and not-weighted values reveal themselves, however, in the average value of the characteristics,  $\overline{X}$ , during the cycle (quantities  $N_y$  and  $\tau_y$  excepted, in which the average values of the system of weighted and not-weighted values have been definitorically put equal to one another), which further down will be called the cycle-values of the cometary characteristics.

These systematical changes in the cycle-values  $\overline{X}$  within the system of

weighted and not-weighted values are, of course, a consequence of the continuous progress in observational methods. Important is the fact that in this historic progress participate both the introduction of revolutionary discoveries into the methods of observation (use of telescopes in observations of and scanning for comets, photographs of comets, and the like) and the activity of the so called ,,comet hunters" which causes jumps to appear in the curves, even if, in addition to this, the evolutional component becomes active, too.

The study of curves of the individual cometary characteristics within the odd and even cycles showed (particularly in those of them which were most reliably determined) that there exist systematical differences between the two cycle-types both in the amplitude of the extremes and in the cycle values of the quantities which now will be more detailedly examined.

The secular changes of the cycle-values of ten cometary characteristics (without the seasonal index) are presented in Figures 36, 37, and 38. For reasons apparent from the following, in each diagram the time course, too, of the maximum monthly sunspot numbers is plotted. In all quantitites, the values for the odd cycles are given in empty circlets and are connected by dashed lines, and those valid for the even cycles in full circlets and full lines. The number at each point indicates the number of comets from which the cycle-value has been computed; in the case of the absolute magnitude, it is the sum total from the estimates of accuracy of the individual values in VSEKHSVIATSKY's scale (VSEKHSVIATSKY, 1956, 1958).

In the curves  $N_y$  and  $\tau_y$  (Figure 36), again with a very similar course, incessantly alternating periods of a length of about  $50 \pm 30$  years are apparent, during which, the sign of the difference of the cycle-value  $N_y$ , as well as  $\tau_y$ , in both cycle-types remains the same. The character of the curve of the apparent magnitudes (Figure 36) may — with regard to their intrinsic errors — be guessed with more justification not earlier than from the period 1800 on. Until 1850, the cycle-values of the apparent brightness of comets are higher in the odd cycles whereupon, from 1850 on, the reverse is true. The deviations, however, are altogether less than 1^m. On the whole, from Figure 36 a certain relation between the course of the differences of the apparent magnitude, one the on side, and of the quantities  $N_y$  and  $\tau_y$ , on the other, may be ascertained in the odd and even cycles in that respect that with a greater number of discovered comets the average brightness at the time of discovery increases.

From the other characteristics of group A), the time-course of which is presented in Figure 37, an interesting course is revealed only by the absolute magnitude: with the exception of two comparatively short time intervals (30 years on the whole), the absolute brightness of comets is systematically greater in even cycles.



Fig. 37. Secular changes of the cycle-values of the characteristics  $r, \Delta, H_{10}$ .

The cycle-values of the characteristics of the cometary coma and tail (Figure 38) became observable only from the fifties of the 18th century on. While in all characteristics of the comets as a whole the securar changes could be very well observed thanks to the already mentioned development of observational methods, in these characteristics this effect is either less prominent which fact is strengthened, moreover, by the great dispersion of the cycle-values (quantities C and S), or it is not visible at all (quantity  $D_0$  and, practically, D, too). This circumstance may be explained by the selection of the material from which the abnormally high individual values have been eliminated in accordance with the criteria mentioned in Paragraphs 8.2.6. and 8.2.7. and which in the old cycles were (in per cent) much more frequent.

Cycle-values of ten cometary characteristics are presented in Table 83, together with the most important parameters of solar cycles (number of the cycle, time-interval, type, period, maximum monthly sunspot number and its average value within the observation-intervals of comets). The values of the cycle characteristics, determined from three or less individual values, are given in parenthesis; column N shows the total number of comets discovered within the cycle. The cycles before 1755 are, in accordance with GNEVYSHEV and OL (1948), denoted by zero and negative numbers.

3 63-20

Table 83 List of cycle-values of ten cometary characteristics

1

Ν  $\begin{array}{c} 0.01\\ (0.01)\\ (0.01)\\ 0.03\\ 0.018\\ 0.018\\ 0.018\\ 0.018\\ 0.018\\ 0.018\\ 0.018\\ 0.018\\ 0.012\\ 0.012\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.$ D (0.05)(0.04)(0.05)(0.04)(0.05)S ¥.  $\begin{array}{c} 1.1\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0)\\ (3.0$ (5.0)(8.0) (6.0) (0.8) (7.3) C 0 rad. Earth å 6 5  $\begin{array}{c} (10.5) \\ (1.5) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0) \\ (7.0)$ (3.0)(4.5) (4.0) Q • 

 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0  $H_{10}$ (5.1)(5.5)E A. U. (0.48)(0.54)  $\begin{array}{c} (0.17)\\ (0.03)\\ 0.054\\ (0.036)\\ (0.036)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\ (0.033)\\$ P A. U. (0.58) (0.74)  $\begin{array}{c} (1.04)\\ (0.83)\\ 0.68\\ 0.068\\ 0.038\\ 0.038\\ 0.038\\ 0.038\\ 0.038\\ 0.038\\ 0.038\\ 0.036\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0.096\\ 0$ 5 
 (2.5)

 (2.5)

 (2.5)

 (2.5)

 (2.5)

 (2.5)

 (2.5)

 (2.5)

 (2.5)

 (2.5)

 (2.5)

 (2.5)

 (2.5)

 (2.5)

 (2.5)

 (2.5)

 (2.5)

 (2.5)

 (2.5)

 (2.5)

 (2.5)

 (2.5)

 (2.5)

 (2.5)

 (2.5)

 (2.5)

 (2.5)

 (2.5)

 (2.5)

 (2.5)

 (2.5)

 (2.5)

 (2.5)

 (2.5)

 (2.5)

 (2.5)

 (2.5)

 (2.5)

 (2.5)

 (2.5)

 (2.5)

 (2.5)

 (2.5)

 (2.5)

 (2.5)

 (2.5)

 (2.5)

 (2.5)

 (2.5)</ 9.11 8.82 9.36 9.59 10.79 11.17 (4.0) (2.5) ខ ٤  $\begin{array}{c} 0.49\\ 0.13\\ 0.020\\ 0.020\\ 0.056\\ 0.020\\ 0.054\\ 0.020\\ 0.054\\ 0.020\\ 0.054\\ 0.020\\ 0.054\\ 0.054\\ 0.054\\ 0.054\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.055\\ 0.05$ 2  $\begin{array}{c} 0.24\\ 0.07\\ 0.07\\ 0.08\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.03\\ 0.02\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\$ •~ 124  $R_{\rm max}$  $\begin{array}{l} (135) \\ (145) \\ (155) \\ (55) \\ (55) \\ (55) \\ (55) \\ (55) \\ (55) \\ (55) \\ (55) \\ (55) \\ (55) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155) \\ (155)$ d, Solar cycle type odd 1634.0 - 1645.0 - 1655.0 - 1645.0 - 1655.0 - 1655.0 - 1656.0 - 1679.5 - 1699.5 - 1699.5 - 1699.5 - 1699.6 - 1699.5 - 1699.6 - 1723.5 - 1734.0 - 1712.0 - 1723.5 - 1734.0 - 1712.0 - 1723.5 - 1734.0 - 1745.5 - 1734.0 - 1745.5 - 1776.5 - 1776.5 - 1776.5 - 1776.5 - 1776.5 - 1776.5 - 1776.5 - 1766.5 - 1775.5 - 1784.7 - 1798.3 - 1830.6 - 1823.3 - 1830.6 - 1823.3 - 1830.6 - 1823.3 - 1830.6 - 1867.2 - 1878.9 - 1889.6 - 1867.2 - 1878.9 - 1889.6 - 1867.2 - 1878.9 - 1889.6 - 1867.2 - 1878.9 - 1889.6 - 1867.2 - 1878.9 - 1889.6 - 1867.2 - 1878.9 - 1889.6 - 1867.2 - 1878.9 - 1889.6 - 1867.2 - 1878.9 - 1889.6 - 1867.2 - 1878.9 - 1889.6 - 1867.2 - 1878.9 - 1889.6 - 1867.2 - 1878.9 - 1889.6 - 1867.2 - 1878.9 - 1889.6 - 1867.2 - 1878.9 - 1889.6 - 1867.2 - 1878.9 - 1889.6 - 1867.2 - 1878.9 - 1889.6 - 1867.2 - 1878.9 - 1889.6 - 1867.2 - 1878.9 - 1889.6 - 1867.2 - 1878.9 - 1889.6 - 1867.2 - 1878.9 - 1889.6 - 1867.2 - 1878.9 - 1889.6 - 1867.2 - 1878.9 - 1889.6 - 1867.2 - 1878.9 - 1889.6 - 1867.2 - 1878.9 - 1889.6 - 1867.2 - 1878.9 - 1889.6 - 1867.2 - 1878.9 - 1889.6 - 1867.2 - 1878.9 - 1889.6 - 1867.2 - 1878.9 - 1889.6 - 1867.2 - 1878.9 - 1889.6 - 1867.2 - 1878.9 - 1889.6 - 1867.2 - 1878.9 - 1889.6 - 1867.2 - 1878.9 - 1889.6 - 1867.2 - 1878.9 - 1889.6 - 1867.2 - 1878.9 - 1889.6 - 1867.2 - 1878.9 - 1889.6 - 1867.2 - 1878.9 - 1889.6 - 1867.2 - 1878.9 - 1889.6 - 1867.2 - 1878.9 - 1889.6 - 1867.2 - 1878.9 - 1889.6 - 1867.2 - 1889.6 - 1867.2 - 1878.9 - 1889.6 - 1887.2 - 1889.6 - 1887.2 - 1889.6 - 1887.2 - 1889.6 - 1889.6 - 1889.6 - 1867.2 - 1889.6 - 1887.2 - 1889.6 - 1889.6 - 1889.6 - 1889.6 - 1867.2 - 1889.6 - 1880.6 - 1880.6 - 1880.6 - 1880.6 - 1880.6 - 1880.6 - 1889.6 - 1889.6 - 1889.6 - 1889.6 - 1889.6 - 1889.6 - 1889.6 - 1889.6 - 1889.6 - 1888.0 - 1889.6 - 1888.0 - 1888.0 - 1888.0 - 1888.0 - 1888.0 - 1888.0 - 1888.0 - 1888.0 - 1888.0 - 1888.0 - 1888.0 - 1888.0 - 1888.0 - 1888.0 - 1888.0 - 1888.0 - 1888.0 - 1888.0 - 1888.0 - 1888.0 - 1888.0 - 1888.0 - 1888.0 - 1888.0 - 1888.0 - 1888.0 - 1888.0 - 1888.0 - 1888.0 - 1888.0 - 1888.0 - 11901.7 - 1913.61913.6 - 1923.61923.6 - 1933.81933.8 - 1944.21944.2 - 1954.41619.0 889.6-1901.7 619.0 - 1634.01 int t 610.8-1 ů



Fig. 38. Secular changes of the cycle-values of the characteristics of the cometary head and tail.

# 8.5. Method of study of long-term changes in the differences of the cometary characteristics in both cycle-types

Long-term changes in the differences of the cycle-values of the cometary characteristics in the odd and even cycles in dependence on the changes of solar activity in both cycle-types were investigated through the introduction of the values defined by relations (8.3):

$$(8.3) \begin{cases} \partial N_{y} = 2 \frac{N_{y}(o) - N_{y}(e)}{N_{y}(o) + N_{y}(e)}, \\ \partial \tau_{y} = 2 \frac{\tau_{y}(o) - \tau_{y}(e)}{\tau_{y}(o) + \tau_{y}(e)}, \\ \partial m = -[m(o) - m(e)], \\ \partial r = r(o) - r(e), \\ \partial \Delta = \Delta(o) - \Delta(e), \\ \partial H_{10} = -[H_{10}(o) - H_{10}(e)], \\ \partial D = D(o) - D(e), \\ \partial D_{0} = D_{0}(o) - D_{0}(e), \\ \partial C = C(o) - C(e), \\ \partial S = S(o) - S(e). \end{cases}$$
In these equations, the cycle-value of quantity  $\overline{X}$  is in the odd cycle designated X(o), in the even cycle X(e). We shall determine the values  $\partial X$ , for instance, for every tenth year. In defining quantities  $\partial N_y$  and  $\partial \tau_y$ , with regard to the further procedure of the treatment, a reduction has been carried out in the increase of the differences  $|N_y(o) - N_y(e)|$ , or  $|\tau_y(o) - \tau_y(e)|$ , which is roughly proportional to the secular growth of  $N_y$ , or  $\tau_y$ . In the other characteristics, secular changes in the differences |X(o) - X(e)| are not apparent any longer, although the cycle-values as such of these characteristics are affected by the mentioned changes.

Let us denote, furthermore, the maximum monthly sunspot number within the cycle as  $R_{max}$ , and let us write analogously

$$\partial R_{\max} = R_{\max}(o) - R_{\max}(e).$$

Now, if we plot against  $\partial R_{\text{max}}$  successively the differences  $\partial N_y, \ldots, \partial S$ , we obtain relations, of which some are presented in Figures 39-42. The crosses designate the values from the period 1630-1730, when the number of comets within a cycle was 6 at the utmost, the empty circles the values from the years 1740-1840 (number of comets 4-20). and the full circles the values from the period 1850-1930 (number of comets 29-48). The



Fig. 39. Correlation between  $\partial R_{max}$  and  $\partial N_{y}$ .

strong drawn lines in these diagrams are regression lines of the relation in the case that we attribute to all values within the diagrams the same weight (so this is an analogy to the system of not-weighted values), the thinly drawn lines are, then, the regression lines of the relation in the case that we attribute to the values from the years 1630-1730 a zero weight, to those from the years 1740-1840 a weight of 1 and from the period 1850--1930 a weight of 2 (analogy to the system of weighted values). This second case does not consider at all the form of correlation within the period extending to 1730. For each of the ten cometary characteristics, the correlation coefficient of the dependence of their differences in the odd and even cycles on  $\partial R_{\max}$  has been computed. Moreover, in the dependence  $\partial m = \partial m (\partial R_{\max})$  the correlation coefficient also has been determined from the values of the whole period 1630–1730, with the exception of the years 1680 till 1720. In these years, in the odd cycles only 3 comets were discovered, namely, in 1689, 1695 and 1718. The last two of them were at



Fig. 40. Correlation between  $\partial R_{max}$  and  $\partial \tau_{y}$ .

	Coefficie	T nts of co	able 84 prrelatio	ons $\partial X = f(\partial R_{\max})$	, ,		•
	Not-weighted	Not-weighted values			Weighted values		
$f(\partial R_{\max})$	ψ	$\frac{\psi}{\Delta \psi}$	N	ψ	$\frac{\psi}{\Delta\psi}$	N	$\left  \left( \frac{\psi}{\Delta \psi} \right) \right $
an	$-0.56 \pm 0.12$	4.7	31	$-0.57 \pm 0.15$	3.8	20	4.2
<i>θτ</i> ,	$-0.67 \pm 0.10$	6.7	31	$-0.72 \pm 0.11$	6.5	20	6.6
дт	$\left\{\begin{array}{c} -0.52 \pm 0.13 \\ -0.79 \pm 0.07 \end{array}\right.$	4.0	31 26	$-0.81 \pm 0.08$	10.1	20	7.7
ðr	$+0.07 \pm 0.18$	0.4	31	$+0.71 \pm 0.11$	6.5	20	1.6
∂∆	$+0.44 \pm 0.15$	-2.9	31	$+0.29 \pm 0.21$	1.4	20	2.0
$\partial H_{10}$	$-0.06 \pm 0.18$	0.3	31	$-0.38 \pm 0.19$	2.0	20	0.8
∂D	$+0.28 \pm 0.25$	1.1	14	$+0.28 \pm 0.25$	1.1	14	1.1
$\partial D_0$	$-0.40 \pm 0.21$	1.9	16	$-0.43 \pm 0.20$	2.1	16	2.0
∂C	$-0.58 \pm 0.15$	3.9	20	$-0.65 \pm 0.13$	5.0	20	4.4
ðS	$-0.23\pm0.21$	1.1	20	$-0.19 \pm 0.22$	0.9	20	1.0
						•	



Fig. 41. Correlation between  $\partial R_{\max}$  and  $\partial m$ .

the time of discovery extraordinarily bright objects and caused, thus, a considerable increase of the value  $\partial m$ . After elimination of these five values, we obtain regression lines, drawn in Figure 41 in dashed. Table 84 comprises for each correlation — in addition to its coefficient  $\psi$  (with mean error) - also the ratio from the value of this coefficient and the error  $\frac{\psi}{\Delta \psi}$ , and the number of

values from which it has been established, both for the system of weighted and not-weighted values. The last column of the Table shows the geome-

trical mean from the ratios  $\frac{\psi}{\Delta w}$ .

Each of the values  $\partial X$  characterizes in its way the long-term changes, either in the activity of the comets, or in the quality of the observational conditions in the odd and even cycles, and the value  $\partial R_{\max}$ , as difference in the height of the cycles, is the parameter of the changes in the solar activity. All these quantities are introduced only to the just mentioned purpose, and it would be useless to try to interpret them in a different way, in the same way as it would be senseless to speak of an odd and even cycle at the given time simultaneously.



Fig. 42. Correlation between  $\partial R_{\max}$  and  $\partial C$ .

In analysing the properties of each of the ten dependences in Figures 39-42 we shall assert the following two viewpoints:

a) the reality of the dependence, given, in principle, by the value of the quotient from the size and error of the correlation coefficient;

b) the distribution of values with regard to  $\partial X = 0$ , contingently the value of the zero-point. The first criterion is thoroughly analysed in Table 84. According to the size of the coefficients of the individual correlations and ratios  $\frac{\psi}{\Delta\psi}$ , all quantities under consideration are divided into two classes:

 $\alpha$ ) the quantities  $\partial N_y$ ,  $\partial \tau_y$ ,  $\partial m$  and  $\partial C$  have altogether negative and in the absolute value greater than 0.50 correlation coefficients, and the geometrical mean from ratios  $\frac{\psi}{\Delta \psi}$  ranges in them from 4.2 to 7.7; on the average it is 5.8;

 $\beta$ ) the quantities  $\partial r$ ,  $\partial \Delta$ ,  $\partial H_{10}$ ,  $\partial D$ ,  $\partial D_0$  and  $\partial S$ , on the other hand, reveal a substantially lower degree of correlation; the mean from ratios  $\frac{\psi}{\Delta \psi}$  is in them altogether low, ranging from 0.8 to 2.0 and having an average of 1.3.

Of a real relation with the differences of the sunspot number one may speak only in the case of the quantities of class  $\alpha$ ). The quantities of class



Fig. 43. Frequency distribution of the values  $\partial X$  and  $\partial R_{max}$  within the system of not-weighted values.

 $\beta$ ), either are not a simple function of the sunspot numbers, or their cyclevalues are affected by a real dispersion of such degree that the systematical differences are hereby completely offaced.

The investigation of the cometary characteristics from the second point of view will be carried out on the basis of Figures 43 and 44. In the first of them, the frequency-curves of the differences of each of the ten cometary characteristics and of the corresponding differences of the sunspot numbers are presented for the system of not-weighted values, in the second the same curves for the system of weighted values. Since the cycle-values of the characteristics of the cometary coma and tail are determined rather unreliably, the uncertainty in their establishment may unfavourably affect the form, too, of the frequency-curves, so that in our consideration we shall rely, first of all, upon the curves of the characteristics of comets as a whole.



Fig. 44. Frequency distribution of the values  $\partial X$  and  $\partial R_{max}$  within the system of weighted values.

Let us, first of all, turn our attention at those quantities that were, from the first view-point, classified into the class  $\alpha$ ). Beside an evident asymmetry of their frequency-curves towards positive values it may be seen that with the exception of quantity  $\partial C$  — the mode lies in the region of negative values. At the same time, there is an altogether good agreement in the position of the modus in both systems of values. The quantities of class  $\beta$ ) also reveal an asymmetry of frequency-curves; in distinction to the quantities of class  $\alpha$ ), however, the curves are now extended in the opposite direction, towards strongly negative values. The modus lies, this time, in the region of zero-values (with the exception of quantity  $\partial H_{10}$  in which the influence of curve  $\partial m$  may be discerned). With only slight corrections, we thus obtain from the second criterion again a division of the cometary characteristics into two classes  $\alpha$ ) and  $\beta$ ).

#### 8.6. Properties of the eurves of the characteristics of classes $\alpha$ ) and $\beta$ )

In order to be able to draw certain conclusions concerning the real correlation established in Section 8.4., the form of the correlation relations must be investigated more in detail:

1. The quantities  $\partial N_y$  and  $\partial \tau_y$  drop rather steeply with increasing  $\partial R_{\max}$ ; from the position and the mutual gaping of the regression straight lines we may determine the most probable course of the correlation straight line. Thus, to an increase of  $\partial R_{\max}$  for 10 units corresponds, in the system of not-weighted values, a drop of  $\partial N_y$  for  $0.21 \pm 0.11$  and a drop of  $\partial \tau_y$  for  $0.21 \pm 0.08$ ; in the system of weighted values the corresponding decreases are somewhat lower:  $0.13 \pm 0.07$  and  $0.17 \pm 0.05$ . In the region of the most frequent values  $\partial R_{\max}$  (according to Figures 43, 44) the values  $\partial \overline{N}_y$ as well as  $\partial \overline{\tau}_y$  are strongly negative; from the system of not-weighted values results  $\partial \overline{N}_y = -0.43 \pm 0.20$ ,  $\partial \overline{\tau}_y = -0.41 \pm 0.14$ , from the system of weighted values  $-0.28 \pm 0.15$  and  $-0.46 \pm 0.12$ . This, consequently, means that in an average even cycle, for 30-40 per cent more comets are being discovered than in an odd cycle. LINK (1952) obtained from the years 1755-1951 a difference of about 25 per cent.

2. The dependece of quantity  $\partial m$  on  $\partial R_{max}$  reveals the highest value of correlation coefficient. This certainly is a surprising finding, if we recall the fact that during the eleven-year cycle the apparent brightness of comets at the moment of discovery did not reveal any interpretable dependence on its phase. This fact is the more prominent, as the highest values are by the coefficient of correlation attained in the system of weighted values, that is, in later values which have been determined more reliably, nontheless it classifies the apparent magnitude in this respect into that group of characteristics which are the indicators of night-cloudiness. We accept this relation, as there exist certain presuppositions for it which are absent in any other objective way of explanation; it is, for instance, evident that, from the statistical point of view, the increase of the absolute brightness of comets due to the rate of physical processes taking place in them (which are directly associated to the intensity of the exciting solar radiation) cannot reveal itself under the same observational conditions in the brightness of the comet at the moment of discovery, since, at the same time, the respective heliocentrical and geocentrical distances, too, are increased.

Our process of logic reasoning runs now as follows: the increase of nightcloudiness causes — in addition to the decrease of the number of newly discovered comets — also changes in their average apparent brightness at the moment of discovery. While the variation of the cometary discoveries may be explained by referring predominantly to a low and continuous cloudiness, we must, in the case of apparent magnitudes, operate with

a high cloudiness which affects the "clearness of the sky". Then, the assertion must be true that an increase of high cloudiness results in an increase of the limit of apparent brightness of comets at the moment of discovery. If we presuppose a positive correlation between both types of cloudiness and precipitations as well, we must arrive at the conclusion that in cycles with a higher precipitation activity, the limit of apparent brightness of comets at the moment of discovery must be higher. If we compare this assertion with what has been said in respect to cometary discoveries (which is also true of the cometary tails) we shall find that the correlation coefficient between  $\partial R_{max}$  and  $\partial m$  must be provided — owing to the definition of  $\partial m$  — precisely with an opposite sign than the correlation coefficient between  $\partial R_{max}$  and  $\partial N_y$ , or  $\partial \tau_y$ , or  $\partial C$ . From Table 84, however, just the contrary may be ascertained.

In the foregoing, the fact has been mentioned that there is not known any other objective way of explanation of this dependence. The paradox that arose between the results following from consideration and those obtained from the material may be explained only if we resort to the subjective factors. We assume that its effect is based on two fundamental and very simple experiences:

a) comets, in distinction to stars, are diffuse objects;

b) the brightness of comets at the moment of discovery has up till now been estimated from comparisons with the surrounding stars.

Under worse observational conditions — particularly owing to light clouds — the eye perceives the brightness of diffused objects considerably more weakened than the brightness of point-objects. Therefore, in order to make the mentioned paradox explicable, we must assume that the effect of the meteorological conditions (as such) on the apparent brightness of the comets at the time of discovery is smaller than the effect of this subjective factor (which, of course, itself is due to the changes of these conditions). Thus, for instance, an increase of high night-cloudiness (it may be understood both in the sense of its extent on the sky and in the sense of duration) would increase, objectively, the average observed apparent brightness of comets at the moment of discovery, at the same time, however, the human eye underrates its value while comparing its brightness with that of the stars for more, no doubt, than for the degree for which it increased owing to the presence of cloudiness. Moreover, the subjective factor may also affect the value of the zero point.

The foregoing consideration is, of course, only of a purely qualitative nature, and it would be highly useful to verify it quantitatively by experiments (for instance, on terrestrial objects).

From the material there results that to a change of  $\partial R_{\text{max}}$  for +10 units corresponds a change of  $\partial m$  for  $-0^{\text{m}}13$  to  $-0^{\text{m}}28$ , and that in the

region of most frequent values  $\partial R_{\text{max}}$ ,  $\partial m$  ranges within the limits from  $0^{\text{m}}$  to  $-1^{\text{m}}$ .

3. Quantity  $\partial C$  — in spite of the difficulties arisen during the treatment of the material — shows, on the whole nicely, a course analogous to that in the class of quantities  $\partial N_y$  and  $\partial \tau_y$ . To an increase of  $\partial R_{max}$  for 10 units corresponds a decrease of  $\partial C$  for  $0^{\circ}.26 \pm 0^{\circ}.13$  in the system of not-weighted values, and for  $0^{\circ}.25 \pm 0^{\circ}.10$  in the system of weighted values. In the region of most frequent values  $\partial R_{max}$  (according to Figures 43 and 44), quantity  $\partial C$  acquires the value  $-0^{\circ}.45 \pm 0^{\circ}.40$  in the system of notweighted values, and  $-0^{\circ}.40 \pm 0^{\circ}.20$  in the system of weighted values. In an average even cycle, thus, the most probable angular length of cometary tails in the sky attains a value exceeding the 1.5 multiple of its size in the odd cycles.

4. The quantities of class  $\beta$ ), that is  $\partial r$ ,  $\partial \Delta \ \partial H_{10}$ ,  $\partial D$ ,  $\partial D_0$ , and  $\partial S$  do not reveal, as already mentioned in Section 8.5., any systematical course with the change of  $\partial R_{\max}$ , nor does from their frequency curves — with the exception of the absolute magnitude — result any inclination towards positive or negative values. It is just only in the differences of the absolute brightness that a prominent inclination towards negative values becomes apparent. In all probability here, too, the action of the subjective factor, presupposed in the apparent brightnesses, makes itself felt, although, with regard to the fact that  $H_{10}$  is frequently being determined from a long series of observations carried out more carefully than in the case of the first orientative value of the brightness, its influence is somewhat reduced. This assertion is in agreement with the fact that the mutual relation between the cycle values of both cycle-types is in the period of the years 1850-1950 in the characteristics m and  $H_{10}$  very analogous.

It is interesting to note that the first three quantities revealed during the eleven-year cycle, too, a very low degree of correlation with the course of the sunspot numbers, and that the average value of ratio  $\frac{\psi}{\Delta \psi}$  amounted only to about 2.1.

Finally, let us compare the properties of the curves of the individual characteristics during the eleven-year cycle with the just investigated properties of their cycle-values in both cycle-types during a longer period of time. In Section 8.3, we have divided nine cometary characteristics into two classes; into the first class those characteristics have been classified the curves of which in the course of the eleven-year cycle reveal a double wave, into the second, the characteristics the curves of which form a single wave. From Sections 8.4, and 8.5, and from the present it follows that the characteristics belonging into the first class and into class  $\alpha$ ) are, in principle, identical, and the same is true also in the case of the characteristics

belonging into the second class and into class  $\beta$ ). If we apply the terminology of Section 8.3., the main conclusion of the study of the differences of the cycle-values of cometary characteristics in both cycle-types for the interval of the last three hundred years is the following: these differences in the characteristics of the first class reveal a real correlation with the difference of the maximum sunspot numbers of both cycle-types in the sense that to a higher value of the characteristics corresponds a lower  $R_{max}$ , and that in even cycles, their mean cycle-value is, then, greater than in the odd cycles; in the characteristics of the second class, there does not exist any real correlation between these differences and the differences of the maximum sunspot numbers of both cycle-types, nor can there be discerned a systematical difference between their cycle-values in both cycle-types.

Interesting is the difference of the behaviour of the curves  $\partial D$  and  $\partial C$ . In Section 8.3., both these characteristics — with certain reservations have been classified into the first class; while in the case of quantity  $\partial C$ this classification has been proved as correct, quantity  $\partial D$  — apparently owing to the great dispersion inside the cycle-values — does not correlate with  $\partial R_{\text{max}}$  and is, thus, the first exception.

The second exception is the quantity  $\partial m$ . Its character is, in its substance, quite exceptional. Owing to the reality of the observed relation, it belongs into class  $\alpha$ ), provided, however, that the consideration in point 2 of the present section is valid, it may be taken for a representative of a special sub-class of the first class of cometary characteristics.

### 8.7. Reflex of the eighty-year period of solar activity in cometary statistics

The relation between the changes of the cycle-values of the cometary characteristics of the first class and the changes of the maximum sunspot numbers of both cycle-types does not reveal directly anything of the effect of long-term periodical changes of solar activity upon cometary characteristics.

There are, however, two circumstances that lead me to the study of the problem of the influence of the eighty-year period of solar activity on the cometary characteristics. It was partly the endeavour for an analogy of the dependences under consideration regardless of the cycle-type, partly the results obtained by LINK (1956) on the principle of cometary climatology, when the large four-hundred-year-period of solar activity had been found.

In the search for a relationship between the characteristics  $\partial X$  and  $\partial R_{\max}$ , we were not obliged — when computing the cycle-values — to take into consideration their secular changes (excepting  $\partial N_y$  and  $\partial \tau_y$ ), as we were working with relative values. This was the chief merit of the method. Since we work now with absolute values, the disturbing effect of

the secular changes must be reduced particularly in order to eliminate the inflexions in the curves of the time-course of cometary discoveries caused by the introduction of new observational methods.

The influence of the eighty-year period will be observed in two statistical sets from 1610 till 1957:

a) in comets, the apparent brightness of which exceeds  $5^{m}$  for a short interval of time at least:

b) in comets, the tails of which were visible with the naked eye for a short time-interval at least.

In spite of the material-reduction, the course of the number of discovered bright comets with the phase of the eighty-year period of solar activity may be quantitatively observed only in the axis of abscissae, that is, in

time, while in the axis of ordinates, the mentioned dependence can be observed only qualitatively. For the determination of the minima in the curves of sets a) as well as b) we shall use the same method as used by LINK in his work (LINK, 1956); on the axis of abscissae we shall plot the years and on the axis of ordinates the serial number of the dis-



The curve of the set of comets brighter than 5^m is shown in Figure 45. the curve of the set of comets with tails visible with the naked eye, in Figure 46. In the upper part of both graphs, the form of the eighty-year

14 അം ແຫ່ນ Fig. 45. Curve of the set of comets brighter than 5^m



period is plotted, determined from the smoothed out maximum sunspot numbers  $R_{\max}$ ; below the axis of abscissas are two rows of black points, of which the first indicates the time-moments of the centre of thresholds in the curve of the represented cometary set, and the second the timemoments of the maxima of the eighty-year period resulting from the sunspot numbers.

Prior to proceeding to the evaluation of the results, let us briefly remark that in the curves of both cometary sets, there are, in addition to these most



Fig. 46. Curve of the set of comets with tails visible with naked eye.

prominent thresholds, many others of them which correspond to the eleven-year solar cycles. These fluctuations have been studied quantitatively in both axes in Section 8.2. By the method of cometary thresholds, however, in the mentioned work by LINK (1956), the change of the length of the eleven-year cycles in the period from -235 till 1948 were studied.

From Figures 45 and 46 it can be seen that the prominent thresholds in the curves of both cometary sets reveal an eighty-year periodicity that, however, from the view-point of time occur with a certain retardation following the maximum of the eighty-year solar period. The properties of the curves of both sets are in detail presented in Table 85, the individual columns of which comprise:

 $T_0$  — the epoch of the maximum of the eighty-year period of solar activity;

 $T_1$  or  $T_2$  — the epoch of the centre of the threshold of the set of comets brighter than  $5^m$ , eventually of the set of comets with tails visible with the naked eye;

 $\Delta T_1$  or  $\Delta T_2$  — the phase retardation:  $\Delta T_1 = T_1 - T_0$ ,  $\Delta T_2 = T_2 - T_0$ ;  $P_0$  — the difference in time of two successive maxima of the eighty-year period of solar activity;

 $P_1$ , or  $P_2$  — the difference in time of the centres of two successive thres-

holds in the curve of the set of comets brighter than  $5^{h}$ , or of the set of comets with tails visible with the naked eye.

	T ₀	T ₁	T ₂	$\Delta T_1$	∆T <b>₂</b>	P	P ₁	P ₂ .
I II III. IV V	(1630) 1712 1775 1854 (1943)	1643 1721 1784 1871 (1952)	1643 1719 1785 1872 (1952)	$ \begin{array}{c} (+13) \\ +9 \\ +9 \\ +17 \\ (+9) \end{array} $	(+13) + 7 +10 +18 (+ 9)	(82) 63 79 (89)	78 63 87 (81)	76 66 87 (80)
Average			·	+11	+11	78	77	77

Table 85

Eighty-year periodicity of the prominent thresholds in the curve of the set of comets brighter than 5^m and of comets with tails visible with the naked eye

Regardless of a certain retardation, at the epoch of the maxima of the eighty-year period a certain increase of night-cloudiness may be observed; we found a similar phenomenon by another method in the eleven-year cycle, and the same relation was found by LINK in the mentioned 410-year period of solar activity as well.

By comparing the results in Section 8.2. and 8.7. and the results obtained by LINK (1956), the mutual relation between the phase-retardation may be established:

a) of the secondary minimum (in  $\Phi = 0.5$ ) in the curve of the cometary characteristics of the first class following the maximum of solar activity in the eleven-year cycle;

b) of the centre of the thresholds in the curves of both sets of prominent comets following the maximum of solar activity in the eighty-year period and

c) of the beginning of increase of cloudiness following the beginning of the rise of solar activity found by comparison of the frequency of cometary discoveries and of the frequency of aurora borealis in the large 410 year solar period.

All these retardations, in fact, amount to about one seventh of the respective period.

The eighty-year periodicity of cometary thresholds may be in Figures 2-4 of LINK's work observed as far as into the period round the year 500 A. D. Prior to this date, the situation was complicated by a rapid decrease of records on cometary discoveries. This problem, however, is not any longer within the sphere of the research of the present study, since, prior to 1600, the periodicity of cometary thresholds with the eighty-year periodicity of solar activity cannot be compared.

# 8.8. Interpretation of the form of curve $H_{10} = H_{10}(\Phi)$ . Basic equation of energy balance

From the physical point of view the most important quantity of cometary characteristics of the second class is the absolute magnitude,  $H_{10}$ , which is therefore taken as a subject of study. As the variation of the brightness of the gaseous part of the coma mainly contributes to the variation of the total absolute brightness during an eleven-year cycle (Section 8.2.), the main subject of our study is the brightness of the gaseous coma and its dependence on the solar activity.

The most available way to solve the problem of the dependence of the brightness of the gas part of cometary coma on the phase of a solar cycle,  $\Phi$ , is to determine the balance of the changes in a number of radiating molecules in the coma. At every infinitesimal interval of time the number of them, N, increases with increasing intensity of exciting solar radiation,  $I_{\odot}$ , and decreases according to which percentual part of them is dissociated per unit of time, so that it is possible to write in general

(8.4) 
$$dN(\Phi) = a \cdot d(I_{\odot}^{j}) - bF(\Phi) \cdot N(\Phi) d\Phi,$$

where a, b are positive constants and  $F(\Phi)$  is the function giving the change of photo-dissociation of molecules during a cycle. To apply formula (8,4) to the material, exponent j must be ascertained and the second term on the right side of the equation must be replaced by the expression with known quantities. Exponent j may be derived from the dependence of radiating (more exactly, evaporated) molecules of gas on the heliocentric distance. If we assume the invariability of the solar constant during observations of a comet and leave out of account effects connecting with the drop of the concentration of gaseous molecules in surface layers of a cometary nucleus and the thermal inertia of the process of evaporation, we may apply LEVIN's formula (LEVIN, 1943, 1948) according to which the brightness of gaseous coma changes at the neighbourhood of heliocentric distance of 1 Å. U. as follows:

(8.5) 
$$I \sim \exp\left[\left(\frac{1}{4} + \frac{1}{2}\frac{L}{R_0T_0}\right)\ln\frac{1}{r}\right],$$

where L ist the heat necessary for evaporation of 1 Mol of gas,  $R_0$  the gas constant,  $T_0$  the absolute temperature of the surface of cometary nucleus at r = 1 A. U. As the intensity of the solar radiation changes with the heliocentric distance according to formula

• 2

 $I_{\odot} \sim r^{-2}$ 

it results

(8.6) 
$$j = \frac{1}{8} + \frac{1}{4} \frac{L}{R_0 T_0}$$

in proportion  $I \sim I_{\odot}^{\circ}$ . For non-period and long-period comets forming the desicive majority of material used it follows from OoRT's, ŚCHMIDT's and VANYSEK's studies (OORT, SCHMIDT, 1951, SCHMIDT, 1951, VANYSEK, 1952) on the average L = 3500 cal/Mol; as for other quantities in (8.6) we can admit the following approximate values:  $R_0 = 2$  cal/Mol, grad,  $T_0 = 350$  °K, exponent j is equal to

(8.7) 
$$j = \frac{11}{8}$$
.

Therefore we do not make a great mistake if we assume the linear dependence between I and  $I_{\odot}$  to a first approximation.

Let us assume further that the average life-time of gaseous molecules, i. e. the interval during which they are able to radiate in cometary atmosphere, is constant during the whole solar cycle. Then, whether the photodissociation of molecules occur in the cometary head region or in the tail, the relative part of them, which does not contribute to the radiation of the coma, can be in the simplest form expressed by the relation

(8.8) 
$$-\frac{\mathrm{d}N}{N} \sim \beta, \ \beta > 0,$$

so that equation (8.4) has the form:

(8.9) 
$$\frac{\mathrm{d}N}{\mathrm{d}\varphi} = a \frac{\mathrm{d}I_{\odot}}{\mathrm{d}\varphi} - \beta N(\Phi).$$

This formula is correct even in the case of variability of the average lifetime of molecules, if it reachs such values that the dissociation occurs out of the coma region. Otherwise, the average life-time,  $\tau$ , must be introduced into equation (8.4) as a further agent affecting the total number of radiating molecules in the coma, regarding the relation

$$(8.10) dN \sim d\tau.$$

Considering (8.7), (8.8), and (8.10) and replacing the number of molecules, N, by the brightness of (gaseous) coma,  $I_{10}$ , we can write

(8.11) 
$$dI_{10} = \alpha I_{\odot} - \beta I_{10} d\Phi + \gamma' d\tau.$$

This is the basic equation for the study of relation  $H_{10} = H_{10}(\Phi)$ . Coefficients  $\alpha$ ,  $\beta$ , and  $\gamma'$  depend on the choice of the units of  $I_{10}$ ,  $I_{\odot}$ ,  $\tau$  and  $\Phi$ . According to VANYSEK (1960) we can approximately write

where a' is a constant. The sunspot number is taken as a parameter characterizing the solar radiation. The relative intensity of that is assumed in the form of

$$(8.13) I_{\odot} = 1 + kR,$$

4 63-20

which was successfully used by ALLEN (1946, 1948) and HULBURT (1955), in studying the influence of the short-wave solar radiation on the critical frequency of individual ionospheric layers. By inserting (8.12) and (8.13) into differential equation (8.11) we obtain after integration

(8.14)  
$$I_{10}(\Phi) = \exp\left[-\beta\Phi\right] \cdot \left\{k\int_{\circ}^{\Phi} \left(\alpha - \frac{1}{2} a'\gamma' I_{\odot}^{*/*}\right) \frac{\mathrm{d}R}{\mathrm{d}\Phi} \exp\left[\beta\Phi\right] \mathrm{d}\Phi + \cosh\left\{\beta\right\},$$

where the constant is equal to the average absolute brightness of comets at the time of minimum solar activity.

### 8.9. Discussion and application of the balance formula to the material

General equation (8.14) cannot be used for the calculation of coefficients  $\alpha$ ,  $\beta$ , and  $\gamma'$ , while very uncertain values of  $dH_{10}/d\Phi$  hamper an application of differential form (8.11) to the material. Further on, we shall therefore attempt to solve the problem in an approximate way neglecting individual factors on the right side of equation (8.11) and investigate the following special cases:

I. If the change of exciting solar radiation has the main influence on the change of cometary brightness, then

$$(8.15) I_{10} = const + \alpha kR,$$

which is in absolute variance with the preceding results of this chapter.

II The assumption that the influence of excitation or ejection out of coma of a constant part of a total number of molecules on the change of the absolute brightness is negligible in comparison with the influence of the two other factors, i. e.  $\beta \approx 0$ , gives the relation (we put  $\gamma = \frac{1}{2} a'\gamma'$ ):

$$(8.16) I_{10} = \operatorname{const} + \alpha I_{\odot} + 2\gamma I_{\odot}^{-1/2}.$$

In this case, the form of the  $I_{10}$ -curve is not equal to that of the curve of sunspot numbers; however, only one corresponding  $I_{10}$  exists to a given sunspot number. But Fig. 34 shows that two different values of  $I_{10}$  correspond to each sunspot number, so that this assumption is inacceptable, too.

III. The assumption neglecting the influence of the length of life-time of molecules in the form of the  $I_{10}$ -curve gives the following expression:

(8.17) 
$$I_{10} = \text{const}_1 + \text{const}_2 e^{-\beta \Phi} + \alpha k R - \alpha \beta k \int_{0}^{\Phi} R(\Phi) e^{\beta \Phi} d\Phi.$$

Its validity is confined to a long life-time of radiating molecules and it must be characterized by a low value of coefficient  $\gamma$  in general equation

(8.11), which is not fulfilled; expression (8.17) cannot therefore be considered as the correct form of the dependence we are looking for.

IV. Let us consider finally that the change of the average life-time of molecules during the solar cycle contributes mainly to the change of absolute brightness  $I_{10}$ 

$$(8.18) dI_{10} \sim d\tau,$$

so that the following expression we can obtain from equation (8.11):

$$(8.19) I_{10} \sim \frac{\mathrm{d}R}{\mathrm{d}\varphi} \,.$$

The fact that the mean values of the characteristics of the second class correspond to the maximum and minimum solar activity is considered as one of the main properties of these curves (Section 8.3). Connecting this empirical fact with relation (8.19) we arrive at the formula

$$(8.20) I_{10} = X_0 + Y_0 \frac{\mathrm{d}R}{\mathrm{d}\varphi},$$

where  $X_0$  is the mean from the cycle-values of absolute brightness, and

$$Y_0 = \frac{\alpha k}{\beta}$$

Now we shall prove that this assumption corresponds best of all with observations. At the same time we must note down that relation (8.18) gives quite a different variation of the average life-time of molecules than formula (8.12).

Sunspot number R is determined from Chvojková's immaterially modified interpolation formula (Chvojková, 1952, 1956):

(8.22) 
$$R(\Phi) = R_{\rm m} + \frac{1}{2} \left( R_{\rm M} - R_{\rm m} \right) \left( 1 - \cos \frac{2\pi \Phi}{a + (1 - a) \Phi} \right),$$

where  $R_{\rm m}$  and  $R_{\rm M}$  are minimum and maximum monthly sunspot numbers respectively, and constant *a* connects with the asymmetry of the curve:

$$a=\frac{\Phi_{\rm M}}{1-\Phi_{\rm M}}\,,$$

 $\Phi_{\rm M}$  is the phase-distance between a maximum and preceding minimum of solar activity. The last ten cycles (from years 1843–1954), during which the majority of comets of our statistics were discovered; are taken for the determination of averages of parameters  $R_{\rm m}$ ,  $R_{\rm M}$ , and *a*. Results are included in Table 86.

The secondary maximum (or point of inflexion) in curves of cometary characteristics of the second class can be explained by the influence of observational conditions (Section 8.2.). It is reasonable to eliminate these

	Odd cycles	Even cycles	Average cycle
R	5.1 ± 1.1	$4.3\pm0.7$	4.7 ± 0.6
R _M	$116.9 \pm 6.4$	$93.3 \pm 10.4$	$105.1 \pm 6.3$
a	$0.542 \pm 0.031$	$0.694 \pm 0.057$	$0.608 \pm 0.033$
. Ф _м	$0.352 \pm 0.013$	$0.410\pm0.020$	$0.378\pm0.013$

 Table 86

 Parameters of solar cycles from years 1843 to 1954

changes by the assumption that curve  $H_{10} = H_{10}(\Phi)$  is the sum of a simple sine curve (influence of solar radiation on the processes in coma) with semiamplitude B and a double sine curve (meteorological influences) with semi-amplitude C. If we denote a phase of the minimum in a simple and double waves as  $\Phi_1$  and  $\Phi_2$  respectively we get

$$(8.23) H_{10} = A + B \cos 2\pi (\Phi - \Phi_1) + C \cos 4\pi (\Phi - \Phi_2).$$

In equation (8.20) brightness  $I_{10}$  is then equal to

(8.24) 
$$I_{10} = \exp\left[-\frac{0.4}{\text{mod}}M_{10}\right]$$

where

$$(8.25) M_{10} = H_{10} - C \cos 4\pi (\Phi - \Phi_2).$$

In Fig. 47 the values of  $M_{10}$  are plotted by full circles and those of  $H_{10}$  by open circles. Relation (7.20) is represented in Fig. 48 separately for odd and even cycles. The method of least squares gives the resulting values of parameters as follows:

(8.26) 
$$\begin{aligned} X_0 &= (+1.14 \pm 0.02) \cdot 10^{-3} \\ Y_0 &= (+1.10 \pm 0.07) \cdot 10^{-6} \end{aligned}$$

in the odd cycles, and

(8.27) 
$$\begin{aligned} X_0 &= (+1.30 \pm 0.01) \cdot 10^{-3}, \\ Y_0 &= (+0.95 \pm 0.06) \cdot 10^{-6}. \end{aligned}$$

in the even cycles. Correlation coefficients are  $0.93 \pm 0.03$  and  $0.95 \pm 0.02$ respectively. A guarantee of expanding the curve  $H_{10} = H_{10}(\Phi)$  in a simple and double waves must be shown by an agreement of value A from (8.23) with the average cycle-value of absolute magnitude of comets (Table 57); analogously the validity of formula (8.20) is checked on an agreement of  $X_0$  from (8.26) or (8.27) with the average cycle-value of absolute brightness. A comparison of cycle-value O derived directly from material with both just-mentioned quantities is given in Table 87.



For the determination of ratio  $\beta/\alpha$  it is necessary to know the value of coefficient k from relation (8.13),-which can be derived from the average solar cycle by applying a general form of balance equation (8.11). By inserting of (8.12), (8.13), and (8.24) into (8.11) we obtain the balance equation in the form of:



Fig. 47. Variation of the average absolute magnitude of comets in odd cycles (at the top) and in even cycles (at the bottom);  $H_{10}$  are the magnitudes obtained directly from the material,  $M_{10}$  are those corrected for a double-wave.

#### Table 87

Average absolute magnitude of comets during solar cycle determined in different ways

Cycles	H ₁₀				
Cycles	0	· <b>A</b>	X ₀		
odd	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	m m 7.40 $\pm 0.03$	$m m m = 7.36 \pm 0.02$		
even	/ 7.21 ± 0.04	7.23 ± 0.01	7.21 ± 0.01		

(8.28) 
$$\frac{\mathrm{d}H_{10}}{\mathrm{d}\Phi} = A_1 + \frac{\mathrm{d}R}{\mathrm{d}\Phi} \exp\left[\frac{0.4}{\mathrm{mod}}M_{10}\right] \cdot \{A_2 + A_3(1 + kR)^{-\frac{1}{2}}\}$$

where

(8.29) 
$$\begin{cases} A_1 = +2.5 \mod \beta, \\ A_2 = -2.5 \mod \alpha k, \\ A_3 = +2.5 \mod \gamma k. \end{cases}$$

By the method of least squares we determine sums of squares of differences between empirical and computed derivatives  $dH_{10}/d\Phi$  for various selected

values of parameter k and then we plot them against k. The minimum gives the most probable value of k at once. In this way we get

$$(38.0) k = 0.0080 \pm 0.0001,$$

so that the variation of the "monochromatic" solar constant of exciting radiation during the average cycle yields

$$(8.31) I_{\odot M}: I_{\odot m} = 1.77 \pm 0.05$$



Fig. 48. Dependence of the average absolute brightness of comets on the change of the sunspot number during an eleven-year cycle.

On the assumption that k is independent of the type of a cycle we obtain the following values of ratio  $\beta/\alpha$ :

$$\frac{\beta}{\alpha} = 7270 \pm 470$$

in the odd cycles, and

 $(8.32b) \qquad \qquad \frac{\beta}{\alpha} = 8420 \pm 540$ 

in the even cycles.

## 8.10. Conclusions from the statistical investigation

,

From the investigation of eleven cometary characteristics in dependence on the solar activity the following most important conclusions were arrived at:

1. On the basis of the properties within the eleven-year cycle, most characteristics classify themselves into one of two classes I, II. The properties of both classes are described in Table 88.

2. The same classification is arrived at by a study of the long-periodical changes of cometary properties in the odd and even cycles as well (see again Table 88).

D	Class				
Property ~	I •	11			
form of curve in the cycle	double-wave	single wave			
period of variations	5.5 years	11 years			
sign-characteristic of curve	both maxima equally high, or the second higher	in $\Phi \approx 0.8$ local maximum with amplitude lower in order, or inflexion			
ratio of amplitudes of curve in odd and even cycles	in wide ranges, on the average 1 : 1	on the average 2 : 1			
degree of correlation of differences $\partial X$ of cycle values with $\partial R_{max}$	high, as to sign negative	very low			
frequency distribution of $\partial X$	extension to positive values	extension to negative values			
mode of frequency distribution	in negative values	round zero			
representation of .characteristics	$N_{y}, \tau_{y}, C, (D?), (m?)$	$r, \Delta, H_{10}, D_0, S$			
tentative interpretation	indicators of night- -cloudiness	indicators of solar activity (direct influence on proces- ses within the comet)			

 Table 88

 Properties of both classes of cometary characteristics

3. DOBROVOLSKY's seasonal index reveals with respect to the absolute brigtness of comets in the statistics of the whole VSEKHSVIATSKY's catalogue (from 1610 on) opposite properties than in the set of short-period comets (DOBROVOLSKY, 1957); from the view-point of correlation with the solar activity it cannot be classified into either class.

4. The eighty-year period of solar activity is reflected in the periodicity of the thresholds in the curve of the set of comets brighter than 5^m and of the set of comets with powerful tails; the centres of the thresholds lag for about one seventh of the period behind the maxima of solar activity.

5. For explaining the form of curves of cometary characteristics of the second class during an eleven-year solar cycle it is necessary to consider generally three constituents of the balance of the molecular cometary radiation: the direct excitation effect of the solar short-wave radiation, the influence of the change of the life-time of excited molecules during a cycle, and the molecular waste-effect.

6. The more detailed comparison of the observational material with the theory shows that the change of the life-time of radiating molecules has the predominant influence on the change of the intensity of the radiation of comets, so that the intensity of a cometary radiation depends linearly on the change of an exciting solar radiation; the mean value of the intensity of a cometary radiation during a cycle derived by this method agrees very well with that derived directly from the observational material.

7. The ratio of coefficients  $\beta/\alpha$  results on an average of about 8000 in the system of units used.

8. The given method makes it possible to derive the variation of the intensity of the exciting solar radiation during a solar cycle from the form of the curve of the absolute brightness of comets assuming the validity of (8.13); its numerical value yields about 1 : 1.8.

As for the interpretation of the dependence of the cometary characteristics of the first class on the solar activity, let us only remark that as early as 1947, LINK and VANYSEK (1947) pointed to the fact that the characteristic curve of the number of comets discovered per year revealed a correlation with the HELLMANN, well-known period of precipitation in Europe (HELLMANN, 1909), and explained it by the cloudiness accompanying the precipitation. A detailed analysis of this problem is out of the scope of investigation of this study.

## 8.11. Periodic changes in the activity of the Encke comet

The  $\Phi$ -curves of all eleven characteristics, investigated in the preceding sections of the present chapter, have been analyzed on the assumption that their forms are not affected by the actual differences between the individual comets of the set. The extent to which this assumption is correct

can be verified only by studying the same curves of one comet in which the following basic conditions must be fulfilled:

a) a large enough number of measurements of a given characteristics of the comet must be available over a long enough period of time;

b) the effects associated with the development and "ageing" of the comet must be dependably eliminated.

'Only the Encke comet satisfies both these conditions. Physical data of more than 40 returns are at our disposal at present, and the secular changes of this comet are roughly continuous. The influence of solar activity on the Encke comet will be investigated in the following characteristics:

.A) in the fluctuation of the absolute brightness of the comet;

- > B) in the fluctuation of the observed brightness dispersion of the comet;
  - C) in the fluctuation of the linear diameter of the cometary head.

#### 8.11.1. Variation of the absolute brighness

For the study of the brightness variation of the Encke comet its absolute magnitudes were used as ascertained in 41 returns during 1819—1954. These magnitudes are included in VSEKHSVIATSKY's "Catalogue of Absolute Magnitudes of Comets" again.

The continuity of the secular decrease of the absolute brightness of this comet is evident from Fig. 49; therefore, the dependence of the absolute magnitude,  $H_{10}$ , on time may be expressed in the form of a progression. Let us limit it to a quadratic term:

$$(8.33) H_{10}(t) = a + b\Delta t + c(\Delta t)^2,$$

 $\Delta t = t - t_0$ , t is the moment of observation,  $t_0 = 1900.0$ . If  $\Delta t$  is expressed in hundreds of years, the coefficients of equation (8.33) are as follows:

$$(8.34) \begin{cases} a = +9^{\circ}98 \pm 0^{\circ}06. \\ b = +2.94 \pm 0.14, \\ c = +1.09 \pm 0.32. \end{cases}$$

The absolute magnitudes  $H_{10}$  obtained for each *i* from the parameters (8.34) are included in column *C* of Tab. 89. For each return of the comet its phase-shift referred to the preceding minimum of sunspot numbers,  $\Phi$ , the observed absolute magnitude *O*, weight in the scale of VSEKHSVIATSKY (1956, 1958), *w*, and residual O - C are also presented in Tab. 89.

Further, here is discussed the endeavour of DOBROVOLSKY (1957) to prove that the ascertained variations of  $H_{10}$  are in no correlation either with the sunspot number R, or with the Holetschek criterion of the conditions of visibility  $\Delta T$  (HOLETSCHEK, 1916), but that they are correlated with the seasonal index (Paragraph 8.2.5.). DOBROVOLSKY's study of the correlation was, however, based on the mere appearance of the curves so that it was rather subjective. Moreover, he did not eliminate the secular variations of the absolute magnitude, and he reffered the seasonal index to the time of perihelion passage instead of to the middle of the interval of observations. This caused the values of the seasonal index obtained by DOBROVOLSKY to be turned by  $\pm 1$  to  $\pm 2$  degrees, and in one case even by 5 degrees.

The correlation between the residual O - C on the one hand, and the sunspot number, the conditions of visibility and the seasonal index on the



Fig. 49. Course of the absolute magnitude of the Encke comet.

other, can be objectively established by determining the correlation coefficient  $\psi$ . If we denote the seasonal index for the perihelion passage and that for the middle of the observational interval  $n_p$  and n respectively, the following correlation coefficients are obtained from the data of Tab. 89 and those applying to the returns in 1786, 1795 and 1805:

(8.35) 
$$\begin{cases} \psi[O - C, R] = -0.39 \pm 0.09, \\ \psi[O - C, \Delta T] = -0.36 \pm 0.09, \\ \psi[O - C, n_{\rm p}] = -0.18 \pm 0.10, \\ \psi[O - C, n] = +0.08 \pm 0.10. \end{cases}$$

The relations  $O - C_1 = f(R)$  and  $O - C = f(\Delta T)$  are the only ones that come into consideration.

In Table 82 it has been shown that during the solar cycle the curves of the cometary characteristics of the second class reach the maximum values at  $\Phi_0 = 0.25 \pm 0.01$  with the semi-amplitude corresponding to about 0^m.5. Thus, let us assume to a first approximation the following time course of the residuals:

$$(8.36) O - C = d \cdot \cos 2\pi (\Phi - \Phi_0).$$

The semi-amplitude of the fluctuations is

 $(8.37) d = -0^{m}.38 \pm 0^{m}.01$ 

and the phase of the maximum

(8.38)  $\Phi_0 = 0.248 \pm 0.005.$ 

The smothed-out dependence of the residuals O - C on the phase of the solar cycle is given in Table 90. The corresponding correlation coefficient is

(8.39)  $\psi[O - C, \cos 2\pi(\Phi - 0.25)] = -0.55 \pm 0.07.$ The form of the smoothed-out/curve of the residuals O - C is shown in Fig. 50. These results prove beyond any doubt that the character of the residuals is the same as that of the characteristics of the second class.



Fig. 50. Residuals O - C as related to the phase of the solar cycle.

Thus, the ascertained brightness fluctuations of the Encke comet can be interpreted as a sign of physical processes within the comet (Section 8.8.).

The analysis of these fluctuations has even a certain bearing for prediction the course of the absolute magnitude. The general formula describing the dependence of the absolute/ brightness of the Encke comet on time has the following form:

(8.40) 
$$H_{10}(t) = a + b\Delta t + c(\Delta t)^2 + d\cos 2\pi (\Phi - \Phi_0),$$

where the constants are equal to  $(\Delta t \text{ is again expressed in hundreds of years})$ :

1	$a = 1 + 10^{m}.03 \pm 0^{m}.05,$
	$b = +2.85 \pm 0.12,$
(8.41)	$c = +0.87 \pm 0.27,$
(0) /	$d = -0.$ ^m 50 $\pm 0$ ^m .05,
	$\Phi_0 = 0.250 \pm 0.016.$

Since formula (8.40) is of only approximate character, its applicability for prognostic purposes is limited to about 2000.

8.11.2. Fluctuations of the dispersion of the observed brightness estimates

BEYER (1933, 1937a, 1937b, 1938, 1942, 1947, 1950a, 1950b, 1955) considered the average absolute value of the departures between the brightness estimates and the smoothed-out photometric curve to be a parameter characterizing the observed brightness of a comet. This method though correct in principle, has certain disadvantages which will be discussed in the next section.

			H	10		P	AT	_	
• •	Ψ	0	C	0-C	ι.	R			n
······································	1 .	Ì		· · · ·		1	1		
1010 0	0.004	·m	m	m					-
1819.0	0.664	8.7	8.31	+-0.31	2	28	+2	6	5
1822.5	0.943	9.0	8.36	+0.64			-6	2	
1825.6	0.218	7.5	8.40	-0.90	2	22	+2.5	2	1
1828.9	0.525	8.5	8.44	+0.06	2	52	+4	6	4
1832.5	0.864	. 9.5	8.49	+1.01	1	27	-6	2	1
1835.6	0.174	7.7	8.54	-0.84	1	59	-2.5	1	0
1838.8	0.509	9.4	8.59	+0.81	2	81	+6	5	3
1842.3	0.870	9.5	8.65	+0.85		24	-3	3	4
1845.5	0.162	8.3	8.70	-0.40	2	31	-3	1	0
1848.8	0.421	8.5	8.76	-0.26	3	116	+5	4	3
1852.1	0.689	9.8	8.82	+0.98	1	68	0	4	5
1855.6	0.966	9.4	8.89	+0.51	2	2	-5	0	0
1858.7	0.240	8.7	8.95	-0.25	2	72	+4	3	2
1862.0	0.534	9.1	9.02	+0.08	2	66	+1	5	5
1865.3	0.832	9.0	9.09	-0.09	1	34	-6	2	3
1868.6	0.121	9.0	9.16	-0.16	2	33	+2	2	1
1871.8	0.396	8.8	9.24	-0.44	2	94	+6	5	3
1875.2	0.685	9.9	9.32	+0.58	2	26	-3	3 .	4
1878.6	0.978	10.1	9.40	+0.70	1	0	-4	0	1
1881.8	0.266	9.8	9.48	+0.32	2	. 58	+5	4	2
1885.1	0.582	9.7	9.56	+0.14	3	54	0	4	5
1888.6	0.906	9.7	9.66	+0.04	3	3	5	1	1
1891.6	0.169	9.1	9.74	-0.64	3	49	+4	3	1
1895.0	0.442	9.3	9.83	-0.53	2	60	+1	5	5
1898.5	0.734	10.7	9.93	+0.77	1	· 18	-6	2	1.
1901.6	0.995	9.1	10.03	-0.93	3	1	+2	2	1
1904.9	0.265	9.8	10.13	-0.33	. 3	46	+4	6	4.
1908.4	0.565	10.8	10.23	+0.57	2	48	-6	2	1
1911.6	0.835	10.2	10.33	-0.13	3.	4	-2	1	1
1914.8	0.118	10.1	10.44	-0.34	2	10	+6	5	3
1918.2	0.455	10.6	10.55	+0.05	2	78	3	4	5
1921.6	0.800	11.2	10.66	+0.54	2	23	5	l o l	ī
1924.7	0.108	10.7	10.77	-0.07	2	23	+4.5	4	2
1928.1	0.437	11.8	10.89	+0.91	3	72	+1	5.	6
1931.7	0.792	11.3	11.02	+0.28	2	16	6	1	2
1934.6	0.076	11.6	11.13	+0.47	2	8	+2.5	2	i
1937.8	0.385	10.4	11.25	-0.85	2	100	+6	5	3
1941.2	0.711	12.4	11.38	+1.02	$\tilde{2}$	41	-3	3	4
1947.8	0 349	10.6	11.63	-1.03	3	159	+5	4	3
1951 1	0.675	110	11 77	-0.77	2	83	0	4	õ
1954 1	0.973	12 9	11.89	+1.01	$\tilde{2}$	Ř	-5	n l	5
1944.1	0.575	12.0	11.05	T,1.01	~	U	U U	Ŭ,	Ŭ
	1	1 1							·

 Table 89

 Residuals of the absolute magnitude of the Encke comet in individual returns

Nevertheless, let us apply this method to the Encke comet. The material used consisted of 114 brightness estimates from 19 returns of the comet before, 1915,,collected by HOLETSCHEK (1916), 43 estimates from 1937 till 1951 carried out by BEYER (1942, 1950a, 1955), and 23 observations made during 1947, taken over from a few Copenhagen Circulars (THERNOE, 1947, VINTER HANSEN, 1947a, 1947b).

t	Ф	Δm	w	R
		m	l: l	
1805.8	0.610	0.26	1.1.1	35
1825.6	0.218	0.30	2	22
1828.9	0.525	0.07	2	52
1838.8	0.509	0.16	2	81
1848.8	0.421	0.48	2	116
1852.1	0.689	0.31	i	68
1858.7	0.240	0.53	1	72
1862.0	0.534	0.69	1	66
1868.6	0.121	0.12	1	33
1871.8	0.396	.0.46	2	
1878.6	0.978	0.26	2	0
1881.8	0.266	0.25	2	.58
1891.6	0.169	0.20	2	49
1895.0	0.442	0.62	3	60
1898.5	0.734	0.03	1	· · 18
1901.6	0.995	0.42	2.	
1904.9	0.265	0.47	- <del>3</del>	46
1914.8	0.118	0.41	1	10 🗸
- 1937.8	0,385	0.11	2	100
1947.8	0.349	0.32	3 .	159 •
1947.8	0.349	0.66	3	159
1951.1	0.675	0.07	3	83
1	NY 18			

Table 91Average dispersions  $\Delta m$  of the Encke comet

The numerical results are listed in Tab. 91; the individual columns give: the middle of the interval of observations, t, the phase-shift referred to the preceding minimum of solar activity,  $\Phi$ , the average dispersion of the brightness estimates,  $\Delta m$ , its weight, w, and the corresponding average sunspot number, R.

Assuming the dependence  $\Delta m = \Delta m(\Phi)$  in the form of

(8.42) 
$$\Delta m(\Phi) = \overline{\Delta m} + A(\Delta m) \cos 2\pi (\Phi - \Phi_b)$$



Fig. 51. Average dispersion  $\Delta m$  as related to the phase of the solar cycle.

we obtain

(8.43) 
$$\begin{cases} \overline{\Delta m} = 0^{m}.29 \pm 0^{m}.02, \\ A(\Delta m) = 0^{m}.14 \pm 0^{m}.03, \\ \Phi_{0} = 0.307 \pm 0.034, \end{cases}$$

so that parameter  $\Phi_0$  is in good agreement with the parameters of the cometary characteristics of the second class. Nevertheless, the values (8.43) must be taken with great reserve owing to the defects of the method (Section 8.12.). The curve  $\Delta m = \Delta m(\Phi)$  is given in Fig. 51 and Table 92.

int ${oldsymbol{\varPhi}}$	Φ	O-C	w
		m m	}
0.901 - 0.200	0.051	$-0.079 \pm 0.079$	26
0.001 - 0.300	0.178	$-0.279 \pm 0.056$	23
0.101 - 0.400	0.234	$-0.465 \pm 0.048$	28
0.201 - 0.500	0.355	-0.282 + 0.077	26
0.301 - 0.600	0.464	$-0.044 \pm 0.079$	28
0.401 - 0.700	0.540	$+0.158\pm0.068$	28
0.501 - 0.800	0.644	$+0.315\pm0.067$	25
0.601 - 0.900	0.757	$+0.291\pm0.088$	20
0.701 - 0.000	0.877	$+0.302\pm0.083$	25
0.801 - 0.100	0.936	$+0.202\pm0.095$	20

Table 90 Dependence  $O - C = f(\Phi)$  for the Encke comet

8.11.3. Variation of the cometary-head diameter

On the basis of the material assembled by BOUSKA and ŠVESTKA (1949), and supplemented by a few values taken by the author from the monography of VSEKHSVIATSKY (1958), the time course of the coma diameter

int ${oldsymbol arPhi}$	Φ	∆m	w
i +			1
0.901 - 0.200	0.065	$0.286 \pm 0.028$	8
0.001 - 0.300	0.215	$0.331 \pm 0.026$	12
0.101 - 0.400	0.260	$0.404 \pm 0.028$	17
0.201 - 0.500	0.334	$0.487 \pm 0.022$	18
0.301 - 0.600	0.441	$0.458 \pm 0.040$	15
0.401 - 0.700	0.506	$0.378 \pm 0.045$	12
0.501 - 0.800	0.579	$0.219 \pm 0.051$	8
0.601 - 0.900	0.678	$0.200 \pm 0.058$	3
0.701 - 0.000	0.936	$0.278 \pm 0.048$	5
0.801 - 0.100	0.987	$0.340 \pm 0.031$	4

Table 92 Dependence  $\varDelta m = \varDelta m(\Phi)$  for the Encke comet

62

of the Encke comet is investigated, reduced to the unit of geocentric distance. From this material it follows that there takes place a gradual decrease of the coma diameter (Tab. 93) which may be assumed in the form analogous to (8.33):

(8.44) 
$$D(t) = \alpha + \beta \Delta t + \gamma (\Delta t)^2,$$

where again  $\Delta t = t - t_0$ ,  $t_0 = 1900.0$ . The individual coefficients are as follows ( $\Delta t$  is again expressed in hundreds of years):

			4		
			D	• .	
1	Designation	0	C	0 – C	N
	· ·	1		11.	
	1825 III	2.2	2.70	-0.50	. 2
	1829	3.4	2.68	+0.72	7
	1838	1.9	2.59	-0.69	8
	1842 I	1.0	2.55	-1.55	1
	1848 II	3.9	2.49	+1.41	5
	1852 I	2.3	2.46	-0.16	1.
	1855 III	1.4	2.42	-1.02	6
	1858 VIII	1.3	2.39	-1.09	4
	1862 I	2.5	2.35	+0.15	20
	1868 III	3.9	2.28	+1.62	5
	1871 V	1.9	2.25	-0.35	2
	1875 II	3.2	2.21	+0.99	.3
	1878 II	1.7	2.17	-0.47	2
۱.	1881 VII	2.9	2.13	+0.77	4
	1885 I	1.5	2.09	-0.59	8
	1888 II	1.3	2.05	-0.75	3
	1891 III	1.7	2.01	-0.31	3
	1895 I	2.6	1.97	, +0.63	5
	1898 III .	1.2	1.92	-0.72	2
	1901 II	2.0	1.88	+0.12	6
	1905 I	2.3	1.84	+0.46	15
	1908 I	1.0	1.79	40.79	5
	1914 VI	2.3	1.71	+0.59	4
	1918 I	1.3	1.66	-0.36	3
	1924 III	1.5	1.57	-0.07	2
	1928 II	1.0	1.52	-0.52	5
	1934 III	0.5	1.42	-0.92	1
	1937 VI	1.7	1.37	+0.33	9
	1941 V	0.9	1.32	-0.42	3
	1947 XI 🖉	1.8	1.22	+0.58	3
			I .	1 .	1

	) T	able 93			
Residuals of	the coma	a diameter	of the	Encke	comet
	in ind	ividual ret	urns		1

(8.45)

 $\alpha = +1'.90 \pm 0'.09,$   $\beta = -1.39 \pm 0.24,$  $\gamma = -0.30 \pm 0.56.$ 

The residuals are listed in Tab. 93. The individual columns give the designation of the Encke comet, the observed coma diameter, that computed according to (8.44), the residual O - C, and the number of observations N.

The correlation of the coma-dimension residuals with the sunspot number, with the Holetschek criterion and the Dobrovolsky seasonal index is given by the following correlation coefficients:

1

(8.46) 
$$\begin{cases} \psi[O-C, R] = +0.25 \pm 0.11, \\ \psi[O-C, \Delta T] = +0.27 \pm 0.11, \\ \psi[O-C, n] = +0.19 \pm 0.12. \end{cases}$$

Each of these coefficients is too low to indicate an actual degree of correlation; this fact is to a considerable extent due to the uncertainty of the coma dimension estimates. If the departures O - C are again assumed in the form of a sine curve, the general expression of the course of the cometary head diameter is

(8.47) 
$$D(t) = \alpha + \beta \Delta t + \gamma (\Delta t)^2 + \delta \cos 2\pi (\Phi - \Phi_0),$$

where

1	$\alpha = +1'.81' \pm 0'.09,$
	$\beta = -1.47 \pm 0.23,$
(8.48)	$\gamma = -0.65 \pm 0.56,$
	$\delta = +0'.44 \pm 0'.10,$
	$\Phi_0 = 0.323 \pm 0.034.$

The difference between the value of the phase-shift  $\Phi_0$  and the values derived in another way is not great enough to exclude the identity of the character of these fluctuations with the cometary characteristics of the second class.

8.11.4. Conclusions

1. The time course of the absolute brightness of the Encke comet may be split into two superimposed curves: the secular decrease, and the periodical fluctuations of a period equal to the length of the eleven-year solar cycle. As to the amplitude and the phase-shift referred to the sunspotnumber curve, the curve of the departures O - C perfectly agrees with the curves of the cometary characteristics of the second class (Section 8.10). There is no doubt that the character of both quantities is the same.

2. In addition, a relatively high degree of correlation makes it possible to apply the general formula describing the absolute magnitude variation for prognostic purposes.

3. BEYER's method of the observed brightness-estimation dispersion applied to 21 returns of the comet gives a course of the  $\Delta m$ -dependence on the phase of the solar cycle that is very similar to that of the cometary characteristics of the second class.

4. An analogy between the variation of the coma diameter and that given under 1. is vague; it is obvious that the ascertained form of the course of the coma dimensions is strongly affected by the conditions of visibility, and by other effects resulting from the non-homogeneity of the material.

# 8.12. Beyer's method of cometary brightness dispersion as a criterion of cometary activity

Within the interval from 1933 till 1955 BEYER (1933, 1937a, 1937b, 1938, 1942, 1947, 1950a, 1950b, 1955) was publishing the photometric curves of 43 comets constructed on the basis of his measurements of the total coma brightness. The treatment of the material was carried out in the standard manner, i. e. by determining the photometric parameters  $H_0$  and n. The departures of the individual measurements from the smoothed-out straight line are considered by BEYER the product of the activity of a comet, and the average of their absolute values given its certain characteristics.

An undisputed advantage of this method is the fact that all the observations were carried out by the same author and in the same way. On the other hand, this method has several disadvantages which may be summarized as follows:

a) from the papers dealing with the dust-gas model of a comet (e. g. VANYSEK, 1952, VANYSEK, HREBIK, 1954, HRUŠKA, VANYSEK, 1958) and with the statistics of the photometric exponents (VANYSEK, HREBIK, 1954, HRUŠKA, VANYSEK, 1958, HRUŠKA, 1957) it follows beyond any doubt that the photometric exponent of any comet is a fuction of heliocentric distance. Since Beyer considers the exponent to be constant, the average dispersion  $\Delta m$  will change; this alternation will be different for various comets because the photometrical exponent depends also on the intensity ratio between the dust and gas components, as well as on the type of gas present in a cometary head;

b) various comets react in different way on the variation of solar activity (Schwassmann-Wachmann 1 as against a number of absolutely faint comets). There are even instances that the reaction of a certain comet on the change of solar activity differs at various periods. A typical example is the comet Whipple-Fedtke-Tevzadze 1942 gas described by BOUSKA (1950). Prior to the perihelion passage (1942, December - 1943, February) the comet revealed considerable anomalies in the course of its brightness, while the sunspot number did not surpass 35 over the whole interval, no large sunspot group passed through the Sun's central meridian in the di-

5 63-20

rection towards the comet, and the efficiency of chromospherical flares in the same direction exceeded the value of 100 only once. On the other hand, after the perihelion passage (1943, February - 1943, May), the fluctuations of the comet brightness were much smaller, though the amplitude of the sunspot number variation amounted to about 70, 14 large sunspot groups went through the Sun-comet meridian, and the efficiency of flares once exceeded 200 and several times reached values over 100. The effects of this character seem to occur expecially in the absolutely bright comets;

c) the variation in the transparency of the Earth's atmosphere may considerably affect the observed brightness dispersion, especially if it has a systematic course (the so-called subjective factor, see Section 8.6.);

d) an undetermined part of the resulting dispersion is produced by incidental departures; to give their influence on the value of the average dispersion is a completely insolvable problem.

Each of the given disadvantages of the method is the more prominent, the less abundant and less homogeneous the material used.

When investigating the course of the average brightness dispersion during the solar cycle, the differences between the reactions of various comets on the solar radiation represent the greatest obstacle. Therefore the investigation of the only, as far as possible absolutely faint comet must be relatively the most successful (Section 8.11.). The same dependence may be statistically studied on the basis of the representative material, i. e. of that including a few hundred of comets at least. Such material, however, is not readily accessible.

So far, the material of the brightness dispersion, obtained by BEYER, has been treated in two ways:

a) in dependence on the sunspot number dispersion,  $\epsilon_R$  (BEYER, ibid.);

b) in dependence on the phase of the solar cycle,  $\Phi$  (DOBROVOLSKY, 1958).

The results of BEYER's study show a certain course of the increase of the average dispersion  $\Delta m$  with increasing dispersion  $\varepsilon_R$ , some of the studied comets, however, are beyond this dependence so that the resulting correlation coefficient amounts to:

(8.49) 
$$\psi[\Delta m, \epsilon_R] = +0.32 \pm 0.09 \text{ (p. e.)}.$$

In his paper DOBROVOLSKÝ asserts that these "special" comets are not the exception, but the reflex of the double-wave course of  $\Delta m$  during the eleven-year cycle; according to DOBROVOLSKY, the curve of  $\Delta m = \Delta m(\Phi)$ supports the form of the curve of comets discovered during the solar cycle (Tab. 1 of his work). The dependence  $\Delta m = \Delta m(\Phi)$ , constructed by DOBRO volsky, gives indeed two maxima; however, the correlation coefficient between  $\Delta m$  and the number of discovered comets N (as a typical cometary characteristic of the first class) leads to the following rather unfavourable result:

(8.50)

$\psi[\Delta m, N]$	= +0.04	$\pm$ 0.10 (p.	e.).
---------------------	---------	----------------	------

		, and	P 01 0101			,			
Comet	_t	∆m	Ŗ	Ø	Comet	t	∆m	R	Ø
	1							,	
1000 17	1000 7	m		0.00	10.40 137	1040.0	m	100	0.45
1932 V	1932.7	0.07	4	0.89	1948 IX	1948.8	0.18	138	0.40
1932 VI	1933.4	0.06	10	0.90	1948 X	1949.1	0.22	182	0.48
1932 X	1933.2	0.06	22	0.94	1948 XI	1949.1	0.42	182	0.48
1933 1	1933.4	0.10	10	0.96	1949 IV	1949.8	0.13	118	0.55
1935 1	1935.3	0.08	12	0.14	1949 VI	1949.6	0.19	132	0.53
1936 11	1936,4	0.07	70	0.25	1950 1	1950.2	0.17	110	0.59
1937 11	1937.2	0.19	109	0.33	1950 VII	1951.1	0.11	60	0.68
1937 IV	1937.4	0.26	130	0.35	1951 1	1950.4	. 0.14 .	91	0.61
1937 V	1937.5	0.11	138	0.36	1951 11	1951.2	0.25	, 93	0.69
1937 VI	1937.6	0.11	<b>74</b> ·	0.37	1951 111	1951.1	0.07	60	0.68
1939 I	1939.0	0.10	77,	0.50	1951 IV 1	1951.3	0.17	109	0.70
1939 III	1939.2	,0.19	118	0.52	1952 I	1952.4	0.16 ·	23	0.80
1939 V	1939.3	0.06	101	0.53	1952 III	1952.5	0.31	22	0.81
1941 I	1940.7	0.10	.68	0.66	1952 V	1952.6	0.31	.36	<b>0.82</b>
1941 II .	1941.0	0.12	45	0.69.	1952 VI	1952.7	0.28	55	0.83
1941 IV	1941.1	0,07	33	0.70	1953 I	1953.0	0,58	34	0.86
1941 VIII	1941.3	0.21	67	0.72	1953 III	1953.5	0.09	13	0.91
1941 VIII	1941.6	0.10	38	0.75	1954 III	1954.2	0.21	11	0.98
1943 I	1943.1	0.48	27	0.89	1954 VI	1954.1	0.41	0	0.97
1946 II	1946.2	0.10	74	0.20	1954 VII	1954.7	0.11	2	0.03
1946 VI	1947.3	0.14	201	0.30	1954 X	1954.2	0.21	11	0.98
1947 I	1947.1	0.17	133	0.28	. 1955 I	1955.1	0.14	21	0.07
1947 I	1947.6	0:40	164	0.33	1955 III	1955.5	0.11	32	0.10
1947 III	1947.2	0.22	150	0.29	1955 IV	1955.7	0.39	43	0.12
1947 VII	1947.6	0.15	164	0.33	1955 V	1955.7	0.65	43	0.12
1947 XI	1947.6	0.32	164	0.33	1955 VI	1955.7	0.13	43	0.12
1948 I	1948.3	0.24	174	0.40	1956 IV	1956.4	0.48	137	0.18
1948 V	1948.2	0.32	150	0.39	1957 111	1957.3	0.21	175	0.27
1948 V	1948.7	0.15	96	0.44	1957d	1957.7	0.13	236	0.30
1948 V	1949.1	0.15	182	0.48					
			- 5 2			· ·			

Table 94

List of the brightness dispersions of 55 comets of Beyer's observational series

Let us add into BEYER's statistics the results of his latest papers (BEYER, 1958, 1959). The complete list is included in Table 94, where individual columns give the designation of the comet, the moment of the middle of observations, the average dispersion  $\Delta m$ , the average sunspot number and the phase-shift of the middle of the observations relative to the preceding minimum of solar activity. The smoothed-out relation  $\Delta m = \Delta m(\Phi)$  is presented in Table 95, and in Fig. 52 by full circles. The maximum dispersion  $\Delta m$  coincides with the minimum solar activity, while the minimum of  $\Delta m$  occurs at about 0.2 of a cycle after the maximum of solar activity.

5-

$\operatorname{int} {oldsymbol{arPhi}}$	Φ	∆m	N
$\begin{array}{c} 0.96-0.25\\ 0.06-0.35\\ 0.16-0.45\\ 0.26-0.55\\ 0.36-0.65\\ 0.46-0.75\\ 0.56-0.85\\ 0.66-0.95\\ 0.76-0.05\\ 0.86-0.15\\ \end{array}$	$\begin{array}{c} 0.079\\ 0.232\\ 0.324\\ 0.400\\ 0.480\\ 0.607\\ 0.715\\ 0.779\\ 0.909\\ 0.002\\ \end{array}$	$\begin{array}{ccccccc} m & m \\ 0.217 \pm 0.031 \\ 0.228 \pm 0.024 \\ 0.208 \pm 0.017 \\ 0.198 \pm 0.013 \\ 0.180 \pm 0.015 \\ 0.156 \pm 0.013 \\ 0.171 \pm 0.014 \\ 0.197 \pm 0.024 \\ 0.229 \pm 0.028 \\ 0.228 \pm 0.032 \end{array}$	15 19 19 24 16 19 15 18 15 17

Table 95 Relation  $\Delta m = \Delta m(\Phi)$  from Beyer's observational material

The same analysis may be carried out on the basis of a thorough study on the photometrical curves of 45 comets from 1858—1937, published by BOBROVNIKOFF (1941, 1942). This study comprises a careful analysis of 4447 individual visual observations of comet brightness. Although the measurements were made by 160 observers the obtained results are considered reliable (LEVIN, 1947). The average dispersions  $\Delta m$  determined for

Comet     t $\Delta m$ $R$ $\Phi$ Comet     t $\Delta m$ $R$	Φ
m m	
1858 VI   1858.75   0.18   86   0.246    1912 II    1912.91    0.30    4	0.942
1861 II   1861.57   0.30   78   0.497    1913 II    1913.40    0.34    0	0.983
1862 III   1862.64   0.11   63   0.593   1913 IV   1913.76   0.28   3	0.016
1874 III   1874.48   0.20   38   0.622    1913 VI   1913.78   0.23   3	0.018
1881 III   1881.61   0.24   58   0.253    1914 II   1914.42   0.15   8	0.082
1884 I _ 1882.92 0.26 42 0.376 1914 V 1914.67 0.24 10	0.107
1886 II   1886.22   0.09   57   0.684   1915 II   1915.56   0.22   72	0.196
1886 IX 1886.91 0.31 6 0.749 1917 II 1917.41 0.15 115	0.381
1890 II   1890.81   0.49   11   0.100   1917 III   1917.50   0.27   117	0.390
1893 II   1893.57   0,20   89   0.328   1919 III   1919.70   0.22   55	0.610
1898 I 1898.33 0.36 20 0.721 1921 II 1921.34 0.15 27	0.774
1899 I 1899.34 0.21 11 0.805 1925 I 1925 40 0.21 43	0.176
1900 II 1900.65 0.15 4 0.913 1930 II 1930.03 0.13 65	0.630
1902 III   1902.81   0.12   16   0.093   1930 III   1930.32   0.21   38	0.659
1903 IV 1903.55 0.19 28 0.155 1932 V 1932.69 0.24 4	0.891
1904 I 1904.62 0.13 58 0.245 1932 VI 1933.23 0.09 10	0.944
1906 VII   1906.92   0.03   52   0.439   1932 X   1933.06   0.32   12	0.927
1907 IV 1907.74 0.07 75 0.508 1935 I 1935.17 0.17 22	0.132
1908 III   1908.89   0.12   46   0.604   1936 II   1936.52   0.21   52	0.262
1910 II   1910.17   0.19   26   0.712   1937 II   1937.26   0.18   109	0.333
1911 II   1911.57   0.34   4   0.829   1937 IV   1937.41   0.26   124	0.347
1911 V   1911.77   0.23   3   0.846   1937 V   1937.60   0.11   138	0.365
1911 VI   1911.80   0.20   3   0.849	

 Table 96

 List of the brightness dispersions of 45 comets of Bobrovnikoff's observational series

45 comets investigated by BOBROVNIKOFF are listed in Table 96. The individual columns give the same quantities as Table 94. The correlation coefficient

(8.51) 
$$\psi[R, \Delta m] = -0.20 \pm 0.10$$
 (p. e.)

is again low, but it suggests the course of  $\Delta m = \Delta m(\Phi)$  which is similar to that we found from BEYER's supplemented material (Table 97). Fig. 52, in which the smoothed-out course of  $\Delta m$  from BOBROVNIKOFF's material is shown by open circles, proves it quite well. The agreement of both curves is excellent both in the phase-shift and in the amplitude and zero-point.

int ${oldsymbol{\Phi}}$ .	Φ	Δm	N
		m m	
0.951 - 0.250	0.119	$0.227 \pm 0.019$	13
0.051 - 0.350	0.204	$0.213 \pm 0.015$ >	15
0.151 - 0.450	0.299	$0.189 \pm 0.011$	15
0.251 - 0.550	0.373	$0.190 \pm 0.017$	12
0.351 - 0.650	0.501	$0.164 \pm 0.017$	12
0.451 - 0.750	0.632	0.192 + 0.018	12
0.551 - 0.850	0.712	$0.205 \pm 0.014$	15
0.651 - 0.950	0.816	$0.226 \pm 0.015$	15
0.751 - 0.050	0.903	$0.237 \pm 0.015$	13
0.851-0.150	0.011	0.240 - 0.020	1 13

Table 97Relation  $\Delta m = \Delta m(\Phi)$  from Bobrovnikoff's observational material



Fig. 52. Course of the cometary brightness estimates dispersion during the eleven-year solar cycle.

the influence of a systematic effect inherent in the observational conditions.

The cause of the ascertained course of the dispersion  $\Delta m$  can hardly be determined at present; however, on the basis of a comparison of the forms of these curves with that of the Encke comet (Section 8.11.), and with respect to what has been said of BEYER's method in the present section, it seems probable that the problem consists in

# CHAPTER NINE

## SYSTEMATIC VARIATIONS IN BRIGHTNESS CONNECTED WITH THE COMET'S INTERIOR STRUCTURE

#### 9.1. Subjects of the study

In Chapter Eight the behaviour of comets has been studied as an indicator of solar activity, regardless of the specific physical features of theirs as of a special group of cosmic bodies. In this chapter we shall deal with two phenomena in the comet's brightness, in which the physical properties of the comet's nucleus are expressed:

1. Short-term changes in the colour-index of comets.

2. Perihelion asymmetry of the photometric curves of comets.

Up to now, no attempt has been made as for the application of any comet model to the colorimetric measurements of a comet head and tail. Here are studied the relations between the colour-indices of the Arend-Roland comet of 1957, and the comet dust-gas model is applied to their physical interpretation.

Concerning the latter question the pure gaseous model has been applied the reason being an endeavour after the simplicity of the mathematical solution of the problem.

### 9.2. Short-term changes in the colour index of the comet head and tail. Comet 1957 III

The photoelectric observations of the head (diaphragm 4') and tail (distance of about 30' from the nucleus) of the Arend-Roland comet, 1957 III, were performed at the University Observatory in Brno, and the obtained results were published by VANYSEK and TREMKO (1958). The measurements were carried out in three different effective wave-lengths included in Table 98.

Magnitude	λ _{eff}	Filter
B	4422 Å	BG12 (1  mm) + GG13 (2  mm)
V	5510 Å	GG11 (2 mm)
Р	4800 Å	without filter

Table 98	
Spectral regions used for photoelectric p of the Arend-Roland comet	photometry

Date	(B - P)	(P-V)	$(B - V_{j})$	Region
1957 IV. 27.819 27.837 27.844 29.860 29.872 29.879 V. 2.930 2.936 2.960 4.854 4.863	$\begin{array}{c} m \\ +0.74 \\ +0.86 \\ +0.78 \\ +0.47 \\ +0.32 \\ +0.41 \\ -0.02 \\ +0.13 \\ -0.15 \\ +0.47 \\ +0.47 \\ +0.41 \end{array}$	$\begin{array}{c} m \\ +0.07 \\ -0.14 \\ -0.08 \\ -0.26 \\ +0.06 \\ -0.04 \\ +0.06 \\ -0.38 \\ +0.34 \\ +0.39 \\ +0.45 \end{array}$		head head tail head head head tail head head head head

 Table 99

 List of colour-index measurements

The observations extended over the period from April 27th till May 30th, 1957. For our purposes were used 10 measurements of the brightness of the head, and 3 measurements of that of the tail, from which all three colour indices (B-P), (P-V) and (B-V) were computed (however, only two of them are indepedent). The indices are listed in Table 99. If plotted one against the other they give the relations presented in Fig. 53. The full circles stand for values related to the cometary head, the open ones for those related to the tail. The number at each circle indicates the date of observation. The values of the indices in Fig. 53 are concentrated along three straight lines, the first of which corresponds to April 27th May 4th and May 25th, the second to April 29th and the third to May 2nd. Furthermore, the interpretation is given of the relations ascertained between the individual indices.

# 9.3. Interpretation of the variation in the colour indices (B-P), (P-V) and (B-V). Results and conclusions

Let us proceed from the conception that the dust-gas model of a comet applies to each of the three spectral regions, i. e. let us assume that both molecular radiation and reflection on the dust part cles of the coma and tail take place an each of the studied regions. This assumption is supported by polarization measurements in the integral light (BLAHA, HRUŠKA, ŠVESTKA, VANÝSEK, 1958), and by the results of spectral analysis in the individual spectral regions (RAJCHL, 1958).

If we denote the brightness of the comet in the unit of geocentric distance as  $I_{\Delta}$  again, we can — according to (2.4), (2.5), (2.6) and (2.12) of Part One — write
(9.1) 
$$I_{\Delta} = I_{\rm og} r^{-\frac{\alpha}{2}} e^{B(1-r^{\alpha})} + I_{\rm od} r^{-\eta_{\alpha}}.$$

Since according to (2.20) the ratio of the brightnesses of both constituents in a given heliocentric distance is

(9.2) 
$$\psi(\mathbf{r}) = k \cdot \mathbf{r}^{\frac{a}{2} - \eta_{a}} \cdot e^{B(\mathbf{r}^{a} - 1)},$$

formula (9.1) transcribed into the magnitude scale gives:

(9.3)  $H_{\Delta} = -2.5 \log I_{og} + 1.25 \alpha \log r + 1.086 B(r^a - 1) - 2.5 \log (1 + \varphi)$ . If this equation is written for two effective wave-lenghts  $\lambda_i, \lambda_j$ , we obtain – after subtraction of the latter from the former – the colour index  $(CI)_{ij} = H^{\circ} - H^{\circ}$ :

$$(9.4) \ (CI)_{ij} = 2.5 \log \frac{I_{ou}^{(0)}}{I_{ou}^{(0)}} + 1.086 \ (1 - r^a)[B^{(j)} - B^{(j)}] + 2.5 \log \frac{1 + \psi^{(j)}}{1 + \psi^{(j)}} \ .$$



Fig. 53. Relations between three colour-indices of the head and tail of the comet 1957 III.

(B-P)
β1
+ IC'N # 10'2-
$-0.66 \pm 0.30$ +
$-0.62 \pm 0.06$

An analogous equation may be written for the wave-lengths  $\lambda_k$ ,  $\lambda_l$ :

(9.5)  
$$(CI)_{kl} = 2.5 \log \frac{I_{o_{k}}^{(0)}}{I_{o_{k}}^{(k)}} + 1.086(1 - r^{a}).$$
$$(B^{(l)} - B^{(k)}] + 2.5 \log \frac{1 + \psi^{(l)}}{1 + \psi^{(k)}}.$$

If factor 1.086  $(1 - r^{\alpha})$  is eliminated, the relation between both the indices can be written in the form:

$$(9.6) \qquad (CI)_{ij} = \alpha_{m} + \beta_{m} (CI)_{kl}$$

where

(9.7) 
$$\alpha_{\rm m} = 2.5 \left[ \log \frac{I_{\rm og}^{(1)} (1 + \psi^{(j)})}{I_{\rm og}^{(1)} (1 + \psi^{(i)})} - \beta_{\rm m} \log \frac{I_{\rm og}^{(1)} (1 + \psi^{(i)})}{I_{\rm og}^{(k)} (1 + \psi^{(k)})} \right]$$

and

(9.8) 
$$\beta_{\rm m} = \frac{B^{\rm ob} - B^{\rm ob}}{B^{\rm ob} - B^{\rm ob}}.$$

Let us denote

$$(CI)_{12} \equiv (B - P), (CI)_{13} \equiv (B - V), (CI)_{23} \equiv (P - V),$$

so that the indices i, j, k, l pass through 1, 2, 3 and m is equal to that of the indices i, j, k, l, which occurs twice in relation (9.6).

The parameters of the straight lines in Fig. 53 are listed in Table 100. Since the indices (B - P), (P - V) and (B - V)are interrelated by three equations of form (9.6), the following five relations must apply to  $\alpha_{\rm m}$  and  $\beta_{\rm m}$ , if our interpretation is correct:

$$(9.9) \begin{cases} A_0(\beta_{\rm m}) &= \beta_2 \beta_3 - \beta_1 \equiv 0, \\ A_1(\beta_{\rm m}) &= \frac{1}{\beta_3} - \beta_2 - 1 \equiv 0, \\ A_2(\beta_{\rm m}) &= \beta_1 + \beta_3 - 1 \equiv 0, \\ A_3(\alpha_{\rm m}) &= \alpha_1 + \alpha_3 \equiv 0, \\ A_4(\alpha_{\rm m}, \beta_{\rm m}) &= \alpha_1(1 + \beta_2) - \alpha_2 \equiv 0 \end{cases}$$

Table 100 Parameters of the colour-index relations

The values listed in Table 101 were for the parameters (9.9) obtained from the data of Table 100. It is obvious that all the empirical values  $A_0, \ldots, A_4$ range very closely about zero, and that all ascertained differences lie within the limits of errors.

IV. 27 + V. 4 + V. 25	IV. 29	V. 2
$-0.06 \pm 0.39$	$-0.07 \pm 0.37$	$0.00\pm0.07$
$+0.02\pm0.03$	$+0.04\pm0.15$	$0.00\pm0.03$
$0.00\pm0.44$	$0.00\pm0.42$	$0.00\pm0.08$
$0.00\pm0.34$	$0.00\pm0.14$	$0.00\pm0.01$
$-0.05\pm0.08$	$-0.03\pm0.08$	$0.00\pm0.01$
	IV. $27 + V. 4 + V. 25$ $-0.06 \pm 0.39$ $+0.02 \pm 0.03$ $0.00 \pm 0.44$ $0.00 \pm 0.34$ $-0.05 \pm 0.08$	IV. $27 + V. 4 + V. 25$ IV. $29$ $-0.06 \pm 0.39$ $-0.07 \pm 0.37$ $+0.02 \pm 0.03$ $+0.04 \pm 0.15$ $0.00 \pm 0.44$ $0.00 \pm 0.42$ $0.00 \pm 0.34$ $0.00 \pm 0.14$ $-0.05 \pm 0.08$ $-0.03 \pm 0.08$

Table 101 Empirical values of identities  $A_{p}(\alpha_{m}, \beta_{m}) \equiv 0$ 

Thus, the obtained results support the interpretation of the experimental relations given by equation (9.6) The variability of the colour index can be regarded as a reflex of the fluctuations in the amount of gas and dust in the head and tail of the comet connected with the release mechanism. These fluctuations are also reflected in the numerical values of the parameters  $\alpha_m$ ,  $\beta_m$ , which are not constant, not even during a single night. However, since the characteristics of both radiation constituents in the individual spectral regions appear in the coefficients  $\alpha_m$ ,  $\beta_m$  in the form of a ratio, the above-mentioned fluctuations are minimum. Moreover, the changes in the colour index during one night may be also affected by the shift of the photometer diaphragm with respect to the cometary nucleus, if several measurements are carried out in succession. Owing to this effect, the physical conditions are registered in a few somewhat different parts of the coma in which the instantaneous ratio of both radiation constituents may differ quite considerably.

Parameter  $\beta_m$ , which is a function of the heat of evaporation necessary to release a certain amount of gas, is probably related to the initial velocity  $v_0$  in the cometary tail. A comparison of one of the parameters  $\beta_m$ with  $v_0$  derived in the paper of VANYSEK, GRYGAR and SEKANINA (1959) from the width of the tail (see Figure 3 of the paper) is given in Table 102. For want of comparable data this relation cannot be verified in detail. Parameter  $\alpha_m$  quantitatively demonstrates the amount of gas and dust ejected into the cometary head- and tail- regions. Besides the small number of measurements, it is a range of unknown quantities in the expression

Comparison of the variability of parameter $\beta_2$ with the initial particle velocity in the cometary tail							
Date 1957	β	v _e km/s					
IV. 27.9	$-0.74 \pm 0.02$	$12.0\pm0.5$					
IV. 29.9	$-0.44\pm0.10$	$6.8\pm0.8$					
V. 2.9	$-0.38\pm0.02$	$7.3\pm0.5$					
V. 4.9	$-0.74\pm0.02$	>9.0					

Table 102

for  $\alpha_m$  that prejudices the analysis of this problem. Thus, the results obtained so far are of a qualitative character. The main result is the finding that problems of multicoloured cometary photometry may be solved on the basis of a comet dust-gas model.

# 9.4. Irregularities in the comet's brightness near the perihelion passage. Physical considerations concerning the perihelion asymmetry of the light europe of comets

Almost all the formulae used for describing the form of the photometric curve of comets have assumed a symmetry of the curve regarding the perihel on passage. However, a lot of comets indicate a disagreement between the time of maximum brightness and the time of perihelion passage. If we omit irregular short-term fluctuations which are, as a rule, most frequent near the perihelion passage and are in connection with a peculiar structure of a certain comet itself, we may consider two general phenomena which affect the form of the photometric curve, particularly in the vicinity of the perihelion passage:

(a) The concentration drop of molecules in the surface layers of the comet's nucleus.

(b) The thermal inertia of the nucleus blocks in the process releasing particles into the atmosphere.

The former of the two phenomena produces the preceding of the time of maximum brightness regarding the time of perihelion passage. On the basis of his theory LEVIN (1948) suggested a method of taking into account the successive concentration drop of molecules. The photometric formula of the comet gas model was completed by him by adding a correction term. It was derived by means of numerical quadrature and therefore unsuitable for applying to a current treatment of photometric curves of comets. Moreover, it includes the evaporation heat of molecules, which,

being unknown before a treatment of observational data, makes it impossible to enumerate the correction term at all. Only if some observations in larger heliocentric distances are available, an approximate solution may be found by graphical means.

Since 1948 nobody else has attempted to study this phenomenon and, particularly, to compare some hypothetical models with observed photometric curves of comets.

If the latter of the two phenomena has a predominant influence on the form of the photometric curve, then the time of maximum brightness follows the time of perihelion passage. No discussion of observational data with respect to this phenomenon has been provided up to now. Although this effect has been observed in behaviour of many comets, authors have reduced it, if they have done so at all, by adding a date term, as, for example, GADOMSKI (1947) in the case of the Whipple—Fedtke comet of 1943. Such a date term has no physical meaning and, because it is introduced regardless of the concentration-drop factor, the real value of thermal inertia is in this way underestimated.

The observed position of the brightness maximum on the photometric curve with regard to the perihelion passage is then given by summing up the two phenomena. If its preceding is observed, the concentration drop is more effective than the thermal inertia, while, on the other hand, if the retardation takes place the inertia is of greater importance.

The character of the concentration-drop process is in the mentioned study of LEVIN based on quite clear theoretical ideas, and no further comments are desirable on it from this point of view.

The problem of the thermal inertia of the processes is more complicated because of its connection with the structure of the surface layer of the comet's nucleus, and such of its properties as thermal conductivity, specific heat, porosity, albedo, way of deposition of gases, etc.

Conduction of heat inside the comet's nucleus was discussed in a few papers of DOBROVOLSKY (1953, 1956, 1961) and MARKOVICH (1957, 1958, 1959). Some important consequences of these studies will be here derived.

Assuming that all the heat incident upon the comet's surface is spent for heating the nucleus Dobrovolsky (1953) gives the following expression for the shift rate of isotherms:

(9.10) 
$$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{1}{2} \left| \frac{\overline{K_0}}{t} \cdot \exp\left[ -\frac{x^2}{4K_0 t} \right] \cdot \left( 1 - \frac{2}{\pi} \int_0^{\frac{x}{2\sqrt{K_0 t}}} \mathrm{e}^{-\xi^2} \,\mathrm{d}\xi \right)^{-1},$$

where x is the depth measured from the nucleus surface, t is the interval of time over which the surface source is emitting the solar heat towards

the deeper layers of the nucleus,  $K_0$  is the coefficient of temperature conductivity, defined by the relation

$$(9.11) K_0 = \frac{K}{\rho c},$$

where K is the coefficient of thermal conductivity,  $\rho$  the mass density of the medium, c the specific heat.

Assuming that the comet's nucleus is a black body, its period of rotation is P, and axis of rotation perpendicular to the plane of orbit, the average shift rate of isotherms resulting from the thermal-energy balance during the period of rotation is given by (9.10) after inserting  $t = P/\pi$ . Consequently, the "transfer" of the isotherm from the nucleus surface to the depth  $X_m$  will proceed over a period of  $\Delta T$  according to the relation:

(9.12) 
$$X_{\rm m} = \frac{1}{2} \sqrt{\frac{\pi K_0}{P}} \cdot f(X_{\rm m}, K_0, P) \, \Delta T,$$

where

(9.13) 
$$f(X_{\rm m}, K_{\rm 0}, P) \doteq \exp\left[-\frac{\pi}{16} \frac{X_{\rm m}^{\rm a}}{K_{\rm 0} P}\right] \left(1 - \frac{2}{\sqrt{\pi}} \int_{\rm 0}^{\frac{\sqrt{\pi}}{4} \sqrt{K_{\rm 0} P}} e^{-\xi^{\rm a}} \mathrm{d}\xi\right)^{-1}.$$

Here  $\Delta T$  is nothing but the retardation caused by the thermal inertia. Equation (9.12) indicates that the ratio  $X_m/\Delta T$  is independent of the heliocentrical distance, or surface temperature, to a first approximation.

However, the condition that all the heat coming from the Sun to the comet's surface is spent for heating the nucleus is never fulfilled because of the thermal radiation of the nucleus and some other losses of energy. Therefore the real depth of the isotherm will not be  $X_{\rm m}$ , but only

$$(9.14) X = \sigma X_{\rm m}, \ \sigma < 1.$$

Further, under  $\Delta T$  we will understand the interval of time during which a certain isotherm will reach the depth of the icy base, X. It means that the release of gases of a certain intensity takes place for  $\Delta T$  later than it should do if no dust layer existed, and the observed photometric curve is also retarded for  $\Delta T$ .

MARKOVICH (1957) has studied the thermal balance of the surface layer, taking into consideration the losses of energy due to the thermal radiation of the comet's surface. The flux of solar radiation has been expressed by the Fourier series, and the depth L, defined as the depth where  $(dT/dx)_{x-L} = 0$ , has been established from a property of the amplitude of the first periodical term as:

$$(9.15) L = \frac{2}{\text{mod}} \left| \frac{\overline{K_0 P}}{\pi} \right|.$$

From the physical point of view, L is the thickness of the dispersion dust layer at the nucleus surface, under which the icy base is situated. For comets, in which the existence of such a dust layer can be assumed, the validity of the equality as follows is obvious:

L = X

so that the period of rotation is independent of the coefficient of temperature conductivity:  $P = \alpha \Delta T$ .

1

(9.16)

where

(9.17) 
$$\alpha = \frac{\pi}{4} \sigma \mod . \exp\left[-\frac{1}{4 \mod^8}\right] \cdot \left(1 - \frac{2}{\sqrt{\pi}} \int^{\frac{1}{2 \mod}} e^{-\xi^4} d\xi\right)^{-1} = 0.87 \sigma.$$

In addition, with respect to (9.15)

 $X = 2.4 \sqrt{\sigma K_o \Delta T}$ (9.18)

For the short-period comets, in which the dispersion surface layer has been exhausted, this consideration fails. The coefficient of thermal conductivity of the blocks of the nucleus is greater than that of the dispersion layer of dust, and the dependence of the depth of gaseous supplies on the time of retardation must be studied according to (9.12).

Hence, the parameters of both the concentration-drop process and the thermal-inertia process have now absolutely clear physical meaning.

## 9.5. Methods of determining the concentration drop and thermal inertia from the form of the photometric curve

In accordance with LEVIN we will study the two physical phenomena on the basis of a gaseous model, not of a dust-gas model. There is no doubt that a dust-gas model would describe the photometric curve better than a gas model, particularly in comets with strong continuous spectra, but the number of unknown constants would be too great to secure any reliability of their values derived from the observations.

We will start from the Levin formula corrected for a concentration-drop term only (LEVIN, 1948):

(9.19) 
$$H_{\Delta}(\mathbf{r}) = H_{\mathbf{0}} + \mu a(\sqrt{\mathbf{r}} - 1) + F[a(\sqrt{\mathbf{r}} - \sqrt{q})] \Delta H,$$

where  $H_0$  is the initial absolute magnitude, i. e. the magnitude which the comet would have at r = 1 A. U., if it had the same supplies of gas as at the time when it started approaching the Sun;  $\Delta H$  is the decrease of the comet's brightness during the orbital period;  $\mu$  is the constant

(9.20) 
$$\mu = \frac{5}{2} \mod \frac{5000}{R_0 T_0},$$

 $R_0$  the universal gas constant,  $T_0$  the absolute temperature of the comet's nucleus at r = 1 A. U.; and a is the ratio

(9.21) 
$$a = \frac{L}{5000}$$
,

L is the heat of evaporation (in cal/Mol). LEVIN gave no analytical form of function  $F[a(\sqrt{r} - \sqrt{q})]$  and I have recently succeeded in finding that no exact expression for the F-function exists in a close form. As it is shown in Fig. 54, the F-function may satisfactorily be approximated by the formula as follows:

(9.22) 
$$F[a(\sqrt{r}-\sqrt{q})] \approx \frac{1}{2} [1 \pm a^{1/4} (\sqrt{r}-\sqrt{q})^{1/4}],$$

as far as





Fig. 54. The curve of concentration drop of molecules according to LEVIN (full line), and according to (9.22) (dash line).

The upper sign in (9.22) is valid for the pre-perihelion period, the bellow sign for the post-perihelion period. The same rule is valid in all the other formulae which follow. In Fig. 54 the Levin *F*-function is represented by a full line, the approximation (9.22) by a dash line.

In accordance with the results of the discussion of the previous section we assume that the thermal inertia of the evaporation process is constant throughout the comet's orbit, and equal to

(9.24) 
$$\overline{\tau} = \frac{3\sqrt{2}}{4} k \Delta T,$$

 $\Delta T$  is the retardation in days, k the Gauss constant. After introducing it into the photometric formula (9.19) the formal appearance of the latter will remain the same, but the heliocentric distance must be taken not at the time of observation, t, but at the time

$$t - \frac{2\sqrt{2}}{3k}\overline{\tau}.$$

Throughout this paper we consider parabolical orbits, which approximate quite satisfactorily most cometary orbits near their perihelion passage. For such an orbit the relation between heliocentric distance and time is:

(9.25) 
$$r(\tau) = (\tau + \sqrt{q^3 + \tau^2})^{s/s} + (-\tau + \sqrt{q^3 + \tau^2})^{s/s} - q,$$

or

(9.26) 
$$\tau(r) = \mp \frac{1}{2} \sqrt{r-q} (r+2q),$$

where  $\tau = \frac{3/2}{4} k(t - t_0)$ ,  $t_0$  is the time of perihelion passage.

Heliocentric distance  $r\left(t - \frac{2\sqrt{2}}{3k}\overline{\tau}\right)$  may be expressed through r(t) by means of expanding in a series of  $\overline{\tau}$ :

$$(9.27) \quad r\left(t - \frac{2\sqrt{2}}{3k}\overline{\tau}\right) = r(t)[1 \pm \xi_1(t)\overline{\tau} + \xi_2(t)\overline{\tau^2} \mp \xi_3(t)\overline{\tau^3} - \xi_4(t)\overline{\tau^4} \pm \ldots],$$

where

(89.2) 
$$\begin{cases} \xi_{1}(l) = \frac{4}{3}r^{-2}(r-q)^{1/2}, \\ \xi_{2}(l) = \frac{8}{9}r^{-4}(q-\frac{1}{2}r), \\ \xi_{3}(l) = \frac{32}{27}r^{-6}(r-q)^{1/2}(q-\frac{1}{3}r), \\ \xi_{4}(l) = \frac{160}{81}r^{-8}(q^{2}-\frac{7}{6}qr+\frac{7}{30}r^{2}). \end{cases}$$

Similarly we may write:

(9.27')  $r\left(t + \frac{2|\overline{2}}{3k}\overline{\tau}\right) = r(t)[1 \mp \xi_1(t)\overline{\tau} + \xi_2(t)\overline{\tau^2} \pm \xi_3(t)\overline{\tau^3} - \xi_4(t)\overline{\tau^4} \mp ...]$ The term of the fourth order guarantees — for current values  $\overline{\tau}$  — the accuracy greater than to  $\pm 0.001$  A. U. The time of maximum observed brightness of a comet,  $t_{\rm m}$ , is determined by the condition  $(dH_{\Delta}/d\tau)\tau_{\rm m} = 0$ ,  $\tau_{\rm m} = \frac{3\sqrt{2}}{4}k(t_{\rm m}-t_{\rm e})$ . If we denote  $\tau_{\rm m}(\Delta H)$  the shift of the time of maximum brightness due to the concentration drop, the following important relation is valid among  $\tau_{\rm m}$ ,  $\tau_{\rm m}(\Delta H)$ and  $\overline{\tau}$ :

(9.29) 
$$\tau_{\rm m} = \tau_{\rm m}(\Delta H) + \tau.$$

If no thermal inertia took place the relation between the magnitude decrease  $\Delta H$  and the heliocentric distance of maximum brightness would be of the form:

(9.30) 
$$\Delta H = 10 \ \mu a^{\epsilon/\epsilon} (\sqrt{r_{\rm m}(\Delta H)} - \sqrt{q})^{\epsilon/\epsilon},$$

so that

(9.31) 
$$r_{\rm m}(\Delta H) = \left[\sqrt{q} + \frac{1}{a} \left(\frac{\Delta H}{10 \ \mu}\right)^{s/4}\right]^{2},$$

and, owing to the expression

$$\frac{1}{a} \left( \frac{\Delta H}{10 \ \mu} \right)^{1/4}$$

			•		
ΔΤ	0ª	5⁴	10ª	20⁴	40ª
m 0.01	d 0.2 (0.500)	d +4.8 (0.513)	d +9.8 (0.553)	d + 19.8 (0.682) -	d +39.8 (1.017)
0.1	0.7	+4.3	+9.3	+19.3	+39.3
	(0.500)	(0.511)	(0.548)	(0.675)	(1.008)
0.5	-2.0	+3.0	+8.0	+ 18.0	+ 38.0
	(0.502)	(0.505)	(0.536)	(0.657)	(0.986)
1.0	-3.1	+1.9	+6.9	+ 16.9	+ 36.9
	(0.506)	(0.502)	(0.527)	(0.641)	(0.967)
2.0	4.8	+0.2	+5.2	+15.2	+ 35.2
	(0.513)	(0.500)	(0.516)	(0.618)	-(0.940)
3.0	-6.2	-1.2	** <b>+3.8</b>	+1 <b>3.8</b>	+33.8
	(0.522)	(0.501)	(0.509)	(0.599)	(0.917)
5.0	-8.7	-3.7	+1.3	+11.3	+31.3
	(0.542)	(0.508)	(0.501)	(0.569)	(0.872)
10.0	-14.1	-9.1	-4.1	+ 5,9	+25.9
	(0.603)	(0.544)	(0.510)	• (0.520)	(0.780)

Table 103 The time of maximum brightness q = 0.500 A. U., L = 5,000 cal/Mol, r < 2.92 A. U.

$\Delta H$	04	.5ª	104	204	40ª
m 0,01	d — 0.4 (1.000)	d + 4.6 (1.003)	d + 9.6 (1.014)	d +19.6 (1.055)	d +39.6 (1.203)
0.1	-1.7 (1.000)	+ 3.3 (1.002)	+ 8.3 (1.011)	+18.3 (1.049)	+38.3 (1.192)
0.5	-4.7(1.003)	+ 0.3 (1.000)	+5.3 (1.004)	+15.3 (1.034)	+35.3 (1.166)
1.0	-7.3 (1.008)	·- 2.3 (1.001)	+2.7 (1.001)	+12.7 (1.023)	+32.7 . (1.144)
2.0	-11.3 (1.019)	6.3 (1.006)	- 1.3 (1.000)	+ 8.7 (1.012)	+28.7 (1.113)
3.0	-14.6 (1.031)	<u> </u>	-4.6 (1.003)	+ 5.4 (1.004)	+25.4 (1.090)
5.0	-20.4 (1.059)	-15.4 (1.034)	-10.4 (1.016)	- 0.4 (1.000)	+19.6 (1.055)
10.0	-32.6 (1.143)	-27.6 (1.105)		-12.6 (1.023)	+ 7.4 (1.008)

Table 104 The time of maximum brightness = 1.000 A. U., L = 5,000 cal/Mol, r < 4.00 A. U.

being small,

(9.32) 
$$\tau_{\rm m}(\Delta H) = -\frac{3}{2} \sqrt{2} a^{-3/2} q^{4/2} \left(\frac{\Delta H}{10 \ \mu}\right)^{5/2},$$

and, finally, according to (20),

(9.33) 
$$t_{\rm m} - t_{\rm 0} = \frac{2}{k} \left[ \frac{\sqrt{2}}{3} \overline{\tau} - a^{-1/_{\rm 0}} q^{s/_{\rm 0}} \left( \frac{\Delta H}{10 \, \mu} \right)^{s/_{\rm 0}} \right].$$

Values  $t_m - t_0$  as well as corresponding  $r_m$  are for L = 5000 cal/Mol and a few combinations of q,  $\Delta H$  and  $\overline{\tau}$  given in Tab. 103-105.

In the four following sections four different methods are developed to derive numerical values of  $\Delta H$ ,  $\overline{\tau}$ , as well as  $H_0$  and L.

9.5.1. Method of expanding in a series (M. E. S,)

Let us study the photometric curve of a comet, the observed magnitudes being plotted against time:

$$H_{\varDelta} = H_{\varDelta}(\tau).$$

Let us expand this function in a series at the time  $\tau_0$  and omit the terms of the fourth and higher orders. Then:

where, according to (10) and (13), the coefficients are:

$$\begin{cases} A_{0} = H_{0} + \mu a (\sqrt{r_{0}} - 1) + \frac{1}{2} \left[ 1 \mp a^{\frac{1}{3}} r_{0}^{\frac{3}{3}} \left( 1 - \sqrt{\frac{q}{r_{0}}} \right)^{\frac{1}{s}} \right] \Delta H, \\ A_{1} = \frac{2}{3r_{0}} \left( 1 - \frac{q}{r_{0}} \right)^{\frac{1}{s}} \left[ \mp \mu a + \frac{1}{10} \Delta H a^{\frac{1}{3}} r_{0}^{-\frac{s}{s}} \left( 1 - \sqrt{\frac{q}{r_{0}}} \right)^{-\frac{s}{s}} \right]_{s}, \\ A_{2} = \frac{4}{9} r_{0}^{-\frac{s}{s}} \left[ -\mu a \left( 1 - \frac{3}{2} \frac{q}{r_{0}} \right) \mp \frac{1}{100} \Delta H a^{\frac{1}{3}} r_{0}^{-\frac{s}{s}} \left( 1 - \sqrt{\frac{q}{r_{0}}} \right)^{-\frac{s}{s}} \right]_{s}, \\ f \left( \frac{q}{r_{0}} \right) \right], \end{cases}$$

(9.35)

I

$$A_{3} = \frac{16}{81} r_{0}^{-4} \left(1 - \frac{q}{r_{0}}\right)^{1/s} \left[ \mp \frac{5}{2} \mu a \left(1 - \frac{21}{10} \frac{q}{r_{0}}\right) + \frac{1}{1000} \Delta H a^{1/s} r_{0}^{-1/s} \\ \cdot \left(1 - \sqrt{\frac{q}{r_{0}}}\right)^{-1/s} \cdot g\left(\frac{q}{r_{0}}\right) \right],$$

and

(9.36) 
$$\begin{cases} f\left(\frac{q}{r_0}\right) = -14 + 10 \left(\frac{q}{r_0}\right)^{1/s} + 19 \frac{q}{r_0} - 15 \left(\frac{q}{r_0}\right)^{s/s}, \\ g\left(\frac{q}{r_0}\right) = 406 - 620 \left(\frac{q}{r_0}\right)^{3/s} - 491 \frac{q}{r_0} + 1230 \left(\frac{q}{r_0}\right)^{s/s} - 525 \left(\frac{q}{r_0}\right)^{s}. \end{cases}$$

Now we will introduce the inertia effect  $\overline{\tau}$  into (9.34), If  $\tau$ 's remain the moments of observation, the form of (9.34) will change into:

(9.37) 
$$H_{\Delta}(\tau) = \sum_{i=0}^{t} A_{i}[\tau - (\tau_{0} + \overline{\tau})]^{i}.$$

As we do not know the value of  $\overline{\tau}$  — we know only that the order of this magnitude is not higher than  $10^{-1}$  — we change the expression in the brackets into

 $[(\tau - \tau_0) - \overline{\tau}].$ 

and write

$$(9.38) H_{\Delta}(\tau) = \sum_{i=0}^{s} B_{i}(\tau - \tau_{0})^{i},$$

where

6•

(9.39) 
$$\begin{cases} B_0 = A_0 - A_1 \overline{\tau} + A_2 \overline{\tau^2} - A_3 \overline{\tau^3}, \\ B_1 = A_1 - 2A_3 \overline{\tau} + 3A_3 \overline{\tau^3}, \\ B_2 = A_3 - 3A_3 \overline{\tau}, \\ B_3 = A_3. \end{cases}$$

We must not forget that  $B_i$  are taken at  $\tau_0$  (and they result from the

observational data), while  $A_i$  are taken at  $\tau_0 + \overline{\tau}$  (and they result from (9.35)). Now (9.39) represents four equations for four unknown parameters,  $H_0$ , L (or a),  $\Delta H$  and  $\overline{\tau}$ .

The computation of the parameters must be carried out by means of successive approximations. First we may derive a from the quadratic equation:

(9.40) 
$$M\mu^2 a^2 + N\mu a + P = 0,$$

where

$$\begin{cases} M = \left(1 - \frac{3}{2} \frac{q}{r_{0}}\right)^{2} + 50 \frac{f\left(\frac{q}{r_{0}}\right)}{g\left(\frac{q}{r_{0}}\right)} \left(1 - \sqrt{\frac{q}{r_{0}}}\right) \left(1 - \frac{21}{10} \frac{q}{r_{0}}\right) \left\{1 - \frac{3}{2} \frac{q}{r_{0}} + \frac{25}{2} \frac{f\left(\frac{q}{r_{0}}\right)}{g\left(\frac{q}{r_{0}}\right)} \left(1 - \sqrt{\frac{q}{r_{0}}}\right) \left(1 - \frac{21}{10} \frac{q}{r_{0}}\right) \right\},\\ N = \pm \frac{81}{8} B_{s} r_{0}^{4} \left(1 - \frac{q}{r_{0}}\right)^{-4} \left\{ \left(1 - \frac{q}{r_{0}}\right) \left[1 - 250 \frac{\left(1 - \sqrt{\frac{q}{r_{0}}}\right)^{2}}{g\left(\frac{q}{r_{0}}\right)^{2}} \left(1 - \frac{21}{10} \frac{q}{r_{0}}\right)^{2}\right] + 10 \left(1 - \sqrt{\frac{q}{r_{0}}}\right) \frac{f\left(\frac{q}{r_{0}}\right)}{g\left(\frac{q}{r_{0}}\right)} \left[1 - \frac{3}{2} \frac{q}{r_{0}} + 25 \left(1 - \sqrt{\frac{q}{r_{0}}}\right) \right],\\ \cdot \left(1 - \frac{21}{10} \frac{q}{r_{0}}\right) \frac{f\left(\frac{q}{r_{0}}\right)}{g\left(\frac{q}{r_{0}}\right)} \left[\frac{1}{r_{0}} - \frac{3}{2} \frac{q}{r_{0}} + 25 \left(1 - \sqrt{\frac{q}{r_{0}}}\right) \right],\\ P = \frac{81}{16} r_{0}^{2} \left\{(3B_{1}B_{3} - B_{2}^{2}) r_{0}^{-3} + \frac{81}{16} 10^{2} \left(1 - \sqrt{\frac{q}{r_{0}}}\right)^{2} B_{3}^{2} \left[\left(1 - - \frac{q}{r_{0}}\right)^{-1} \left(\frac{f\left(\frac{q}{r_{0}}\right)}{g\left(\frac{q}{r_{0}}\right)}\right)^{2} - \frac{2}{g\left(\frac{q}{r_{0}}\right)}\right]\right\}.$$

Let us point out that parameter B, which is often used instead of L, is simply given through  $\mu a$ :

$$B = \frac{2}{5 \mod} \mu a.$$

:84

ΔT ΔH	0ª	54	,10ª	204	40ª
m - 0.01	d 1.0 (2.000)	d + 4.0 (2.001)	d + 9.0 (2.003)/	d +19.0 (2.014)	d +39.0 (2.055)
0.1	-4.1 (2.001)	+0.9 (2.000)	+ 5.9 (2.001)	+15.9 (2.009)	+35.9 (2.047)
0.5	-11.2 (2.005)	-6.2 (2.002)	-1.2 (2.000)	` + 8.8 (2.003)	+28.8 (2.031);
1.0	-17.3	-12.3	- 7.3	+ 2.7	+22.7
	(2.011)	(2.006)	(2.002)	(2.000)	(2.020)
2.0	-26.7	-21.7	-16.7	-6.7	+13.3
	(2.026)	(2.018)	(2.010)	(2.002)	(2.007)
	-34.6	-29.6	-24.6	-14.6 (2.008)	+ 5.4
3.0	(2.044)	(2.033)	(2.023)		(2.001)
5.0	-48.0	-43.0	38.0	-28.0	- 8.0
	(2.083)	(2.067)	(2.052)	(2.029)	(2.002)
10.0	-76.0	-71.0	-66.0	-56.0	-36.0
	(2.200)	(2.177)	(2.155)	(2.112)	(2.047)

Table 105The time of maximum brightnessq = 2.000 A. U., L = 5,090 cal/Mol, P < 5.83 A. U.

If we know a, we may compute the brightness decrease per orbital period from the relation:

(9.43) 
$$\Delta H = a^{-1/s} r_0^{s/s} \cdot 10^s \frac{\left(1 - \sqrt{\frac{q}{r_0}}\right)^{s/s}}{g\left(\frac{q}{r_0}\right)} \left\{ \frac{81}{16} B_s r_0^{s} \left(1 - \frac{q}{r_0}\right)^{-1/s} \pm \frac{5}{2} \mu a \left(1 - \frac{21}{10} \frac{q}{r_0}\right) \right\}$$

If we know a and  $\Delta H$  we can compute coefficient  $A_2$  and then

$$(9.44) \qquad \qquad \overline{\tau} = \frac{A_2 - B_2}{3B_3}$$

١

In the first approximation we put  $r_0 = r_0(\tau_0)$  in (9.41) and (9.43), i. e. we assume  $\overline{\tau} = 0$ . With *a* and  $\Delta H$  derived in this way we establish a new  $\overline{\tau_1}$  from (9.44), determine  $r_0(\tau_0 + \overline{\tau_1})$  according to (9.27') or (9.25), and compute new values of *a* and  $\Delta H$ . They give another value of  $\overline{\tau}$ ,  $\overline{\tau_2}$ , etc. The approximations are finished when  $\overline{\tau_{j+1}} = \overline{\tau_j}$ . Finally, the initial absolute magnitude is given by the formula:

(9.45) 
$$H_{0} = B_{0} - \frac{1}{2} \Delta H \left[ 1 \mp a^{1/_{s}} r_{0}^{1/_{10}} \left( 1 - \sqrt{\frac{q}{r_{0}}} \right)^{1/_{s}} \right] - \mu a \left( \sqrt{r_{0}} - 1 \right) + A_{1} \overline{\tau} - \bullet \\ - A_{2} \overline{\tau}^{2} + A_{3} \overline{\tau}^{3}.$$

Condition (9.23), of course, must be fulfilled.

## 9.5.2. Method of symmetric positions (M. S. P.)

The method of expanding in a series requires a comparatively numerous observational material in order that the values of coefficients B, should be reliable, and accurate enough. Such a material is not, as a rule, available and therefore some other methods must be found to make it possible to establish the asymmetry parameters,  $\Delta H$  and  $\tau$ .

1

Let us assume that we know the magnitude,  $H_A(r)$ , and the photometric exponent n(r), at a certain heliocentric distance r both in the pre-perihelion period and in the post-perihelion period. If index A belongs to the preperihelion observations and B to those after the perihelion passage, we may write according to (9.19) and (9.27):

$$(9.46) \quad n_{A}(r) = \frac{\sqrt{r}}{5 \mod} \left[ \mu a (1 + \lambda_{1} \overline{\tau} + \lambda_{2} \overline{\tau}^{2} - \lambda_{3} \overline{\tau}^{3} - \lambda_{4} \overline{\tau}^{4}) - \frac{1}{10} \Delta H a^{1/s} \\ \cdot (\sqrt{r} - \sqrt{q})^{-4/s} \right],$$

$$(9.47) \quad n_{B}(r) = \frac{\sqrt{r}}{5 \mod} \left[ \mu a (1 - \lambda_{1} \overline{\tau} + \lambda_{2} \overline{\tau}^{2} + \lambda_{3} \overline{\tau}^{3} - \lambda_{4} \overline{\tau}^{4}) + \frac{1}{10} \Delta H a^{1/s} \\ \cdot (\sqrt{r} - \sqrt{q})^{-4/s} \right],$$

(9.48) 
$$\begin{aligned} H_{\Delta A}(r) &= H_0 + \mu a \sqrt{r} (1 + \eta_1 \overline{\tau} + \eta_2 \overline{\tau^2} - \eta_3 \overline{\tau^3} - \eta_4 \overline{\tau^4}) - \mu a + \\ &+ \frac{1}{2} \Delta H - \frac{1}{2} \Delta H a^{1/6} (\sqrt{r} - \sqrt{q})^{1/6}, \end{aligned}$$

(9.49) 
$$\begin{array}{c} H_{AB}(r) = H_{0} + \mu a \sqrt{r} (1 - \eta_{1} \overline{\tau} + \eta_{2} \overline{\tau^{2}} + \eta_{3} \overline{\tau^{3}} - \eta_{4} \overline{\tau^{4}}) - \mu a + \\ + \frac{1}{2} \Delta H + \frac{1}{2} \Delta H a^{1/_{5}} (\sqrt{r} - \sqrt{q})^{1/_{5}}, \end{array}$$

where

(9.50) 
$$\lambda_{i} = (-1)^{i+1} \frac{(i+1) \eta_{i+1}}{\eta_{1}}, \qquad i = 1, \ldots, 4,$$

and

(9.51) 
$$\begin{cases} \eta_{1} = \frac{2}{3} r^{-2} (r - q)^{1/2}, \\ \eta_{2} = \frac{2}{9} r^{-4} (3q - 2r), \\ \eta_{3} = \frac{4}{81} r^{-6} (r - q)^{1/2} (21q - 10r), \\ \eta_{4} = \frac{2}{243} r^{-8} (231q^{2} - 300qr + 80r^{2}), \\ \eta_{5} = \frac{4}{729} r^{-10} (r - q)^{1/2} (693q^{2} - 780qr + 176r^{2}) \end{cases}$$

In formulae (9.46) to (9.49) the concentration drop term is not corrected for inertia. If we did so the solution would be much more complicated, but, on the other hand, the influence of the correction would be quite negligible, particularly in distances not too close to the perihelion distance.

If we sum up (9.46) and (9.47), and (9.48) and (9.49) as well, and if we further subtract (9.47) from (9.46), and (9.49) from (9.48) we obtain four other equations, from which the equation of the fourth degree in  $\overline{\tau}$  results after the elimination of  $H_0$ ,  $\Delta H$  and a. It may be written in the form appropriate for successive approximations:

(9.52)

$$\overline{\tau} = C(n, H_A) \frac{\eta_1 - 3\eta_5 \overline{\tau^2} + 5\eta_5 \overline{\tau^4}}{\frac{1}{5} \eta_1^2 - 2\eta_2 \left(1 - \sqrt{\frac{q}{r}}\right) - \left[\frac{1}{5} \eta_1 \eta_3 - 4\eta_4 \left(1 - \sqrt{\frac{q}{r}}\right)\right] \overline{\tau^2}}$$

where

(9.53) 
$$C(n, H) = \frac{1}{n_A + n_B} \left[ \frac{H_{AA} - H_{AB}}{25 \mod} - \left( 1 - \frac{\sqrt{q}}{r} \right) (n_A - n_B) \right].$$

If r is not close to q the following value may be used as the first approximation suitable for inserting into (9.52):

(9.52') 
$$\overline{\tau} = C(n, H_{d}) \eta_{1} \left[ \frac{1}{5} \eta_{1}^{2} - 2\eta_{2} \left( 1 - \sqrt{\frac{q}{r}} \right) \right]^{-1}$$

The three other magnitudes are given as follows:

(9.54) 
$$a = \frac{5}{2} \frac{\text{mod}}{\mu} r^{-1/2} \eta_1 \frac{n_A + n_B}{\eta_1 - 3\eta_3 \overline{\tau^2} + 5\eta_5 \overline{\tau^4}}$$

$$(9.55) \begin{cases} \Delta H = 10a^{-1/4}(\sqrt{r} - \sqrt{q})^{4/4} \left\{ \frac{2\mu a\overline{\tau}}{\eta_1} (\eta_2 - 2\eta_4\overline{\tau^2}) - \frac{5}{2} \mod r^{-1/4} (n_A - n_B) \right\} = a^{-1/4}(\sqrt{r} - \sqrt{q})^{-1/4} [2\mu a\sqrt{r}\overline{\tau}(\eta_1 - \eta_3\overline{\tau^2}) - (H_{AA} - H_{AB})],$$

(9.56) 
$$H_0 = \mu a [1 - \sqrt{r} (1 + \eta_2 \overline{\tau^2} - \eta_4 \overline{\tau^4})] - \frac{1}{2} \Delta H + \frac{1}{2} (H_{\Delta A} + H_{\Delta B}).$$

A quantitative treatment of real photometric curves of comets does not directly give, as a rule, the photometric quantities  $H_{\Delta}$  and *n* precisely in the same distances prior to and after the perihelion passage. But if the difference between the two distances, *r* and *r'*, is small, the reduction of the two photometric quantities may be carried out according to the formulae as follows:

(9.57) 
$$\begin{cases} n(r') = n(r) \sqrt{\frac{r'}{r}}, \\ H_{d}(r') = H_{d}(r) + 5 \mod n(r) \left( \sqrt{\frac{r'}{r}} - 1 \right), \end{cases}$$

i. e. we assume that the differential influence of the asymmetry magnitudes between r and r' is negligible.

In addition, the photometric exponent may be expressed through  $dH_d/d\tau$ , or  $dH_d/dt$  according to the formulae:

(9.58) 
$$n(r) = \mp \frac{3}{10 \mod} \cdot \frac{r^2}{\sqrt{r-q}} \left( \frac{\mathrm{d}H_d}{\mathrm{d}\tau} \right)_r,$$

(9.59) 
$$n(r) = \mp \frac{\sqrt{2}}{5k \mod} \cdot \frac{r^2}{\sqrt{r-q}} \left(\frac{\mathrm{d}H_4}{\mathrm{d}t}\right)_r.$$

9.5.3. Method of four points (M. F. P.)

The advantage of the preceding method is the fact that we need not know the behaviour of a comet in a close vicinity of its perihelion passage. On the other hand, the reliability of the results obtained by that method depends in a high degree on the precision in deriving the photometric exponents  $n_A$  and  $n_B$ .

If we are not able to reach high enough accuracy in this direction, and if we know the form of the photometric curve in a close neighbourhood of the perihelion passage, namely the shift of the time of maximum brightness with regard to the time of perihelion passage, and the comet's brightness in the perihelion, we may develop another method.

Let us, in addition, know the comet's brightness at a certain heliocentric distance, r, far enough from the perihelion distance, both prior to the perihelion passage and after it. Then four initial points are at our disposal, i. e. three magnitude data and the time shift, so that we can derive all the required quantities of the photometric formula from the equations:

(9.60) 
$$\tau_{\rm m} = \overline{\tau} - \frac{3}{2} \sqrt{2} a^{-1/2} q^{5/2} \left( \frac{\Delta H}{10 \, \mu} \right)^{5/2}$$

(9.61) 
$$H_{\Delta}(q) = H_{0} + \mu a q^{1/2} \left( 1 + \frac{2}{9} q^{-3} \overline{\tau^{2}} - \frac{22}{243} q^{-6} \overline{\tau^{4}} \right) - \mu a + \frac{1}{2} \Delta H,$$

and from (9.48) and (9.49).

Each of the initial four data must be, of course, derived from the observational material by means of the compensation computation.

After the elimination of  $H_0$ ,  $\Delta H$  and a we obtain the following equation for  $\overline{\tau}$ :

$$(9.62) \begin{cases} \overline{\tau} = (\eta_{1} - \eta_{3}\overline{\tau^{2}})^{-1} \left\{ 5 \left( \frac{\sqrt{2}}{3} \right)^{s_{/s}} q^{-2} (\overline{\tau} - \tau_{m})^{s_{/s}} r^{-s_{/s}} \left( 1 - \sqrt{\frac{q}{r}} \right)^{s_{/s}} + C'(H_{d}) \left[ 1 - \sqrt{\frac{q}{r}} + \left( \eta_{2} - \frac{2}{9} q^{-3} \right) \sqrt{\frac{q}{r}} \right] \overline{\tau^{2}} - \left( \eta_{4} - \frac{22}{243} q^{-6} - \frac{1}{\sqrt{\frac{q}{r}}} \right) \overline{\tau^{4}} \right],$$

where

(9.63) 
$$C'(H_{d}) = \frac{H_{dA} - H_{dB}}{H_{dA} + H_{dB} - 2H_{d}(q)}$$

The solution must again be carried out by means of successive approximations. Then the heat of evaporation is

(9.64) 
$$\begin{cases} a = \frac{H_{AA} - H_{AB}}{2 \mu \sqrt{r}} \left[ \overline{\tau} (\eta_1 - \eta_3 \overline{\tau}^2) - 5 \left( \frac{\sqrt{2}}{3} \right)^{s_{l_4}} q^{-2} (\overline{\tau} - \tau_m)^{s_{l_5}} r^{-s_{l_5}} \right] \\ \cdot \left( 1 - \sqrt{\frac{q}{r}} \right)^{1/s} \right]^{-1}, \end{cases}$$

the magnitude decrease

(9.65) 
$$\Delta H = 10 \mu \left( \sqrt{\frac{2}{3}} \right)^{*/ \epsilon} a^{*/ \epsilon} q^{-2} (\overline{\tau} - \tau_{\mathrm{m}}),$$

and finally, the initial absolute magnitude

(9.66) 
$$H_0 = \frac{1}{2} (H_{\Delta A} + H_{\Delta B} - \Delta H) + \mu a [1 - \sqrt{r} (1 + \eta_2 \overline{\tau^2} - \eta_4 \overline{\tau^4})]$$

All the symbols used here are the same as earlier in this paper.

# 9.5.4. Generalized method of photometric exponent (G. M. P. E.)

In the two last mentioned methods we have assumed some photometric properties of a comet to be known in a distance rather far from the perihelion distance both prior to the passage through the perihelion and after it. Let us now assume that a comparatively numerous observational material is available either prior to or after the perihelion passage, and that the either prior to or after the perihelion passage, and that the behaviour of the comet in a close neighbourhood of the perihelion is also known. Then we have the four following equations at our disposal:

(9.67) 
$$\begin{cases} H_{\Delta}(r) = H_{0} + \mu a \sqrt{r} [1 \pm \eta_{1} \overline{\tau} + \eta_{3} \overline{\tau}^{2} \mp \eta_{3} \overline{\tau}^{4} - \eta \overline{\tau}^{4}] - \mu a + \frac{1}{2} \Delta H [1 \mp a^{3} (\sqrt{r} - \sqrt{q})^{3}], \end{cases}$$

(9.68) 
$$\begin{cases} n(r) = \frac{\sqrt{r}}{5 \mod} \left[ \mu a \left( 1 \pm \frac{2\eta_2}{\eta_1} \overline{\tau} - \frac{3\eta_3}{\eta_1} \overline{\tau^2} + \frac{4\eta_4}{\eta_1} \overline{\tau^3} + \frac{5\eta_5}{\eta_3} \overline{\tau^4} \right) \mp \\ \mp \frac{1}{10} \Delta H a^{1/3} (\sqrt{r} - \sqrt{q})^{-4/3} \right], \end{cases}$$

and (9.60) and (9.61) again. This system of equations represents nothing but a generalized method of photometric exponent (for a gas model), the original form and solution of which for a comet dust-gas model is included in Chapter Two of Part One of this study (SEKANINA, 1962).

1

The asymmetry parameter  $\tau$  may be computed from the equation as follows:

$$(9.69) \begin{cases} \overline{\tau} = \left[ \eta_1 - \frac{2\eta_2}{\eta_1} C'' - \left( \eta_3 - \frac{4\eta_4}{\eta_1} C'' \right) \overline{\tau^2} \right]^{-1} \cdot \left[ \left( \frac{\sqrt{2}}{3} \right)^{*_{l_5}} q^{-2} (\overline{\tau} - \tau_m)^{*_{l_5}} \right] \\ \cdot r^{-*_{l_5}} \left( 1 - \sqrt{\frac{q}{r}} \right)^{-*_{l_5}} \cdot \left\{ 5 \left( 1 - \sqrt{\frac{q}{r}} \right) - C'' \right\} \pm \left\{ C'' - 1 + \sqrt{\frac{q}{r}} - \left( \eta_2 + \frac{3\eta_3}{\eta_1} C'' - \frac{2}{9} q^{-3} \sqrt{\frac{q}{r}} \right) \overline{\tau^2} + \left( \eta_4 + \frac{5\eta_5}{\eta_1} C'' - \frac{22}{243} q^{-6} \right) \\ \cdot \sqrt{\frac{q}{r}} \overline{\tau^4} \right], \end{cases}$$

where

(9.70) 
$$C''(n, H_{d}) = \frac{H_{d}(r) - H_{d}(q)}{5 \mod . n(r)}$$

The heat of evaporation is

(9.71) 
$$\begin{cases} a = \frac{1}{\mu\sqrt{r}} \left[ H_{A}(r) - H_{A}(q) \right] \cdot \left[ 1 \pm \eta_{1}\overline{\tau} + \eta_{2}\overline{\tau}^{2} \mp \eta_{3}\overline{\tau}^{3} - \eta_{4}\overline{\tau}^{4} - \right] \\ - \sqrt{\frac{q}{r}} \left( 1 + \frac{2}{9} q^{-3}\overline{\tau}^{2} - \frac{22}{243} q^{-6}\overline{\tau}^{4} \right) \mp 5 \left( \frac{\sqrt{2}}{3} \right)^{s_{1/6}} q^{-2} (\overline{\tau} - \tau_{m})^{s_{1/6}} \\ \cdot r^{-s_{1/6}} \left( 1 - \sqrt{\frac{q}{r}} \right)^{1/6} \right]^{-1}. \end{cases}$$

The other asymmetry parameter results from (9.65) and the initial absolute magnitude from (9.61). For all the three last mentioned methods condition (9.23) is valid as well.

#### 9.5.5. Applicability of the methods

The applicability of each of the developed methods is given by the observational data available. The required regions of  $\tau$  are for each method given in Fig. 55 by full line ( $\tau = 0$  stands for the perihelion passage).

A list of the initial magnitudes required, which must be found from the form of the observed photometric curve, is included in Tab. 106.

- Concerning the accuracy of . the four methods, the first place belongs to the method of expanding in a series, provided that the coefficients are established accurately enough. On the contrary, the most inaccurate method is that of four points, because it is based on no systematic trend of brightness. The two other methods lie, as to their accuracy, between the two just mentioned. The M.S.P. characterizes best the regions of the photometric curve far from the perihelion passage, while the G. M. P. E. corresponds best to the real photometric curve within the region between q and r (r is the distance where the magnitude and exponent are given).



Fig. 55. The regions of the photometric curve necessary for applying the developed methods, respectively.

Method	Initial magnitudes
M. E. S.	$B_{i} \text{ of series } H_{\Delta} = \sum B_{i}(\tau - \tau_{0})^{i}, \ i = 0, 1, 2, 3$
M. S. P.	$n_A(r), n_B(r), H_{\Delta A}(r), H_{\Delta B}(r)$
M. F. P.	$\tau_{\rm m}, H_{\Delta}(q), H_{\Delta A}(r), H_{\Delta B}(r)$
G. M. P. E.	$\tau_{\rm m}, H_{\Delta}(q); n_{\rm A}(r) \text{ and } H_{\Delta A}(r), \text{ or: } n_{\rm B}(r) \text{ and } H_{\Delta B}(r)$

	Tat	ole 1	06	· · · .	1.1	
Initial	magnitudes.	for	the	metho	ds used	•

## 9.6. Perihelion asymmetry of eleven comets. Spectra, periods of rotation, and dispersion dust layer

The methods have been applied to the photometric curves of eleven comets: 1858 VI, 1862 III, 1915 II, 1921 II, 1930 III, 1932 V, 1937 IV, 1937 V, 1941 IV, 1941 VIII, and 1956 IV. They are represented in Figs. 56, 57, 58.



Fig. 56. Photometric curves of the comets: 1858 VI, 1862 III, 1921 II, 1930 III, 1932 V, 1937 V, and 1941 IV.



Fig. 57. Photometric curve of the comet 1915 II.

pistance of the moment of maximum brightness from that of perihelion dassage,  $t_{\rm m} - t_0$ ; the reference. (Table 107 is placed on page 128.)

A list of spectral characteristics of these comets is given in Table 108. Individual columns indicate: the heliocentric distance, the position relative

Table 107 contains a synopsis of the asymmetry . characteristics as well as the physical characteristics of the gaseous model  $(T_0 =$ = 320 °K) for the eleven comets as result from the four methods used. In addition to the resulting values of  $L, H_0, \Delta H$  and  $\Delta T$ , the initial magnitudes following directly from the observational data are included in the table, too. These are as follows: the time of perihelion passage.  $t_0$ ; the position of observations relative to the perihelion passage, per: A means prior to the perihelion, B after the perihelion; the number of observations. N: if n is added, the figure gives the number of normal places; the range of heliocentric distances, int r; the mean heliocentric distance. r; the time distance of the mean of the period of observations from the perihelion passage,  $t - t_0$ ; the coefficients of the expansion of the photometric curve in a series,  $B_i$ ; the photometric exponent, n; the magnitude of the comet reduced to a unit geocentric distance,  $H_{A}$ ; the time

92.



continuous spectrum, and the reference. The emission bands are characterized by the respective vibration transitions and are arranged in accordance with their relative intensities. At the most five bands are given. The continuous spectrum is classified in an analogous scale to that of HRUSKA and VANYSEK (1958):

to the perihelion passage, the brightest emission bands, the

Fig. 58. Photometric curves of the comets: 1937 IV, 1941 VIII, and 1956 IV.

cont 1 - (very) strong continuum,

cont 2 – well pronounced continuum (relatively strong),

cont 3 - (relatively) weak continuum,

cont 4 - very weak continuum (traces),

cont 5 - no continuum at all.

For the two remaining comets, 1858 VI and 1862 III, not included in Table 108, no spectral data have been available, because they had been observed before the spectroscopic research of comets began. Concerning the comet 1862 III, a high polarization degree was found, as is seen from Table 109, so that relatively strong continuum should have been expected. On the other hand, the Donati comet of 1858 showed a number of phenomena in all probability of gaseous nature (ORLOV, 1945, VSEKHSVIATSKY, 1958), and dust may have been of hardly any photometric importance.

Comet	r	per.	Polarization degree	Author
1862 111	0.96-0.97	B	high	MURMANN, 1863
1941 IV	0.84-0.97	B	24.0 $\pm$ 2.0 %	OHMAN, 1941

Table 109Polarization observations

According to their spectral appearance the investigated comets may be divided into three groups. The strong-continuum group comprises the comets: 1862 III, 1937 IV, 1941 IV, and 1941 VIII; the weak-continuum group the comets: 1915 II, 1921 II, 1932 V, and 1937 V; and the non-

•		ул. 1		-				. ,		,				
	omens	Author		BOBROVNIKOFF, 1927 SLIPHER, 1916 Glancy, 1919		HANSSON, 1921		TIKHOV, 1932 Barabascheff, Semejkin, 1931 Beyer, 1930		BERMAN, SMITH, 1932 Berman, Smith, 1932 Beyer, 1932		STRÔMGREN, 1937a Strômgren, 1937b Strômgren, 1937a		RICHTER, 1937 SWINGS, HASER, 1956 WALTER, 1937 SWINGS, HASER, 1956 SWINGS, HASER, 1956 SWINGS, HASER, 1956 SWINGS, HASER, 1956
)8 · · · · · · · · · · · · · · · · · · ·		Cóntinuum		present cont 4		cont 3		no report cont 4 cont 5		cont 4 cont 3 cont 4		cont 1 no report cont 1		no report cont 4 no report cont 3 f cont 4 cont 3
Table 1(	Spectral appearance of the	er. Emission bands	11 9161	$\begin{array}{c c}A & CN(0.0) \\ A & CN(0.0), CN(0.1), C_{a}(3.2), C_{a}(2.1), C_{a}(1.0) \\ A & CN(0.0), C_{a}(4.3), C_{a}(4.2) \\ B & CN(0.0), C_{a}(4.3), C_{a}(4.2) \end{array}$	II 1861	A CN(0.0), C ₃ (2.1)	111 0861 ·	$\begin{array}{c c} B & CN(0.0), C_{a}(5.4), 44857, 47917 \\ B & CN(0,0), 4693 \\ CN(0.0), 4693, C_{a}(0.0), C_{a}(1.2) \\ \end{array}$	1932 V	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1937 IV	A         CN(1.0), C ₃ (1.0)           A         CN(0.0), C ₃ (1.0)           A         no report	1937 V	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
		ă.												•
		<b>L</b>		$\begin{array}{c} 2.14\\ 2.14\\ 1.73-1.38\\ 1.24-1.00\\ 1.00-1.16\end{array}$		1.02		$\begin{array}{c} 0.49 - 0.83 \\ 0.46 \\ 0.90 - 0.93 \end{array}$		$\begin{array}{c} 1.15\\ 1.10\\ 1.10\\ 1.05-1.04\end{array}$		$ \begin{array}{r} 1.99 - 1.93 \\ 1.85 - 1.74 \\ 1.78 \end{array} $		1.03 1.02 0.90 - 0.87 0.88 0.88 0.88 0.88

•

•

.

94

ł

/

-

	1			i. I.		1 -	1
Author	SWINGS, HASER, 1956 STRÔMGREN, 1937 MINKOWSKI, 1937 BEYER, 1938 ALLER, 1937 ALLER, 1937 SWINGS, HASER, 1956 SWINGS, HASER, 1956		SWINGS, HASER, 1956, SWINGS, 1941, ELVEY, SWINGS, BABCOCK, 1942		SWINGS, HA\$ER, 1956, ELVEY, SWINGS, BABCOCK, 1942, SWINGS, HASER, 1956 SWINGS, HASER, 1956 SWINGS, HASER, 1956 SWINGS, HASER, 1956 SWINGS, HASER, 1956		WENZEL, 1956
Continuum	cont 3 cont 3 cont 3 cont 3 cont 3 cont 2 cont 2		cont 1		cont 1 cont 1 cont 1 cont 1 cont 1		cont 4
•	(0.0)H:	1941 IV		1941 VIII	4052 N(0.1)	1956 IV	(2.2)
ission bands	1052 ((0.1), C ₄ (2.0) (1.1), C ₄ (1.0) (1.0), C ₄ (1.0) (0.0), C ₄ (0.1), C				(1.0), C ₄ (0.1), C ₄ 462, C ₄ (1.0), C (1.0), C ₄ 4652 (1.0), C ₄ 4652		(2.0), C ₄ (1.0), C ₄
En	0.0), C ₄ (1.0), C ₇ 0.0), G ₄ (1.0), C ₇ 0.0), G ₄ (0.0), G ₇ 0.0), C ₄ (2.1) 0.0), C ₄ (2.1) 0.0), C ₄ (2.1), G ₇ 0.0), C ₄ (1.0), G ₇	-	0.0), C ₁ (0.0)		0.0), C ₁ (0.0), C ₁ 0.0), C ₁ (0.0), C ₁ 0.0), C ₁ (0.0), C ₁ 0.0), C ₁ (0.0), C ₁ 0.0)		0.0), C ₃ 4052, C
per.	A A A A A A A A A A A A A A A A A A A	làit C	B CN(		A A A A		B CN(
			80		1.28		.33

~

95

+

ъ.,

.

• 7

# Table 110

Rotation	periods o	f minor	planets

Minor planet	Rotation period	Reference
	d d	
321 Florentina	$0.1196 \pm 0.0004$	VAN HOUTEN-GROENEVELD, VAN HOUTEN, 1958
22 Kalliope	0.1728	AHMAD, 1954, GEHRELS, OWINGS, 1962
354 Eleonora	$0.1778 \pm 0.0007$	GROENEVELD, KUIPER, 1954b
16 Psyche	$0.17930 \pm 0.00007$	VAN HOUTEN-GROENEVELD,
		VAN HOUTEN, 1958
9 Metis	$0.21153 \pm 0.00001$	GROENEVELD, KUIPER, 1954a, 1954b, GEHRELS, OWINGS, 1962
39 Laetitia	$0.21410 \pm 0.00007$	KUIPER, HARRIS, AHMAD, 1953, GROENE- VELD, KUIPER, 1954a, 1954b, VAN
•		HOUTÉN—GROÉNEVÉLD, VÁN HOUTEN, 1958. GEHRELS. OWINGS. 1962
511 Davida	$0.2153 \pm 0.0007$	KUIPÉR, HARRIŚ, AHMAD, 1953, GROENE- VELD, KUIPER, 1954a, GEHRELS,
433 Eros	0.2196	OWINGS, 1962 WATSON, 1937, HURUHATA, 1940, GROENE- VELD, KUIDER, 1954b
4 Vesta	0.22261	SLIPHER et al., 1954, STEPHENSON, 1951, KUIPER, HARRIS, AHMAD, 1953, GROE-
		NEVELD, KUIPER, 1954a, GEHRELS, PE- TEBS. 1963
15 Eunomia	$0.2535 \pm 0.0001$	KUIPER, HARRIS, AHMAD, 1953, GROENE- VELD, KUIPER, 1954a, VAN HOUTEN- GROENEVELD, VAN HOUTEN, 1958
44 Nysa	$0.26750 \pm 0.00007$	GROENEVELD, KUIPER, 1954b, SHATZEL, 1954 GEHBELS, OWINGS, 1962
7 Iris	$0.2973 \pm 0.0001$	KUIPER, HARRIS, AHMAD, 1953, GROENE- VELD, KUIPER, 1954a, VAN HOUTEN-
		GROENEVELD, VAN HOUTEN, 1958, GEHRELS, OWINGS, 1962
3 Juno	$0.30042 \pm 0.00007$	GROENEVELD, KUIPER, 1954b, KUIPER et al., 1958, GEHRELS, OWINGS, 1962
6 Hebe	0.3031	AHMAD, 1954, GEHRELS, PETERS, 1963
324 Bamberga	0.33	GEHRELS, OWINGS, 1962
20 Massalia	0.3374	GEHRELS, 1956, GEHRELS, OWINGS, 1962
1 Ceres	0.3783	AHMAD, 1954, GROENEVELD, KUIPER, 1954b, GEHRELS, OWINGS, 1962
40 Harmonia	$0.38066 \pm 0.00003$	GROENEVELD, KUIPER, 1954a, 1954b, GEHRELS, OWINGS, 1962
25 Phocaea	0.4144	GROENEVELD, KUIPER, 1954a, VAN HOUTEN-GROENEVELD, VAN HOUTEN, 1958
11 Parthenope	0.444	VAN HOUTEN-GROENEVELD, VAN HOUTEN, 1958, WOOD, KUIPER, 1962
2 Pallas	0.46	GROENEVELD, KUIPER, 1954b, KUIPER et al., 1958, WOOD, KUIPER, 1962
61 Danaë	0.4771	WOOD, KUIPER, 1962
14 Irene	0.4779	GROENEVELD, KUIPER, 1954b
17 Thetis	0.5115	GROENEVELD, KUIPER, 1954a, VAN HOUTEN-GROENEVELD, VAN HOUTEN,
8 Flora	0.567	1998 AHMAD, 1954, VAN HOUTEN-GROENE- VELD, VAN HOUTEN, 1958

96

ì

Table 110 (continued)

' Minor planet	Rotation period	Reference
•	d d	· · · · · · · · · · · · · · · · · · ·
30 Urania	$0.5695\pm0.0001$	KUIPER et al., 1958, GEHRELS, OWINGS, 1962
18 Melpomene	0.5917	KUIPER et al., 1958, GEHRELS, OWINGS, 1962
532 Herculina	$0.69 \pm 0.03$	GROENEVELD, KUIPER, 1954b
5 Astraea	0.75	GEHRELS, OWINGS, 1962
10 Hygiea	$0.75\pm0.04$	GROENEVELD, KUIPER, 1954b, KUIPER et al., 1958
60 Echo	1.25	GEHRELS, OWINGS, 1962

continuum group: 1858 VI (probable), 1930 III, and 1956 IV. The last of the three groups is rather non-homogeneous due to great differences in the molecule concentration in surface layers.

The existence of a dispersion dust layer may be assumed only in the comets of the two first groups, for which the coefficient of thermal conductivity and the  $\sigma$ -parameter of Section 9.4. can be derived. In order to apply relations (9.16) and (9.18), the period of rotation and the thickness of the dispersion dust layer in addition to  $\Delta T$  must be known, too.

The statistical value of the rotation period of comets may be established by an analogy to the minor planets. The periods of rotation of 31 minor planets have been determined from the form of their light curves mostly by a group of American astronomers headed by G. P. KUIPER. The results are included in Table 110, in which the individual columns give: the designation and name of the minor planet, the period of rotation (in days), and the reference.

The distribution of the periods of rotation is given by the following data:

mode	•	•			0.22 day
median	•	•	÷		0.34 day
arithmetic mean					0.40 day
géometric mean	•				0.35 day
most probable statistical value	•	•	•	•	0.33 day

For an incompressible and homogeneous mass of fluid the following . rotation period results from the considerations of JEANS (1919):

$$(9.72) P^2 = \frac{2\pi}{0.187G\,\rho}$$

 $\rho$  is the mass density, G the universal gravitational constant. This expression represents the lower limit for the rotation period of actual bodies. These minimum periods of rotation related to various densities are included in Table 111. Consequently, the ratio between the minimum rotation period of a comet of density  $\rho_{\sigma}$ , and that of a minor planet of density  $\rho_{pl}$ 

7 63-20

1

(9.73) 
$$\frac{P_{\delta\min}}{P_{\text{plmin}}} = \left(\frac{\varrho_{\text{pl}}}{\varrho}\right)^{1/2}.$$

Assuming the same relation is valid for the most probable values of the periods, we obtain

$$(9.74) P_{\text{prob}} = 0.33 \left(\frac{\varrho_{\text{pl}}}{\varrho_{\breve{o}}}\right)^{1/2} \doteq 0.7 \text{ day},$$

where we put  $\rho_{pl} = 3.5 \text{ g/cm}^3$ ,  $\rho_0^* = 0.8 \text{ g/cm}^3$ .

The thickness of the dispersion dust layer may be determined through its mass, M, from photometric data (SEKANINA, 1962):

Minimum periods of rotation					
g/cm ³	P days				
8	<b>0.09</b>				
3.5	0.14				
1.0	0.26				
0.1	0.82				
0.05	1.16				
<u> </u>					

Table 111

(9.75) 
$$X = \frac{3\sqrt{2}}{4\pi^3} \cdot \frac{\mathfrak{M}}{\rho_0 \cdot R_{eff}^2},$$

where  $R_{\rm eff}$  is the effective radius of the comet's nucleus; it can be assumed to be 1 kilometre on the average (SEKANINA, 1962). Photometric data give the mass of photometrically effective dust particles in the comet's atmosphere at the given moment as equal to about 10⁹⁻⁵ gm for the comets of the strong-continuum group, and about 108.5 gm for those of the weakcontinuum group on the average (VANYSEK, 1958, SEKANINA, 1962). Assuming the supplies of dust in the dispersion surface layer to be two or three orders higher than the instantaneous amount of dust particles in the atmosphere, we come to the values of 1012 or 1011 grammes for the probable mass  $\mathfrak{M}$  of the dispersion layer in the two cometary groups, respectively.

#### 9.7. Results and conclusions from the study of perihelion asymmetry

(1) Altogether eleven comets with various spectra have been studied in the present paper with respect to the investigation of the perihelion-

is

98 ·

asymmetry phenomena of the comet gas model: the concentration drop of molecules,  $\Delta H$ , and the thermal inertia of the evaporation process,  $\Delta T$ . Four various methods have been developed for deriving the two characteristics.

(2) Concerning their spectral appearance the eleven comets have been divided into three groups: the strong-continuum group, the weak-continuum group, and the non-continuum group. So far no systematic differences have been found among the average values of  $\Delta T$  and  $\Delta H$  of the three groups of comets, as is seen from Table 112.

(3) By neglecting one of the two asymmetry phenomena the other is underestimated. This fact is apparent from Table 113, where the resulting  $\Delta H$  of ours is compared with that obtained by LEVIN (1948), who neglected the influence of the thermal inertia process.

Group	ΔT	∆H
strong continuum	d d 7.4 ± 3.3	m m 1.25 ± 0.24
weak continuum	$3.6 \pm 1.5$	$1.48\pm0.47$
no continuum	10.9 ± 5.9	$2.20 \pm 1.22$

		Та	ble 112	
Average	values	of the	asymmetry	characteristics

Comparison of the brightness drop

		ΔH			
	1915 II	1937 IV			
present paper	m 2.08	m 1.37			
LEVIN (1948)	1.8	1.2			

(4) The brightness drop,  $\Delta H$ , is simultaneously the physical expression for the concentration drop of molecules in the surface layers of the cometary nucleus. The other asymmetry characteristic,  $\Delta T$ , is a product of the "heat-utilization" factor,  $\sigma$  (qualitatively indicating what part of the incident solar radiation is spent on the evaporation of molecules, and what part on heating the blocks of the nucleus), and of the thermal conductivity coefficient, K. The two thermal characteristics as expressed through the known quantities are given by the formulae:

7•

.99

(9,76) 
$$\sigma = 1.15 \frac{P_{\rm pl}}{\Delta T} \cdot \left(\frac{\varrho_{\rm pl}}{\varrho_{\rm o}}\right)^{1/2},$$

and

(9.77) 
$$K = 2.3 \times 10^{-28} \frac{c \mathfrak{M}}{\rho_{\circ} R_{\rm eff}^4 \sigma \Delta T},$$

where  $\mathfrak{M}$  is expressed in gm,  $R_{eff}$  in km,  $\varrho_{pl}$  and  $\varrho_{\ddot{o}}$  in gm/cm³, c in cal/gm. . grad, and  $P_{pl}$ , and  $\Delta T$  in days; K results in cal/cm. sec. grad.

The "heat-utilization" factor results as  $0.11 \pm 0.06$  and  $0.22 \pm 0.11$  for the strong-continuum and weak-continuum groups, respectively. Evidently, the accuracy of the numerical values is too low to conclude anything on systematic differences in the factor. However, the incident solar heat spent for the evaporation of molecules seems to be in any case greater than that spent on heating the nucleus.

The thermal conductivity coefficients as result for both groups of comets from (9.77) are included in Table 114, which makes a comparison with some other values possible. The data of mine are, as seen, quite consistent with those of other authors, derived in other ways.

	K cal/cm . s . grad	Note
Earth's crust lunar surface layer H ₂ O nucleus surface layer	$\begin{array}{c} 4 \times 10^{-3} \\ 8 \times 10^{-6} \\ 5.7 \times 10^{-3} \\ \sim 10^{-6} \\ < 10^{-4} \\ 7 \times 10^{-7} - 7 \times 10^{-5} \end{array}$	WHIPPLE (1950) DOBROVOLSKY (1956) present paper (weak continuum – strong conti- nuum) $c = 0.2$ cal/g.grad, $\rho_{0} = 0.8$ g/cm ³

	Table 114		
Thermal	conductivity	coefficient	

It is hard to say if systematic differences between the two groups of comets exist in the period of rotation, or the size of the ,,heat-utilization" factor, or the thermal conductivity coefficient, or if they exist at all. This question must be solved in future.

(5) A typical value for the thickness of the dispersion dust layer may be, according to (9.15), estimated at not more than a few tens of milimetres. On the other hand, if the dispersion layer is absent and the blocks of the cometary nucleus are directly exposed to the effects of the solar radiation, the latter may penetrate mostly to the depths of

(9.78) 
$$X \leq 4(\pi K_0 P)^{1/2},$$

or about 5 metres, as results from the upper limit of the Laplace integral

of (9.13), if the thermal conductivity coefficient is assumed to be equal to that of the Earth's crust, and the maximum period of rotation is put equal to twice the maximum rotation period of the minor planets listed in Table 110.

#### CHAPTER TEN

#### GENERAL RESULTS AND CONCLUSIONS (Part two)

The most important results of the investigated problems and general conclusions following from the analysis are here summarized. The main items are as follows:

(1) In dependence on the phase of the eleven-year solar cycle, the forms of curves of eleven cometary characteristics of 563 comets are investigated. These curves are constructed separately for odd and even cycles as well as for the average solar cycle. By comparison of these curves, the assertion is arrived at that they constitute, in principle, two classes. The quantities of the first class reveal during the solar cycle a double wave, while the quantities of the second class a prominent single wave with a suggestion of a second shallow maximum or inflexion only. Two quantities are exceptions to these rules, so that on the basis of their behaviour during the cycle they cannot be classified in either class. One of them is the Dobrovolsky seasonal index.

(2) A study of long-term changes of cometary characteristics of the 563 comets in the odd and even cycles showed that from the view-point of the correlation of their changes with those of the sunspot numbers, and of the frequency distribution of the differences of the characteristics in both cycle-types, these characteristics are again divided into two classes which, in principle, are identical with the first and second classes introduced above. Special attention is reserved for the apparent brightness of comets at the time of discovery.

(3) The effect of the eighty-year period of solar activity is studied in two sets, namely, in comets brighter than  $5^{m}$ , and in comets with tails visible with the naked eye. From the curves of both sets there also results an eighty-year period of the variations in night-cloudiness, the indicators of which are both sets of comets; the minima, however, of the investigated curves lag behind the maxima of the solar period for about eleven years.

(4) The physical interpretation is discussed of the form of the curve of

the average absolute brightness of comets during the eleven-year solar cycle. This curve represents the set of the cometary characteristics of the second class. The basic relations affecting the resulting form of the curve are described, the general equation giving the energy balance of the molecular cometary radiation is proved, and the discussion of a series of special cases is given. The form of the curve of the absolute brightness of comets during a solar cycle shows that the most effectual agent affecting the change of the brightness of comets is the change of an average life-time of radiating molecules in a cometary atmosphere; under certain assumptions it is possible to derive the variation of "monochromatic" solar constant of exciting radiation.

(5) As for the Encke comet, periodic variations both in the brightness and in the coma diameter were analyzed in dependece on the solar activity. After the elimination of secular changes the conclusion is arrived at that the more conspicuous course within the solar cycle is indicated by the absolute brightness, which resembles the cometary characteristics of the second class. Analogous behaviour is shown by the coma diameter variations as well, but the correlation is comparatively vague.

(6) The application of the Beyer method of the departures of observedbrightness estimates from the smothed-out photometric curve leads to the conclusion that the character of the brightness dispersion of the Encke comet is again identical with that of the cometary characteristics of Class Two. Another result follows from the analysis of two different sets of comets, observational data of which were secured by BEYER and BOBROV-NIKOFF, respectively. Either of the two materials, however, cannot be considered the representative set. It is likely that, owing to some disadvantages of the Beyer method, discussed in the study, observational conditions may interfere with the physical relation.

(7) Short-term variations in the colour index of the head and tail of the Arend-Roland comet are studied from the period between April 27, 1957 and May 25, 1957. Photoelectric measurements of the brightness in three different spectral regions are used with the effective wave-lengths as follows: B - 4420 Å, P - 4800 Å, V - 5510 Å. Observational data yield a linear relation between any two indices of (B - P), (P - V) and (B - V). The parameters of these straight lines vary from day to day. Numerical values of these parameters are derived, and the interpretation of the ascertained relation is given on the basis of the comet dust-gas model. A probability of the correlation between the slope of the straight lines and the initial velocity of particles expelled into the cometary-tail region is stressed.

(8) A characteristic feature of observed light curves of comets is the fact that the time of maximum brightness (reduced to a unit geocentric

distance) differs from the time of perihelion passage. The difference is the result of the irregularities in the comet's brightness in the vicinity of the perihelion passage, first of all, of two phenomena of systematic character: the concentration drop of molecules in the surface layers of the comet's nucleus, and the thermal inertia of the nucleus blocks during the evaporation process. They are characterized by the brightness decrease per orbital period,  $\Delta H$ , and the inertia time retardation,  $\Delta T$ , respectively. The physical meaning of the two curve-asymmetry characteristics is discussed, and the connection of  $\Delta T$  with the period of nucleus rotation and the thermal conductivity coefficient is derived. Four methods have been developed how to compute the two asymmetry characteristics from the form of the photometric curve of a comet gas model. Eleven comets have been investigated, being divided into three groups according to the intensity ratio between the continuous and emission-band components of the spectrum. On the basis of statistical values of the rotation period of a comet (determined as compared with minor planets), and the thickness of the dispersion dust layer (computed from photometric data) in addition to  $\Delta T$ , the thermal conductivity coefficient, K, and the "heat-utilization" factor,  $\sigma$  (indicating what part of the incident solar radiation is spent on heating the nucleus and what part on the evaporation of ice), are derived. The resulting values of K are consistent with those obtained by WHIPPLE (1950) and DOBROVOLSKY (1956) in other ways,

# CHAPTER ELEVEN

#### A CATALOGUE OF PHYSICAL CHARACTERISTICS OF COMETS FROM THE YEARS 1610-1954

#### 11.1. Comments on the Catalogue

For purposes of the statistical investigation of the solar-cometary relationships I have collected all the physically important data available, concerning the comets from the years 1610.8 to 1954.4, i. e. observed during 31 eleven-year cycles of solar activity, included in the Vsekhsviatsky Summary Catalogue of the Absolute Magnitudes of Comets (S. C. A. M. C.) and discovered regardless of the ephemeris. The data are taken mostly from the monography of VSEKHSVIATSKY (1958). With respect to the purpose of the present catalogue it is drawn up according to the intervals corresponding to the respective solar cycles.

For each of the 31 eleven-year solar cycles the Catalogue gives:

(1) The extent of the cycle, i. e. the epoch of its beginning and end, with the accuracy to tenths of a tropical year (WALDMEIER, 1955).

(2) The length of cycle,  $P_{\odot}$ , with the accuracy to tenths of a tropical year (WALDMEIER, ibid.).

(3) The number of comets, N, registered in The Summary Catalogue of the Absolute Magnitudes of Comets (VSEKHSVIATSKY, 1958) within the cycle.

(4) The sum of the weights, w, of absolute-brightness estimates of the comets observed during the cycle, in the VSEKHSVIATSKY scale: 1 — very inaccurate estimate, error  $1^{m}$  or more; 2 — accuracy about  $0^{m}.5$ ; 3 — relatively accurate, error  $0^{m}.1$  to  $0^{m}.2$ .

For each of the 563 comets, comprised in the Catalogue and grouped according to the succession of the cycles of solar activity, the data are given as follows:

(1) The serial number of the comet in the S. C. A. M. C.

(2) The definitive designation of the comet.

(3) The perihelion distance of the comet with the accuracy to thousandths of an astronomical unit.

(4) The orbital period in tropical years for periodic comets, or the numerical eccentricity for non-period comets.

(5) The phase-shift of perihelion passage time of the comet relative to the beginning of the respective cycle defined by relation (8.1) with the accuracy to thousandths of a cycle.

(6) The time of perihelion passage of the comet with the accuracy to hundredths of a tropical year.

(7) The difference "time of comet discovery minus time of perihelion passage" in tropical years with the accuracy to hundredths of a tropical year.

(8) The difference "time of centre of the observation period minus time of perihelion passage" in tropical years with the accuracy to hundreths of a tropical year.

(9) The total apparent magnitude of the comet at the time of discovery with the accuracy to tenths of a magnitude at the utmost. The values in parentheses are very uncertain.

(10) The function of the visual importance of cometary tails in the Vsekhsviatsky scale: 0 — a comet without tail, 1 — the tail visible with a telescope, 2 — the tail visible with naked eye.

(11) The heliocentrical distance of the comet at the time of discovery in astronomical units with the accuracy to hundredths of an astronomical unit.

(12) The geocentrical distance of the comet at the time of discovery in

astronomical units with the accuracy to hundredths of an astronomical unit.

(13) The total absolute magnitude of the comet according to the S. C. A. M. C. with the accuracy to tenths of a magnitude.

(14) The weight of the comet absolute-brightness estimate in the Vsekhsviatsky scale.

(15) The maximum apparent coma diameter in minutes of arc if no sign is added, or in seconds of arc if a colon follows The values in parentheses are very uncertain.

(16) The maximum linear coma diameter in equatorial radii of the Earth; to express it in milliometres the value must be multiplied by a factor of 6378, in minutes of arc per astronomical unit by a factor of 0.147, and in astronomical units by a factor of 0.000 043. The values in parentheses are very uncertain.

(17) The maximum apparent length of the cometary tail in degrees if no sign is added, or in minutes of arc if a colon follows. The values in parentheses are very uncertain.

(18) The maximum linear length of the cometary tail in astronomical units. The values in parentheses are very uncertain. 11. 2. CATALOGUE OF PHYSICAL CHARACTERISTICS OF COMETS DURING THE YEARS 1610-1954

	·		. m			1 1					
	s	A. U.	$\Sigma w = 3$	0,050 1,000	$\Sigma w = 1$	0,390	$\Sigma w = 0$	$\Sigma w = 1$	0,040	$\Sigma w = t$	0,070 0,370 0,300
۰	C			5 70		38	-		00		6 37 30
	Do	ad. ð		2	•				27		48
	D			3					20		4,5
,	B			5 -		-			-		- 8 -
	$H_{10}$	magn		6,0 4,6		5,5		. •	5,9	•	4,6 2,4 9,9
	V	A.U.		$0,54 \\ 0,42$	•	0,54			0,17		0,62 1,51 0,66
	L	A.U.		0,55 0,60		0,74			1,04		0,48 1,06 0,94
	2			\$ \$		\$			8		~~~
	Ħ	magn	9,0	2,5 5,5	4,0	2,5	5,0	55,0	2,5	6,0	60 00 60 00
	Ψ	x	8-161	+0.06 +0,12	,0—193	+0,02	,0-164 0	,0-165 0	+0,12	,0—166	+0,10 +0,07 -0,04
	$\Delta t_1$	y	e: 1610 = 872	+0,02+0,03	le: 1619 = 1570	-0,01	le: 1634 $0 = 10^{7}$	ile 1645 ∍ = 107	+0,09	le: 1655 = 1170	+ 0,02 - 0,05
-	ťo	y	^h solar cycl	1618,63 1618,85	th solar cyc P©	1625,08	th solar cyc $P_{ m c}$	th solar cyc	1652,87	th solar cyc	1661,07 1664,93 1665,31
-	ф		-12	,955 ,982	-11	,405	- 10	6	,787	80 	,552 ,903 ,937
										•	<u> </u>
-	P or e	y		e 1, e 1,		27,21		-	e 1,	-	el, el, 1,
	q	<b>A</b> . U.		0,513 0,390		0,739	1		0,848		0,443 1,025 0,106
	comet		,	1618 I 1618 II		1625			1652	•	1661 1664 1665
	sc	No	N = 2	73 74	N = 1	75	N = 0	N = 1	76	N = 3	77 78 79

`

S 、	A.U.	$\Sigma w = 5$	1,100 0,040 0,100	$\Sigma w = 9$	0,770 0,220 0,080 0,090	$\Sigma w = 2$	2,000 0,800	$\Sigma w = 10$	> 0 0,070 > 0,002	
C C	•		37 1,5 6	•	70 30 4 18 18	· .	68 40			
<b>D•</b>	ad. ð		30		54					
Q	- <b>-</b>		4	÷						
8					- 6 8 8 8				~~~~	
H10.	magn		6,0 3,4 6,5		4,0 4,0 5,3 5,3	*: `n	6,2 6	. <b></b>	ກ ອີດ ກີ່ຊີດ	
P	A.U.	:	$ \begin{array}{c} 0,86\\ 1,12\\ 0,70\\ 0,29\end{array} $		0,74 0,50 1,06 0,20 0,32	•	0,75 0,92		0,26 0,17 1,02 0,05	
•	A.U.	•	0,33 0,70 0,41 1,26		1,16 0,73 0,61 1,03 0,86		0,43 0,26		1,12 1,00 0,63 1,01	
4			8888	4	8088S		88	· .	8080	
E	magn	9,5	$   \begin{array}{c}     3 \\     1,5 \\     0 \\     5,5 \\   \end{array} $	89,5	4 0 0 0 0 0	8,0	3,5 1,5	2,0	0.00 m m	
4	y	,0-167	+0.04 +0.08 0.00 +0.11	9,5- 16 0*0	+0.05 +0.01 +0.03 +0.13	,5 – 169 5	+0,04 +0,04	,å–171	-0.08 +0.12 +0.12 +0.12	
$\mathcal{A}l_1$	y	le: 1666 - 1375	+0.01 +0.01 +0.02 +0.02	/cle: 167 P⊚ = 1	$ \begin{array}{c} -0.09 \\ -0.05 \\ +0.07 \\ -0.09 \\ -0.09 \\ \end{array} $	le: 1689 0 = 8,	+0,01	le: 1698 = 14°0	-0,12 +0,09 +0,03 +0,10	
t _o	, <b>y</b>	th solar cyc P⊚ =	1668,16 1672,16 1672,34 1678,63	6 th solar cy	1680,96 1682,70 1683,53 1684,43 1686,71	h solar cyc I	1689,91 1695,81	th solar cyc Po	1698,79 1699,04 1701,79 1702,20	
9		L	0,160 0,456 0,840 0,936		0,146 0,320 0,403 0,493 0,493		0,048 0,742	4	0,056 0,074 0,271 0,300	
P or e	<b>y</b>	•	e 1, e 1, e 1, 5,380		8814 77,45 e 1, e 1, e 1,		e 1, e 1,		e 1, e 1, e 1,	
b	A.U.		0,0666 0,695 0,281 1,145	•	0,0062 0,583 0,560 0,958 0,336		0,0644 0,0423		0,729 0,749 0,593 0,647	
comet			1668 1672 1677 1678		1680 1682 1683 1683 1684	8	1689 1695	9	1698 1699 1701 1702	
SC	°N	N = 4	82 80 83 83 83	N =	88 88 88 88 88 88 88	<b>Z</b>	68 06	N =	91 93 94	
			•		-			-	10	
s	A.U.	0 >0,005	$\Sigma w = 1$	>0	$\Sigma w = 3$	$\begin{array}{c} 0,024\\ 0 \end{array}$	$\mathcal{L} = 12$	$\begin{array}{c} 0,160\\ 0\\ 0\\ 0,050\\ 0,060\\ > 0,001\\ > 0,002\\ > 0,700\end{array}$	$\Sigma w = 5$	0 0,110
------------------------	--------	--------------------	--------------------------	---------	--------------------------	------------------------------------------	---------------------	------------------------------------------------------------------------------------------------	-------------------------	-----------------------------
v	0	0 1,4		>0	l	7,5 0		$> \frac{15}{15}$		0,5
$D_0$	rad. ð		X	6	<b>`</b>	23 34		10		75
D	•			10,5		1,5		1 18		ел ^с
æ		~ ~ ~		-		~ - ~		8-888-8		
$H_{10}$	magn	5,5	•	6,9		-3,5 -3		4,0 3,3 9,1 0,5 0,5		5,8 -0,5
Γ	A.U.	0,31 0,19		0,11		0,17 3,13		$\begin{array}{c} 1,10\\ 0,52\\ 1,22\\ 1,02\\ 1,02\\ 0,05\\ 0,48\\ 1,07\end{array}$		0,23 2,21
r	A.U.	$1,16 \\ 0,91$		1,03		$1,02 \\ 4,06$		$\begin{array}{c} 0,33\\ 0,98\\ 0,98\\ 0,77\\ 0,77\\ 1,02\\ 0,91\\ 1,83\end{array}$		0,87 3,15
2		- 0 -		-		-0	•	8028028		0 Q2
m	magn	4 1,5	3,5	1,5	34,0	3 4,5	15,0	ເດເຕັມ ແລະ ເປັນ ເດີຍ ເປັນ ເບີຍ	55,2 -	2 5,5
Āī	y	+0,17 +0,03	2,0-172 *5	+0,04	3,5-178 75	+0,13 +0,36	4,0-17 ⁴	+0,11 +0,09 +0,06 +0,13 -0,05 -0,05	15,0 – 17 <b>7</b> 2	+0,05
<i>Δt</i> ₁	y	+0,13 -0,05	cle: $171$ 0 = 11	+0,01	cle: 172 0 = 10	+0.04 + 0.12	cle: 173 ⊃⊚ = 11	+0,02 -0,06 -0,06 -0,00 -0,00 -0,00 -0,00	ycle: 174 P_0 = 1	+0,01 +0,45
t ₀	, y	1706,08 1707,95	3 rd solar cy	1718,04	y nd solar cy	1723,74 $1729,46$	** solar cy	1737,08 1737,42 1739,46 1742,10 1743,02 1743,02 1744,16	ero solar c	1746,08 1747,17
ø		0,577 0,711	ľ	0,525	1	0,023 0,568		$\begin{array}{c} 0,280\\ 0,311\\ 0,496\\ 0,736\\ 0,736\\ 0,884\\ 0,924\\ 0,924\\ \end{array}$	ž	0,106 0,213
P or e	x	e 1, e 1,		e 1,		e 1, e 1,		e 1, e 1, e 1, e 1, 5,436 e 1,		e 1, e 1,
<i>q</i> .	A.U.	0,427 0,859		1,025		0,999 4,051		0,223 0,835 0,674 0,674 0,762 0,862 0,523 0,523		0,871 2,1 <del>9</del> 9
comet .		1706	-	1718	50	1723 1729		1737 I 1737 II 1739 1742 1742 1743 I 1743 I 1744 II	4	1746 1747
sc	No	95 96	N =	97	N	86 86	N =	100 101 102 103 104 105 105		107 108

:

. 1				<u>e</u> 1				1 00 1			1 00 1
	S	A.U.	0,021 0	$\Sigma w = 1$	0,004 0,030 0,700	0,010	0,080	$\Sigma w = 1$	(3,500 0,015 0,160	0,150 0,001 0,046 0,012	$\Sigma w = 1$
	C	• ,	0 %		× 25 55 ∧	15:0	405	-	98 1 6	3 5: 0,5 20:	
	$D_{0}$	rad. Å			8 87 87	9 68 20	12		27 16 24	>17 47 42	:
	D				,	30 (6)	14		(3) 143 18	4 10	
ŧ	æ		- 5		~~~~~	1 CN CN			~ ~ ~	8 <b>-</b> 8 - 8	
2 (1) (2) (2)	H10	magn	5,5 6,2		0.4.0.0 100.000	6 9 7 9 9 9 7 9	7 6,8		3,2 7,5	4,7 2,5 0,0	
	P	A.U.	0,35 0,45		0,43 0,99 1,12 0,46	0,07	0,29		1,02 0,21 0,19	1,66 0,62 1,72 1,19	
	r	<b>A.</b> U.	0,84 0,89		1,08 0,55 1,58	1,04 0,93	0,67 0,72	į	1,57 1,22 1,16	0,96 1,03 1,27 1,43	
	2	·	0%		~~~~~		808		8 - 8		
10 - 44	æ	magn	7,5 4	766,5	- 1 . 	) 0.4 m	non	175,5	ອູຊີ 2	6,1 6,1 6,1	784,7
	Āī	y	+0,09 -0,07	55,2-1 3	-0.05 + 0.18 + 0.04 + 0.04	- 0,00	- 0,06 + 0,06 - 0,01	66,5-1	-0,01 +0,15	+0,11 +0,09 +0,35 +0,10	75,5-1
	$\Delta t_1$	y	$^{0,00}_{-0,08}$	ycle: $17$ $\odot = 11$	-0,11 -0,04 -0,21	+0,04 -0,04 -0,10	+0,01 -0,05	ycle: 17 y = 970	-0,17 -0,17 +0,13	+ 0,05 + 0,05 - 0,01 0,01	ycle: 17 © = 975
	$t_0$	Â,	1748,32 1748,46	l" solar c P	1757,81 1758,44 1759,19 1759,91	1759,96 1762,41 1763,84	1764,12 1766,13 1766,32	$2^{nd}$ solar $c$	1769,77 1770,62 1770,89	1771,30 1772,13 1773,68 1774,62	3rd solar c
	ø		0,325 0,339		0,231 0,287 0,353 0,417	0,421 0,638 0,765	0,789 0,967 0,984		0,363 0,458 0,488	0,533 0,626 0,798 0,902	
	P or e	y	e 1, e 1,		e1, e1, 76,93	e 1, e 1, 7334	el, el, 3,888		2090 5,600 e 1,	e 1, 6,771 e 1, e 1,	
•	q	A.U.	0,840 0,625		0,337 0,215 0,585 0,801	0,966 0,498 0,498	0,555 0,505 0,411		0,123 0,674 0,528	0,902 0,986 1,127 1,433	
	comet	-	1748 I 1748 II	10	1757 1758 1759 I 1759 I	1762 1763 1763	1764 1766 I 1766 II	2	1769 1770 F 1770 II	1771 1772 1273 1774	7
•	sc	No	109 110	N =	111 112 112 113	115 116	118 119 120	N =	121 122 123	124 125 126 126 126	N =

.

1

•

109

.

			- N		
S	A.U.	0,090 0,090 0,090	$\Sigma w = 2$	$\begin{array}{c} 0 \\ 0,180 \\ 0,050 \\ 0,005 \\ 0,006 \\ 0,005 \\ 0,0013 \\ 0,013 \\ 0,013 \\ 0,013 \\ 0,013 \\ 0,013 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$\Sigma w = 1$
C	•	6 0 4 2: 6 0 4 2: 6 0 4 2: 7 0 0 3:	•	<pre>&gt; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</pre>	
D	rad. ð	25 50 50 50 50 50		25 25 25 23 33 29 29 29 29 26,5 6,5	
Q	•	8,5 3,() 3,() 3,()		5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
a		8-8-18		885858585858585858585	
H10	magn		-	۵.8 ۲.8 ۲.0 ۲.0 ۲.0 ۲.0 ۲.0 ۲.0 ۲.0 ۲.0 ۲.0 ۲.0	
P	A.U.	0,56 1,20 1,20 0,73 0,50 1,21 1,21		0,48 1,43 1,163 1,165 1,35 0,38 0,38 0,38 0,38 0,38 0,39 0,21 0,59 0,59 0,59 0,59	
r.	A.U.	0,71 0,88 1,05 0,79 1,30 1,46 1,46		1,19 0,451 0,461 0,461 0,745 0,77 1,097 1,097 1,009 1,009 1,009 1,009 1,009 1,009 1,009 0,777 1,009 0,777 1,009 0,777 1,009 0,777 1,009 0,777 1,009 0,777 1,009 0,777 1,009 0,777 1,009 0,777 1,009 0,777 1,009 0,777 1,009 0,976 0,976 0,777 1,009 0,976 0,977 1,009 0,976 0,977 1,009 0,976 0,977 1,009 0,976 0,976 0,977 1,009 0,976 0,976 0,977 1,009 0,996 0,996 0,996 0,996 0,996 0,996 0,996 0,996 0,996 0,996 0,996 0,996 0,996 0,996 0,996 0,996 0,996 0,996 0,996 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,956 0,9	-
4		8000		000000000000000000000000000000000000000	
E	magn	ນ ເຊິ່ງ 20 ເຊິ່ງ 20 ເຊິ່ງ	<b>'98</b> ,3	ຣິພິສິກູງຕີເຊັ່ນ ຄຳລັບການ ຄຳລາຍ ອີມສິນ ເຊັ່ນ ຄຳລັບການ ຄຳ	810 <b>,</b> 6
<u>Ai</u>	y	+0,19 -0,10 -0,01 +0,03 +0,03 +0,12	4,7-17 6	$\begin{array}{c} -0,\\ 0,000\\ +0,000\\ +0,000\\ +0,000\\ +0,000\\ +0,000\\ +0,000\\ +0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,000\\ -0,$	8,3-16 3
$dt_1$	, Y	+0.01	ycle: 178 '⊚ = 13?	$\begin{array}{c} + & 0,000\\ + & 0,000\\ + & 0,000\\ + & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,00\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0,000\\ - & 0$	ycle: 179 @ = 127
to	, <b>v</b>	1779,01 1780,75 1780,91 1781,51 1781,91 1783,89 1784,06	4ª solar c	1785,07 1786,52 1786,52 1786,52 1786,52 1788,58 1788,58 1788,58 1798,59 1799,39 1793,84 1793,84 1793,84 1793,84 1793,84 1793,84 1793,84 1793,84 1793,84 1793,84 1798,55 1798,55 1798,55	5ª solar c
Ф		0,382 0,571 0,588 0,653 0,653 0,697 0,912 0,912		0,027 0,027 0,042 0,042 0,134 0,1396 0,3393 0,3393 0,3393 0,3393 0,3393 0,343 0,540 0,540 0,540 0,540 0,540 0,540 0,540 0,943 0,943 0,943 0,943 0,943 0,943 0,943 0,943 0,943 0,943 0,943 0,943 0,943 0,943 0,943 0,943 0,943 0,944 0,101 0,101 0,101 0,101 0,101 0,101 0,101 0,101 0,101 0,101 0,101 0,101 0,101 0,101 0,101 0,101 0,101 0,101 0,101 0,101 0,101 0,101 0,100 0,100 0,100 0,100 0,100 0,100 0,100 0,100 0,100 0,100 0,100 0,100 0,100 0,100 0,100 0,100 0,100 0,100 0,100 0,100 0,100 0,100 0,100 0,100 0,100 0,100 0,100 0,100 0,100 0,100 0,100 0,100 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	
P or e	y	310 600 75 310 e 1, e 1, e 1, 5,888 e 1,		e 1, 1326 9373 9373 e 1, 151 e 1, 13,90 e 1, 389,7 e 1, 389,7 e 1, e 1, e 1, e 1, e 1, e 1, e 1,	
đ	A.U.	0,713 0,096 0,515 0,515 0,776 0,961 1,459 0,708	\ \	$\begin{array}{c} 1,143\\ 0,427\\ 0,335\\ 0,341\\ 0,411\\ 0,349\\ 1,063\\ 0,757\\ 0,778\\ 0,779\\ 0,798\\ 0,779\\ 0,798\\ 0,779\\ 0,779\\ 0,779\\ 0,779\\ 0,779\\ 0,779\\ 0,757\\ 0,789\\ 0,785\\ 0,788\\ 0,785\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,788\\ 0,$	
comet		1779 1780 I 1780 I 1781 I 1781 I 1783 1784 1784	18	1785 1 1785 1 1786 1 1786 1 1786 1 1786 1 1798 1 1790 1 1793 1 1793 1 1793 1 1795 1 1795 1 1796 1 1796 1 1796 1 1796 1 1798 1 17	12
sc	No	128 129 130 131 131 133 133	N .	135 136 137 137 137 138 139 140 141 142 143 144 148 143 143 143 143 143 143 143 143 143 151	N =

V

.

ſ

	·			
Ş	A.U.	> 0 0,060 0,060 0,001 0,001 0,300	$\Sigma w = 33$	1,300 1,300 0,009 0,000 0,000 0,180 0,180 0,180 0,180 0,130 0,130 0,130 0,010 0,010 0,001 0,001 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,
С	٥	∧		°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°
$D_{0}$	rad. ð	555 4,1 555 10,25 66,8,2 12,25 13,25 13,25 13,25 13,25 14,9 12,25 12,25 12,25 12,25 12,25 12,25 12,25 12,25 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55 12,55		273 11 (41) 26 26 46 14 18
a	•	00 00000000000000000000000000000000000	1	288 (4) 1 2,55 2,55
ß			•	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
H10	magn	11. 5,5 6,5 9,0 9,0 9,0 9,0 9,0 9,0 9,0 9,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1		လ္တက္ န လ န န လ ဗ ကို လ လ န တ တ ယ ရ ၊ ယ ဝ ဗ ဟ ဝ န ယ ပ ပ တ က န ၊ ဝ ဝ တ ယ ဝ ဗ ဟ ဝ န ယ ၊ ပ ဝ တ က န ၊ ဝ ဝ ဝ
P.	A.U.	0,14 1,65 0,33 0,33 0,18 0,18 1,82 0,18 0,58 0,74		1,70 1,778 1,778 1,778 1,778 1,778 1,778 1,778 1,778 1,70 1,70 1,70 1,70 1,70 1,70 1,70 1,70
•	A.U.	0,92 1,02 0,63 0,81 1,12 1,12 1,12 1,13 0,84 0,68 0,68 0,72 0,72		1,24 1,24 1,560 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530 1,530
2		000000000000000000000000000000000000000		-0-00-00-0000000
æ	magn	<pre>&gt;&gt; 20 20 20 20 20 20 20 20 20 20 20 20 20</pre>	323,3	ດູດີຊະດີດ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
<u>م</u> تر.	y	$\begin{array}{c} 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	10,6-11	1
dt ₁	ý	- 0,07 - 0,08 - 0,08 - 0,09 - 0,09 - 0,13 - 0,13 - 0,13 - 0,13 - 0,13 - 0,13 - 0,13 - 0,13 - 0,05 - 0,13 - 0,05 - 0,07 -	vcles 18 © = 12	1 + + + + + + + + + + + + + + + + + + +
4	y	1799,00 1799,68 1799,68 1801,60 1802,69 1806,99 1806,99 1806,99 1806,336 1806,336 1808,336 1808,36	6 th solar cy	1810,76 1811,77 1811,77 1811,77 1813,17 1813,13 1816,16 1818,15 1818,15 1818,15 1818,15 1819,55 1819,55 1819,55 1819,55 1819,55 1819,55 1819,55 1819,55 1819,55 1819,55 1819,55 1819,55 1819,55 1819,55 1819,55 1819,55 1819,55 1822,54 1822,54 1822,54 1822,54 1822,54 1822,54 1822,54 1822,54 1822,54 1822,54 1822,54 1822,54 1822,54 1822,54 1822,54 1822,54 1822,54 1822,54 1822,54 1822,54 1822,54 1822,54 1822,54 1822,54 1822,54 1822,54 1822,54 1822,54 1822,54 1822,54 1822,54 1822,54 1822,54 1822,54 1822,54 1822,54 1822,54 1822,54 1822,54 1822,54 1822,54 1822,54 1822,54 1822,54 1822,54 1823,54 1823,54 1823,54 1823,54 1823,54 1823,54 1823,54 1823,54 1823,54 1823,54 1823,54 1823,54 1823,54 1823,54 1823,54 1823,54 1823,54 1823,54 1823,54 1823,54 1823,54 1823,54 1823,54 1823,54 1823,54 1823,54 1823,54 1823,54 1823,54 1823,54 1823,54 1823,54 1823,54 1823,54 1823,54 1823,54 1823,54 1823,54 1823,54 1823,54 1823,54 1823,54 1823,54 1823,54 1823,54 1823,54 1823,54 1823,54 1823,54 1823,54 1823,54 1823,54 1823,54 1823,54 1823,54 1823,54 1823,54 1823,54 1823,54 1823,54 1823,54 1823,54 1823,54 1823,54 1823,54 1823,54 1823,54 1823,54 1823,54 1823,54 1823,54 1823,54 1823,54 1833,54 1833,54 1833,54 1833,54 1833,54 1833,54 1833,54 1833,54 1833,54 1833,54 1833,54 1833,54 1833,54 1833,54 1833,54 1833,54 1833,54 1833,54 1833,54 1833,54 1833,54 1833,54 1833,54 1833,54 1833,54 1833,54 1833,54 1833,54 1833,54 1833,54 1833,54 1833,54 1833,54 1833,54 1833,54 1833,54 1833,54 1833,54 1833,54 1833,54 1833,54 1833,54 1833,54 1833,54 1833,54 1833,54 1833,54 1834,54 1834,54 1834,54 1834,54 1834,54 1834,54 1834,54 1834,54 1834,54 1834,54 1834,54 1834,54 1834,54 1834,54 1834,54 1834,54 1834,54 1834,54 1834,54 1834,54 1834,54 1834,54 1834,54 1834,54 1834,54 1834,54 1834,54 1834,54 1834,54 1834,54 1834,54 1834,54 1834,54 1834,54 1834,54 1834,54 1834,54 1834,54 1834,54 1834,54 1834,54 1834,54 1834,54 1834,54 1834,54 1834,54 1834,54 1834,54 1834,54 1834,54 1834,545,545,545,545,545,545,545,545,545,5
ė	•	0,057 0,112 0,137 0,137 0,268 0,258 0,473 0,473 0,473 0,473 0,527 0,707 0,707 0,832 0,832	•	0,013 0,087 0,087 0,1687 0,203 0,219 0,219 0,219 0,219 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,556 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566 0,566
P or e	у	e 1, e 1, e 1, e 1, e 1, e 1, 3,292 e 1,01018 e 1, e 1, e 1,		e1, 754,5 754,5 73,19 e1, 73,93 e1, 5,098 e1, 5,098 e1, 5,098 e1, 5,098
q	A.U.	0,780 0,780 0,840 0,826 0,826 0,826 0,826 0,826 0,340 0,906 0,3390 0,608 0,3390 0,608		$\begin{array}{c} \theta, 9.70\\ 1, 582\\ 1, 582\\ 0, 777\\ 0, 777\\ 0, 747\\ 1, 213\\ 1, 213\\ 1, 213\\ 1, 213\\ 0, 744\\ 0, 744\\ 0, 744\\ 0, 744\\ 0, 744\\ 0, 744\\ 0, 744\\ 0, 744\\ 0, 744\\ 0, 744\\ 0, 744\\ 1, 198\\ 0, 982\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992\\ 0, 992$
comet	,	1798    1799   1799   1801   1802   1805   1806   1806   1806   1808   1808   1808   1808   1808   1808   1808	19	1811 1 1811 1 1811 1 1813 1 1813 1 1818 1 1818 1 1818 1 1818 1 1819 1 1819 1 1819 1 1819 1 1819 1 1819 1 1819 1 1819 1 1822 1 1823 1 1835 1 18
sc	No	153 154 155 155 155 156 156 160 160 161 163 164	= X	166 166 166 166 167 172 172 173 173 175 177 177 178 176 177 178 178 178 178 178 178 178 178 178

·					
S	A.U.	$\Sigma w = 32$	$\begin{array}{c} 0,070\\ 0,010\\ 0,010\\ 0,001\\ 0,002\\ 0,002\\ 0,003\\ 0,003\\ 0,003\\ 0,003\\ 0,003\\ 0,003\\ 0,003\\ 0,000\\ 0\\ 0\\ 0,0007\\ 0,0007\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	$\Sigma w = 19$	0 0,005 0,130 0,130
C	0	-			٥٥٥٥٥
Do	rad. ð		18 41 30 34 16 34 34 34 35 32 7,5 7,5		19 31. 20
Q.	•		(2) (6) 1,0 1,0 (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)		5 4 10
æ			8-88-8988888888		89998
H10	magn		4 2 6 7 6 8 2 8 8 8 2 8 9 8 2 8 9 8 7 8 9 8 7 8 9 8 7 8 9 8 9 8 9 8 9		9,4 9,4 9,4
7	A.U.		0,82 0,76 0,76 0,76 0,95 0,95 0,95 0,95 0,82 0,95 0,82 0,54 0,54 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53		$0,62 \\ 1,12 \\ 1,52 \\ 2,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ 1,59 \\ $
~	A.U.		0,66 0,66 0,92 0,92 0,92 0,935 0,935 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0,936 0		0,76 2,06 0,86 2,07 2,07
4					04040
E	magn	33,9	ພບບຄວວລູບ,ບລຸດທູ 4.1 ແຜງ ແມ່ນ ທີ່ຫັນບັບບັບບັບບັບ ບັບບັບບັບບັບບັບບັບ	343,5	3,5 8,3 6,5 11,5
Ψ	y.	3,3—18. 6	++0,18 ++0,00 ++0,00 ++0,00 ++0,00 ++0,00 ++0,18 ++0,18 ++0,18 ++0,18 ++0,18 ++0,18 ++0,18 ++0,18 ++0,18 ++0,18 ++0,00 +++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,05 ++0,000++0,00++00++00++00++00++0+	33,9-18	-0.02 +0.12 +0.11 +0.11 +0.11
$\Delta t_1$	y	cle: $182$ $\odot = 10^{\circ}$	$\begin{array}{c} + \\ + \\ 0,004 \\ - \\ 0,003 \\ - \\ 0,007 \\ - \\ 0,017 \\ - \\ 0,007 \\ - \\ 0,017 \\ - \\ 0,007 \\ - \\ 0,007 \\ - \\ 0,007 \\ - \\ 0,007 \\ - \\ 0,007 \\ - \\ 0,007 \\ - \\ 0,007 \\ - \\ 0,007 \\ - \\ 0,007 \\ - \\ 0,007 \\ - \\ 0,007 \\ - \\ 0,007 \\ - \\ 0,007 \\ - \\ 0,007 \\ - \\ 0,007 \\ - \\ 0,007 \\ - \\ 0,007 \\ - \\ 0,007 \\ - \\ 0,007 \\ - \\ 0,007 \\ - \\ 0,007 \\ - \\ 0,007 \\ - \\ 0,007 \\ - \\ 0,007 \\ - \\ 0,007 \\ - \\ 0,007 \\ - \\ 0,007 \\ - \\ 0,007 \\ - \\ 0,007 \\ - \\ 0,007 \\ - \\ 0,007 \\ - \\ 0,007 \\ - \\ 0,007 \\ - \\ 0,007 \\ - \\ 0,007 \\ - \\ 0,003 \\ - \\ 0,007 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,003 \\ - \\ 0,0$	ycle: 18: • • = 9*6	-0.07 -0.09 -0.35
to-	y	7 th solar cy P	1823,94 1824,53 1824,53 1825,41 1825,63 1825,63 1825,63 1825,63 1825,63 1825,53 1825,54 1825,74 1826,77 1826,88 1822,74 1822,73 1822,73 1832,73 1832,73 1832,73 1832,73 1832,73 1833,69	8 th solar c	1834,25 1835,23 1835,65 1835,65 1835,88 1838,97
Ø			0,060 0,1136 0,1136 0,1136 0,1386 0,229 0,229 0,229 0,229 0,229 0,229 0,229 0,225 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,228 0,239 0,239 0,239 0,239 0,239 0,239 0,239 0,239 0,239 0,239 0,239 0,239 0,239 0,239 0,239 0,239 0,239 0,239 0,239 0,239 0,239 0,239 0,239 0,239 0,239 0,239 0,239 0,239 0,239 0,239 0,239 0,239 0,239 0,239 0,239 0,239 0,239 0,239 0,239 0,239 0,239 0,239 0,239 0,239 0,239 0,239 0,239 0,239 0,239 0,239 0,239 0,239 0,239 0,239 0,239 0,239		0,036 0,139 0,182 0,206 0,528
Dr e	v		2 200 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		3,314 76,30 3,313
<i>P</i> (		•	$\begin{array}{c} e1, \\ e1, \\$		e 1, e 1,
q	A.U.		$\begin{array}{c} 0,227\\ 0,592\\ 0,592\\ 0,883\\ 0,883\\ 0,883\\ 0,883\\ 0,883\\ 0,883\\ 0,883\\ 0,883\\ 0,883\\ 0,883\\ 0,883\\ 0,983\\ 0,188\\ 0,188\\ 0,345\\ 0,126\\ 0,345\\ 0,126\\ 0,345\\ 0,126\\ 0,345\\ 0,126\\ 0,345\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,128\\ 0,$	,	0,513 2,040 0,344 0,587 0,344
comet		20	823 1824 1824 1824 1825 11 1825 11 1826 11 1826 11 1826 11 1826 11 1827 11 1827 11 1827 11 1827 11 1827 11 1827 11 1827 11 1827 11 1827 11 1827 11 1828 1 1828 1 1828 1 1828 1 1828 1 1828 1 1828 1 1828 1 1828 1 1828 1 1828 1 1828 1 1828 1 1828 1 1826 1 1826 1 1826 1 1826 1 1826 1 1826 1 1826 1 1826 1 1826 1 1826 1 1826 1 1826 1 1826 1 1826 1 1826 1 1826 1 1826 1 1826 1 1826 1 1826 1 1826 1 1826 1 1826 1 1826 1 1826 1 1826 1 1826 1 1826 1 1826 1 1826 1 1826 1 1826 1 1826 1 1826 1 1826 1 1826 1 1826 1 1826 1 1826 1 1826 1 1826 1 1826 1 1826 1 1826 1 1 1826 1 1 1826 1 1 1826 1 1 1826 1 1 1826 1 1 1826 1 1 1826 1 1 1826 1 1 1826 1 1 1826 1 1 1826 1 1 1 1826 1 1 1 1826 1 1 1 1826 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	13	1834 1835 I 1835 I 1835 II 1835 III 1838
sc	No		185 186 188 188 188 191 192 193 195 195 195 195 201 201 202 201 203 203	N =	207 208 208 209 210 211
112			· ·		

•

			<u></u>	~~~~	O	85	,	~	0.			.0	~		5	6		-7	<b>m</b> •	
S	A.U.	0	0,170 0	0.002	1,250	$\Sigma w =$	0,021	0,00	0,190	0	-0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -	000	0,00	>0<	0,004	0,060	0	) m ()	0,003	3
C	•	0	0 O	15: 15:	64		50	n N O	010	Оч	, o		17:	0^0^		4,3	•	ic ¢	15:	א
D,	rad. ð	6 ^	œ	~	4,5 34	-	38	88	53		62	13	48		. '	33		5 8	Ċ	22
9	•		1,3	-	45: 3		8	e	m		80	10	e			9	(	2 2 2 2 2 3 2 6		35
3				- 69	50 -	_	c> c	101	~ ~	- 0	• •	- 10	0 0	- •	~	4 62	es (	2 0		2
H10	magn	6,3 6,1	6,5 6,5	9 7 8	4 4 9 8,		4,2	0,6 4,9 0,0	4,9 9,2	7.5	° * 0	8°0.	7,2	20 8 8	8°1	<b>6</b> ,8	4, v 8, 6	0 0 7 0		5,
7	A.U.	0,82 1,17	1,34	1,90	0,69 1,69		0,79	1,42	0,90	0,66	1,00	0,96	1,08 2,1 2,08	0,68	0,35	1,17	1,98	1,2	8.0	0,40
٤	A.U.	0,92 1,43	0,91	1,33	0,88 1,62		1,72	1,13	0,27	1,50	1,48	1,44 0.65	0,72	1,56	0,96	1,49	2,13	1,50	1,21	1,10
4	-	- 0	- 0	0 -	~ 0	_	· ==1 =		0 0	00	• •	- 0	- 9	<b>,</b>		\$ \$	•••	- 0	- 0	2
æ	magn	4,5 7,5	9.9 2,6	12,5 2.5	3,5	856,0	5,8	6,5	8.5 6.5	~ ~	2	10,5	` <b>0</b> 0	. 0	Г, 0 Г, 1	7,5 2	0°0	ດ ວິດ	9,5	Q
Aī	<b>y</b> .	+0,01	-0,04 + 0,14	-0,03	+0,04 +0,18	43,5-1	+0,29	+0,06	+0,13 +0,10	-0,06	+0,14	0000	+0,08	+0,10	-0,04	-0,03	+0,25	+ + 0°,0 + + 0,19	-0,06	10,0-
411	y.	-0,09 -0,13	-0,07	-0.17 -0.14	-0,06	ycle: 18 0 = 15	+0,10	-0,28	+0,01 -0,03	-0,15	+ 0,01	+0.21	-0,04	+0,06	-0,10	-0,14	-0,08	10,10	-0,14	-0,12
t.	<b>.</b>	1840,01 1840,20	1840,25 1840,87	1842,28 1842.96	1843,16 1843,34	9 th solar c	1843,79	1844,79	1844,95 1845,02	1845,30	1846,06	1846,11	1846,18	1846,42	1846,43	1847,24	1847,43	1847,60	1847,69	1847,87
0	-	0,636 0,656	0,661 0,726	0,873	0,965 0,983	-	0,023	0,103	0,116 0,122	0,144	0,205	0,209	0,214	0,234	0,234	0,299	0,314	0.328	0,335	0,350
P or e	y	599 300 3 789	e 1, 367,2	3,331 e 1.	512,4 e 1,000 183	5 5	7,436	98 030	e 1,000 353 e 1,000 25	e l, Sve no	e 1,	6,601 5,569	75,71	13,38	499,9	10 219	e 1,	44 223 A 1	68,07	6 1,000 17
6	A.U.	0,618 1,221	0,749	0,345 0.504	0,0055		1,692	0,855	0,906	1,255	1,482	0,856	0,664	1,529	0,634	0,0426	2,115	1,485	0,488	U,328
comet	;	1840 I 1840 II	- 1840-111 1840-1V	1842 I 1842 II	1843 I 1843 II	<b>8</b>	1843 111	1844 IH	1845-F	1845 II 1945 III	1846 I	1846 11 1846 111	1846 IV	1848 VI	1846 VII	<b>F847 I</b>	1847 11	1847 IV	1847 V	1047 VI
sc	ND	212 213	215	216 217	218 219	- - - - -	220	122		225	558	N 82	231	233	234	536	237	239	240	
63-2	0											· ·		4					4 4	19

S	A.U.	$\begin{smallmatrix} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & $	$\Sigma \dot{w} = 70$	0,002 0,003 0,010
υ	0	00000 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		30: 30: 30:
$D_{0}$	rad. ð	$\begin{array}{c} 11\\ 25\\ 25\\ 25\\ 35\\ 35\\ 35\\ 34\\ 15\\ 16\\ 16\\ 16\\ 25\\ 25\\ 25\\ 26\\ 24\\ 25\\ 26\\ 24\\ 25\\ 26\\ 24\\ 26\\ 24\\ 25\\ 26\\ 24\\ 25\\ 27\\ 27\\ 27\\ 27\\ 27\\ 27\\ 27\\ 27\\ 27\\ 27$	E S	34 17 14
D	•	التاني 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10 10 10.00 10 10 10 10 10 10 10 10 10 10 10 10 1		, 00 70 70 70
m		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		- 2 2
H ₁₀	magn	88477672767666667776766474768641 1776546676666676766667766664168		7,1 7,7 9,0
P	A.U.	$\begin{array}{c} 0,83\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,026\\ 1,0$		1,56 1,10 1,25
•	A.U.	0,82 1,58 1,58 1,58 1,58 1,70 1,70 1,75 1,70 1,75 1,075 1,075 1,075 1,075 1,111 1,111 1,112 1,125 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075 1,075		0,95 0,65 0,79
4		000000000000000000000000000000000000000	ſ	
٤	magn	88 11 12 14 10 14 10 14 10 10 10 10 10 10 10 10 10 10		7,5 5,5
٩ï	y	60         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0	27	+ 0,02 + 0,10 - 0,03
$\Delta t_1$	y	$\begin{array}{c} 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\$	0 0 = 11	-0.08 -0.03 -0.07
t _o	y	1848,69 1848,69 1848,69 1849,05 1849,40 1850,56 1850,50 1851,52 1851,52 1851,52 1852,73 1852,73 1852,73 1852,73 1852,73 1855,73 1855,73 1855,10 1855,41 1855,41 1855,41 1855,41 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,50 1855,5	H	1857,22 1857,24 1857,54
Ð		$\begin{array}{c} 0,415\\ 0,415\\ 0,444\\ 0,472\\ 0,565\\ 0,564\\ 0,566\\ 0,566\\ 0,568\\ 0,572\\ 0,566\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,772\\ 0,$		0,109 0,111 0,137
P 0r e	y	e 1, 3,296 e 1, 3,296 e 1, 000 71 e 3 75 28 909 e 1, 6,390 e 1, 6,621 e 1, 6,621 e 1, 6,621 e 1, 6,621 e 1, 6,621 e 1, 6,621 e 1, 1001 23 e 1, 001 23 e 1, 002 1 e 1, 002		e 1, 5,538 e 1,
q	A.U.	$\begin{array}{c} 0,320\\ 0,337\\ 0,960\\ 1,159\\ 1,084\\ 1,084\\ 1,084\\ 1,173\\ 0,965\\ 1,173\\ 0,965\\ 0,142\\ 0,966\\ 0,173\\ 0,909\\ 0,306\\ 0,173\\ 0,306\\ 0,173\\ 0,337\\ 1,250\\ 0,173\\ 0,337\\ 1,231\\ 1,231\\ 1,231\\ 1,231\\ 1,231\\ 1,231\\ 1,231\\ 1,231\\ 1,231\\ 1,231\\ 1,231\\ 1,231\\ 1,231\\ 1,231\\ 1,231\\ 1,231\\ 1,231\\ 1,231\\ 1,231\\ 1,231\\ 1,231\\ 1,231\\ 1,231\\ 1,231\\ 1,231\\ 1,231\\ 1,231\\ 1,231\\ 1,231\\ 1,231\\ 1,231\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,232\\ 1,$		0,772 0,620 1,368
comet		1848 I         1849 I         1849 I         1849 I         1849 II         1850 I         1851 II         1851 II         1851 II         1851 II         1851 II         1852 II         1853 II         1854 II         1855 II         1855 II         1855 II         1855 II         1855 III         1855 III         1855 III         1855 III	38	1857 I 1857 II 1857-III
sc	No	242 243 244 245 245 245 246 255 256 255 255 255 255 255 255 255 25	N	270 271 272

					•.	-			•		4					`	••••		• •.			. !	• • •	•					2	į.		⊀	4	,- ·		Ņ	
S	A.U.	>0,001	0,100	0			,	0,010	•	0,550	0	0,004	0	0	0,280	0	0,020	0,340	0	0,001	0,220	0	J	0,050	0,050	0,150	0,100	0,010	•	0,090	0,008		0	0,450	0^	· 0<	
C	•	5:	4	0			•	30:	0	41	0	20:	0	•	20	0	3,5	118	0	30: 30:	25	0		<b>~</b>	<b>m</b>	10,6	, 1,5	öö	•	40	20:		•	2 <u>0</u>	Ñ	° ^	
D,	rad. ð	14	20	14	34	12		20			\$0 2	25	\$2	29		14	49	31	9,6	20	44	32	10	10,2		34	17	44	18	26	28	9,6	14	61	12	25	
Q	•	e	9	ო	9	e		4			ò	4	30:	\$		4	20	13	4	34	4	n	-	30:		ო	4	S	1,5	32	\$	1	\$	10	12	e	
. 3		-	e	-	3	\$		3	\$	3	-	\$	-	-	e	-	\$	è	\$	\$	ŝ	-	\$	\$	-	n	-	\$	-	e	2	3	-	3	-	\$	-
H10	magn	9,1	4,9	9,9	7,8	<b>0</b> '6	11,3	8,6	8,1	3,3	5,9	7,0	~	5,2	5,8	9,5	5,5	3,9	9,3	9,4	4,0	6,5	8,4	ഹ	6,8	5,7	8,2	4,2	7,0	6,2	5,2	5,2	9,5	3,8	8,0	7,2	
7	A.U.	0,67	0,67	0,63	0,81	0,60	0,36	1,08	1,51	2,39	1,16	0,80	0,59	2,05	0,97	0,58′	0,69	0,90	0,71	0,11	1,55	1,63	0,60	0,70	0,85	0,80	0,80	2,05	1,82	1,26	1,74	1,38	0,99	1,15	1,21	1,21	
L	A.U.	0,95	1,04	1,02	1,28	1,16	1,15	0,63	1,70	2,23	1,53	1,41	1,21	1,44	0,30	0,93	1,30	1,12	0,93	1,00	1,20	0,95	1,42	1,09	0,65	0,71	0,77	1,76	1,09	1,18	1,70	0,80	1,12	0,56	1,05	1,58	
1		1	\$2	0	-	-	0	1	0	\$	0	-	0	0	\$	0	-	3	0	-	2	0	0,5	-	\$	1	1	1	0	1	-	0.5	0	\$	-	-	-
m	magn	8,5	7,5	6	80	7,5	9,5	7	11,5	7,5	5,5	7,5	6	8,5	en	7,5	(2)	4,5	7	4,5	9	2	6	5,5	9	4	6,5	7,5	8,5 2	6,5	9,5	1	6	n	9	~	
٩ī	y	+0,03	-0,05	+0,04	-0,03	0,00	+0,04	+0,04	+0,09	+0,05	-0,01	-0,03	+0,03	+0,19	+0,17	+0,09	+0,05	+0,41	+0,11	+0,07	+0,04	+0,04	-0,04	+0,32	+0,05	+0,12	+0,09	+0,04	+0,16	+0,02	+0,08	+0.08	+0.05	+0.15	+0,01	+0,12	
411	y	-0,09	-0,11	-0,02	-0,14	-0,15	-0,01	-0,04	-0,02	-0,33	-0,10	-0,16	+0,03	+0,11	00'0	+0.08	-0,16	-0,08	+0,06	+0,03	-0,10	-0,08	-0,18	+0,02	-0,02	-0,02	0,00	-0,22	+0,12	-0.11	-0.22	-0.02	+0.01	+0.01	-0,06	+0,01	-
to	y	1857,65	1857,75	1857,88	1858,15	1858,33	1858,34	1858,43	1858,70	1858,75	1858,78	1859,41	1860,13	1860,18	1860,46	1860,73	1861,42	1861,44	1861,93	1862,47	1862,64	1862,99	1863,09	1863,26	1863,80	1863,86	1863,99	1863,99	1864,57	1864,62	1864,78	1864.98	1864,99	1865,04	1866,03	1867,05	_
ø		0,147	0,156	0,168	0,192	0,208	0,209	0,217	0,241	0,246	0,248	0,304	0,369	0,373	0,398	0,422	0,484	0,486	0,529	0,578	0,593	0,624	0,633	0,648	0,652	0,702	0,713	0,713	0,765	0.770	0.784	0.802	0,803	0,807	0,896	0,987	-
P or e	Å.	234,7	2 463	6 143	13,74	5,620	6,018	e 1,	7,448	1 950	6 002	e 1,000 03	el,	el,	el,	el,	415,4	409,4	e 1,	e 1,	119,6	e 1,	e 1,000 07	e 1,	17 740	18 368	el,	e 1,000 65	el,	3 934	55 242	e 1.	e 1,000 06	el.	33,18	40,09	
4	<b>A.U</b> .	0,747	0,563	1,009	1,026	0,769	1,146	0,544	1,694	0,578	1,427	0,201	1,199	1.307	0,293	0,683	0,921	0,822	0,839	0,981	0,963	0,803	0,795	1,068	0,629	0,707	0,771	1,313	0,626	0,909	0.931	0.771	1,115	0,025	0,977	1,577	
comet		1857 IV	1857 V	1857 VI	1858 I	1858 11	1858 III	1858 IV	1858 V	1858 VI	1858 VII	1859	1860 I	1860 II	111 0981	. VI 0860	1861 I	1861 II	1861 111	1862 11	1862 III	1862 IV	1863 I	1863 11	1863 III	1863 IV	1863 V	1863 VI	1864 I	1864 II	1864 III	1864 IV	1864 V	1865 I	1866 I	1867 I	-
sc	No	273	274	275	277	278	279	280	281	282	283	285	286	287	288	289	290	291	292	294	295	296	297	298	299	300	301	302	303	304	305	306	307	308	310	312	-

•

8*

•

•

S	A:U.	$\Sigma w = 56$		0,004	>0	0	0	0,008		0.010		0	0,003	0		0,040	0 0006	0	0,290	0	0	0	0	0,050	0	0,002	0	0
ບ	o	-	• •	 ∕ 3:	0^	0	0	20:		10:		0	ö	0		ຕ ∧		io	48	0	0	0	0	\$3	0	5:	•	0
٩đ	rad. ð		25	24	32	14	10	27	64	26	33	27	6,8	23	25	61		45	41	27	21	17	53	61	18	18	14	
a		1	۰ م	4 rö	1,6	1,5	9	ຕ ມ	0,0	50	4	<i>ლ</i>	75:	ŝ	e	2,	0 9	5	4	ო	ñ	4	50	10	1,5	e	\$	_
B			20	20 67	\$	\$	-	2	- c	- 01	\$	\$	; <b></b> 1	\$	\$	m •		· 02	ო	3	\$	-	\$	e	3	\$	2	3
H ₁₀	magn		. 8 . 4	7 °,	9,0	5,1	11,4	6,2	ο 0,11	5.3	6,5	8,0	6,3	8,5	6,7	6,4	0,11	5.0	5,7	6,2	9,4	7,6	8,2 8	5,7	6,7	6,0	6,3	8,5
7	A.U.		0,71	1,01	1,70	1,97	0,26	1,62	1,23	1.87	1,42	1,27	0,83	0,70	1,24	1,13	0,20	0.93	1,72	1,38	0,60	1,30	0,46	1,40	1,45	06'0	1,86	0,49
7	A.U.		1,62	1,01	1,27	1,24	1,08	1,23	1,02	1.44	1,29	1,12	0,54	1,35	0,91	1,05	0,02	1,02	1,68	1,69	1,12	1,18	0,90	0,96	1,07	1,82	1,58	1,41
2						•	0	- 9			0,5	0	-	0	0,5	- 0	> -	• •	\$	•	•	Ð	ò	-	0	1	0	0
æ	magn	(878,9	6	ດ ເງິ	11,5	6	8,5 7		, a v r	6 6 6 6 6	200	8,5	6,3	9,5	6,5	6,5 7	ດັດ ດັບ	0.0 0.0	7,5	8,5	7,5	8,5	6,5	10,5	7,5	7,5	9,5	7,5
٦t	<b>X</b>	67,2-1	+ 0,06	-0,06 +0.02	-0,09	+0,06	+0,08	-0,06	+ 0, 13 - 0, 06	-0.01	+0,02	+0,02	-0,04	+0,16	-0,01	+0,03		+0.17	+0,03	+0,21	+0,03	+0,18	+0,13	+0,11	+0,03	+0,30	+0,12	-0,01
<b>⊿t</b> 1	y	ycle: 18 0 = 11	-0,14	-0,11	-0,16	+0,01	+0,03	-0,12	10,01	-0.17	-0,12	-0,13	-0,04	+0,02	-0,05	-0,11		+0.08	-0,23	+0,09	-0,09	+0,13	+0,06	-0,03	-0,05	+0,26	0,00	-0,04
to	y	11 th solar (	1867,39	1867,85	1868,70	1869,77	1869,88	1870,53	18/0,07	1871.44	1871,57	1871,97	1872,96	1873,48	1873,69	1873,75	18/3,92	1874.20	1874,52	1874,54	1874,65	1874,80	1877,05	1877,29	1877,32	1877,49	1877,70	I878,55
6		- 	0,016	0,056	0,128	0,220	0,229	0,285	0,297	0.362	0,374	0,408	0,492	0,537	0,555	0,560	0,574	0.598	0,626	0,627	0,637	0,650	0,842	0,862	0,865	0,879	0,897	0,970
P 0r e	y	-	5,696	el,	3,288	e 1,	5,484	e 1,	2 U56	5188 5188	el,	e I,	el,	5,207	3 375	53 900	28,03	e 1,	13 708	306,0	24 368	e 1,	e 1,	19 765	10 717	e 1,	e 1,	e 1,
9	A.U.		1,564	0,330	0,334	1,231	1,064	1,009	1,817	0,654	1.083	0,691	0,064	1,344	0,794	0,385	0,747	0.886	0,676	1,688	0,983	0,508	0,807	0,950	1,009	1,070	1,576	1,392
comet		29	1867 11	1867 111	1868 111	11 6981	111 6981	1870 I	1870 11	1871 1	1871 11 •	1871 IV	1872	1873 II	1873 IV	1873 V	1873 VII	1874 11	1874 III	1874 IV	1874 V	1874 VI	1877 I	1877 II	1877 111	1877 V	1877 VI	1878 I
sc	No	N =	313	314	317	319	320	321	322	324	326	328	330	332	334	335	337	330	340	341	342	343	346	347	348	350	351	352

.

, ·

116

.

•

c	0	<b>Z</b> m		0,4:	0	> 20	.9:	4	0	000	\ ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	0	15	010		; ó	<u>ک</u>	30		105.	50	∧ 0 ∧	∧ ∧ ∧	4	ö	^ 0 ^ ;		, , , ,	. 0	- C
°a	rad. <del>¢</del>			33	<b>9</b> 9	40 140	35	75	50	2	0 2	19	99	22	4 5	3	48	8	20	14	ล	50	11,6	\$	53	89 :	41	59	1	a
9	. • .			ო	40	N 07	50	8,7	14,5	1			80		2 6	4.2	3,5	က		2°,01	11.5	`m	<b>m</b> -	1,7	က :	÷ م	5	د 1.5	5	с С
Э				\$	- 0	2 6	2 02	n	\$		<b>n</b> a		<i>~</i>	~ ~		-	<b>m</b>	3	22 0	00	<u>ب</u>	\$	ິຕ	\$	3		<b>b</b> a	<b>s</b> ci	2	¢
H ₁₀	magn			4,5	10,5	0 0 0 0	8'7 ,	7.7	12,2	7,4	0,0	<b>8</b>	4,1	ເດັດ ເດັດ	⊃	) 4 ) 6	4,1	0,8		20	6.4	8,9	6,2	8	9,5	0 0	2.4	5 4 9 6 4	6°0	
7	A.U.			1,60	1,10	1,00	1,98	0,50	0,29	0,26	1,20	1,11	0,31	1,77	0,83	1,10	1,74	1,35	1,50	2.6	2.37	0,44	0,82	1,53	1,12	1,85	1,70	0.98	0.56	1 10
~	A.U.			1,20	66.0	1,23	2,10	0,71	1,21	1,09	0,33	0,74	0,75	8		1.93	2,04	0,68	1,39	0.49	5.5	1,33	1,69	2,52	0,86	8.8	DA'I	0.85	1,35	1 99
4		•		<u> </u>	0	ي ب	<b>}</b> (	-	•	• •		0	\$	2		0	~	67					-	-	0	- (	<b>ס א</b>	2	0	9
٤,	magn	1889,6		6,5	10,5	, r 0	7,5	5,5	<b>00</b>	4 r 00 r	10,2		ີ. ຕຸ	91	0 K 2 K	0 0 0	-	0	10	ົ	10	9,5	9,5	11	8,5	7,5	11 0 F	4 J 5 J	8.5	a
Ψ	, <b>Y</b>	78,9-		+0,23	+0,02	+0,04	+0,06	+0,15	+0,11	+0,12	14	-0,03	+0,38	+0,03	1004	+0.07	-0,02	+0,34	-0,05	10101	-0.02	+0,10	+0,11	0,00	+0,11	+0,18	10,0	10.03	+0.02	000
411	v	ycle: $18 = 10^{2}$		+0,14	-0,01	10.01	-0,24	+0,06	+0,01	+0,11	10,10	0,05	-0,07	-0,11	+0,14	-0.01	-0,23	-0,04	-0,17	10.04	-0.40	-0,08	-0,17	-0,08	+0,06	60,04	0,01	10.01	-0.04	0 11
f ₀	Y	12 th solar c		1879,32	1879,66	1880.07	1880,50	1880,68	1880,85	1880,86	1881 06	1881,38	1881,46	1881,64	1881 70	1881.89	1882,44	1882,71	1000 14	1883.98	1884.07	1884,62	1884,88	1885,59	1885,61	1885,90	1006 24	1886.34	1886.43	1006 12
Ð		}		0,039	0,071	0,000	0,150	0,166	0,182	0,183	0,100	0.232	0,239	0,256	0.262	0.279	0,331	0,356	0,371	0.475	0,483	0,535	0,559	0,625	0,627	0,654	0,088	0.695	0.704	A07 0
P or e	Å		**	e 1,	e1, .	el, el	e 1,000 84	el,	5,492	el,	61, 7566	e 1,	2429	e 1,	8,097	612.2	1 174 000	760,9	e 1,000 07	64 63	71.56	5,400	6,774	e 1,002 85	274,5	e 1,	e 1,000 93	e 1,000 &	5.595	TAK
đ	A.U.			0,897	166'0	0,990	1,814	0,355	1,067	0,387	0,000	0,591	0,734	0,634	0,440	1.923	0,061	0,008	0,956	0.300	0.776	1,280	1,572	2,508	0,749	1,080	0,642	0,843	1.328	0.70
comet	•	47		1879 11	1879 IV	18201	1880 11	111 0881	1880 IV	1880 V	1881 1	1881	1881 111	1881 IV	1881 VI	1881 VIII	1882 I	1862 11	1882 111	188311	1884 I	1884 11	1884 III	1885 11	1885 111	1885 V	19961	1886 111	1886 IV	1986 V
sc	No.	N		358	358	360	361	362	363	364	366	367	368	369	371	373	374	375	376	378	379	380	381	383	384	386	300	380	390	201

		•		
S	A.U.	$\begin{array}{c} 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ $	w = 103	0,014 0,011 0,008 0,009 0,009 0,009 0,009
υ	•	300:10:3,6: 300:10:3,6: 300:10:10:10:10:10:10:10:10:10:10:10:10:1	2	13.053.000 13.53.053 13.053.000 13.53.053
D ₀	rad. <b>č</b>	$\begin{array}{c} 1\\ 1\\ 1\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\$		68 68 68 71 16 71 16 71 16 80 33 80 80 80 80 80 80 80 80 80 80 80 80 80
Q	•	ت بي 10 - 13 ت بي 30 بي 24 ت 50 بي 10 - 13		0-8 - 8 - 5 - 8 - 9 8 8
æ		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		<b>6666666</b>
$H_{10}$	magn	0,4,4,0,0,0,0,4,2,0,0,0,0,0,0,0,0,0,0,0,		7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
7	A.U.	$\begin{array}{c}1,1\\2,12\\1,93\\1,93\\2,10\\2,10\\2,10\\2,10\\2,10\\2,10\\2,10\\2,10$		$\begin{array}{c} 1,45\\ 0,66\\ 1,02\\ 1,02\\ 1,55\\ 0,86\\ 0,86\\ 0,86\\ 0,86\\ 0,86\\ 0,95\\ 0,95\\ 1,55\\ 1,55\\ 1,55\\ 1,55\\ 1,55\\ 1,55\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\ 1,26\\$
r	A.U.	1,68 1,68 1,68 1,41 1,73 1,73 1,73 1,73 1,73 1,73 1,73 1,73 1,73 1,73 1,73 1,73 1,73 1,73 1,73 1,73 1,73 1,73 1,73 1,73 1,73 1,73 1,73 1,73 1,73 1,73 1,73 1,73 1,73 1,73 1,73 1,73 1,73 1,73 1,73 1,73 1,73 1,73 1,73 1,73 1,73 1,73 1,73 1,73 1,73 1,73 1,73 1,73 1,73 1,73 1,73 1,73 1,73 1,73 1,73 1,73 1,73 1,73 1,73 1,73 1,73 1,73 1,73 1,73 1,73 1,73 1,73 1,73 1,73 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134		2,09 1,38 1,18 2,11 2,11 1,38 1,34 1,53 1,53 1,53 1,16 1,18
1				800000008
u	magn	11 10 10 11 11 10 10 10 10 10 10 10 10 1	901,7	11 10,5 9,5 9,5 11,5 11,5 11,5 8,5 11,5 8,5 11,5 4
<u>4</u> 1	y	$\begin{array}{c} + + 0,13\\ + 0,13\\ - 0,02\\ + 0,02\\ + + 0,02\\ + + 0,02\\ + + 0,02\\ + + 0,02\\ + + 0,02\\ + + 0,02\\ + + 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0,02\\ + - 0$	889,6-1	$\begin{array}{c} +++\\ +++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,036\\ ++,0,006\\ ++,0,006\\ ++,0,006\\ ++,0,006\\ ++,0,006\\ ++,0,006\\ ++,0,006\\ ++,$
$\Delta t_1$	y	$\begin{array}{c} - & 0,15\\ - & 0,15\\ - & 0,15\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\ + & 0,02\\$	cycle: 1 0 = 12	$\begin{array}{c} -0.24\\ -0.24\\ -0.05\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0.02\\ -0$
to	y	1886,89 1886,91 1886,91 1886,91 1887,03 1887,24 1887,24 1888,72 1888,72 1888,72 1888,73 1888,73 1888,70 1888,70 1888,70 1888,70 1889,05 1889,36 1889,35 1889,35	13 th solar (	1889,75 1889,75 1890,07 1890,62 1890,52 1890,52 1890,52 1891,32 1891,32 1891,87 1891,87 1891,87 1891,87 1891,87 1891,87 1891,87
ø		0,747 0,749 0,775 0,777 0,777 0,777 0,777 0,777 0,777 0,777 0,777 0,926 0,926 0,926 0,928 0,995 0,995		0,012 0,019 0,019 0,068 0,076 0,083 0,092 0,093 0,093 0,142 0,182 0,182 0,182
P or e	, y	$\begin{array}{c} e 1, \\ 6,648 \\ e 1,000 \ 38 \\ e 1,999,4 \\ e 1,000 \ 42 \\ 6 \ 725 \\ 6 \ 725 \ 42 \\ 72,40 \\ 72,40 \\ 72,40 \\ 72,40 \\ 72,40 \\ 72,90 \\ 6 \ 739 \\ 9 \ 739 \\ 9 \ 739 \end{array}$	-	7,074 8,917 8,917 8,917 1,000 41 11 040 11 040 57 510 6,691 57 510 6,373 e 1, 3,303 e 1, 3,303
đ	A.U.	$\begin{array}{c} 0,998\\ 1,481\\ 1,481\\ 0,663\\ 0,010\\ 1,630\\ 1,639\\ 1,394\\ 1,199\\ 1,199\\ 0,902\\ 1,199\\ 1,102\\ 1,102\\ 1,102\\ 1,102\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,040\\ 1,$		1,950 1,356 0,270 0,270 0,764 1,326 1,324 1,324 1,326 1,328 0,338 0,338 0,331 0,971
comet		1886 VIII 1886 VIII 1886 VIII 1886 IX 1887 IV 1887 IV 1888 I 1887 V 1888 III 1888 V 1888 I 1889 II 1889 II 1889 II 1889 II 1889 II 1889 II 1889 II	48	• 1 6881 • 1 10681 111 10681 111 10681 111 10681 111 10681 111 10681 111 10681 111 1081 111 10810
	0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	=	251198766554332110 252198766554332210 252198766554332210

												•	1																	•				`.
S	A.Ŭ.	0,130	λ0 Χ	0,094	0^	0,250	0	0,820	0,001	0,035	0~	0,0004	0	0,133	0,020	0,0016	0	0	0,003	0.003	0200	0	0	0~	0	0,006	0,003	0,120	0	0	00	0,052	0,001	0,540
0	o	30:	0^ ^	ഹ	0 ^ ^	18	0	10	÷	9	R	5: 2:	0	30	\$	ö	0	0,0	200	⊃ġ		20	0	0 ^	•	30:	10;	10		0	0 <u>~</u>		ë	30
D,	rad. ð	340	7,5	25	22	27	6	23	17	68	9,5	48	23	45	26	12	20	<b>~</b>	23	46 91	010	8.2	27	34	19	41	34	41	24	16	20	82	7,5	12
<b>Q</b> .	•	30	-	n	ß	90	1,5	50	5	25	-	6 V	10	e	9	2,8	\$	1	0	ф ц /	200	2 01	0	ŋ	1,5	ŋ	ف	12	ର	-	1,5	ß	<b>က</b> ′	1,5
з		\$	\$	e	ŝ	e	e	e	\$	-	\$	3	1	e	3	e	-	2	- 0	2 6	20	5.03	62	e		e	ŝ	m	\$	2	\$	ŝ	-	ດ້
$H_{10}$	magn	3,0	9,8	5,3	7,8	6,6	10,1	6,6	10,4	6,5	10,2	11,4	10,5	5,2	8,8	10,3	8,4	6,6	ກາ ກໍເ		0 H 0 H	9.6	7.6	5,0	5,6	7,0	9,2	5,4	8,5	6,5	8,0	8 9 9	10,8	5.9
V	A.U.	1,48	1,10	2,30	1,75	0,50	1,31	1,74	0,48	0,94	1.02	0,35	0,40	1,61	0,56	0,55	1,71	1,01	0,27	1,43	100	0.63	1,96	1,10	2,19	1,56	0,62	0,79	1,80	2,03	1,59	0,46	0,93	0,75
L.	A.U.	2,38	1,51	2,14	1,41	0,78	1,28	0,97	1,22	1,02	1,45	1,30	1,03	0,95	0,66	0,59	1,43	1,56	1,12	1,04	0,1	1.59	1.30	2,22	2,38	1,04	0,99	1,08	1,34	1,81	1,85	1,03	1,02	0,46
4		1	-	-		\$	0	1	-	-	-	-	0	\$	-	-	0	0	(	) -		• 0	0	-	0	-	-	-	•	0	-	-	Ļ	\$
æ	magn	5,5	11,5	10,5	10	3,5	II	~	10	6,5	13	10,5	7.5	6,5	7,5	6,5	10	12,5	»;	10	0 F	11.5	10	œ	12	æ	-	5	11,5	Ξ	11	6,5	10,5	1,5
At	Å	+0,57	-0,08	+0,08	+0,02	+0,24	0,00	+0.21	+0,22	+0,17	+0.21	+0,23	+0.13	+0.12	+0,12	+0,09	+0,20	+0,03	+0,16	10,10	80'0'	800 	0.09	+0.11	+0,27	-0,06	-0,04	+0,11	0,00	+0,15	+0,04	+0,18	+0,17	+0,06
٩ť	<b>y</b>	+0,40	-0,16	-0,33	-0,14	+ 0,01	-0,16	+ 0,07	+0,12	-0,03	+0,11	0,00	+0,09	-0,08	+0,03	-0,01	+0,15	-0,14	+0,04	-0,2/		30	-0.17	-0,26	+0,17	-0,10	60,01	-0,11	-0,17	+0,03	-0,24	-0,03	+0,06	-0,03
, to	Å	1892,45	1892,94	1892,99	1893,02	1893,51	1893,53	1893,72	1894,11	1894,28	1894,78	1895,64	1895,80	1895,96	1896,09	1896,29	1896,52	1896,82	1896,90	11,7881	10001	1898.56	1898.62	1898,70	1898,72	1898,80	1898,89	1899,28	1899,34	1899,71	1900,32	1900,59	1900,91	1901,31
9		0,236	0,276	0,280	0,283	0,323	0,325	0.340	0,373	0,387	0.428	0,499	0,512	0.526	0,536	0,553	0,572	0,597	0,603	129'0	0,009	0.740	0.745	0,752	0,754	0,760	0,768	0.800	0,805	0,836	0,886	0,908	0,935	0,968
P or e	y	6,902	6,634	el,	e 1,001 59	44 410	6,622	2 516	7,418	959	5,855	7,219	el.	el.	e 1,000 65-	e 1,000 48	e 1,	6,646	6,441	e 1,000 94	1,000	e 1 .	e 1.	e 1,001 03	210 800	e 1,	158 700	e 1,000 34	13,67	el, [	e 1,	e 1,000 33	6,524	39 080
6	A.U.	2,142	1,434	0,976	1,195	0,675	0,989	0,812	1.147	0,983	1.392	1,298	0,843	0.192	0,585	0,566	1,143	1,455	1,HQ	1,063	100.1	1 501	0.626	L702	2,285	0,420	0,756	0,327	1,019	1,786	1,332	1,015	0,932	0,245
comet		1892 111	1892 V	1892 VI	1893 1	1893 II	1893 111	1893 IV	1894 I	1894 II	1894 IV	1895 II	1895 111	1895 IV	1896 I	1896 III	<b>VI 9681</b>	1896 V	1896 VII	1897 I	10001	1 0801	1898 VI	117 8681	111V 8681	1898 IX	1898 X	I 6681	111 6681	1899 V	I 006I	11 000 II	111 0061	1901 1
SC	No	426	428	429	430	431	432	433	434	435	437	439	440	441	442	444	445	446	448	449	401	456	457	458	459	2007	461	462	464	466	467	468	469	470

SC	comet	0	Pare	9	-	41.	-IV	M			-	Н		q	D.	ÿ	S
No		<b>A.U</b> .	λ				Ŕ	magn	1	A.U.	A.U.	magn			rad. 5	•	A.U.
۲ ۲	40			1.2 1.2.4 1.2.4 1.2.4	14 <b>b</b> S(	be cyc	le: 1901 = 1179	1,7-19	13,6								
1														ŀ			
479	1 2001	0.451	-	0.055	1000 25	0.07	0.06	5	-	0 73	0 51		ې		9	30.	0.004
473	1902 11	0,746	4.826	0.067	1902,50	+0.06	+0.03	6	- 0	0.00	1.10	95	<b>~</b> –	1.5	11	ç o	•00°0
474	1902 111	0,401	1 403 000	0,101	1902,90	-0,23	+0,06	6	-	1,78	1,29	6,0	<b>"</b>	20	20	10	- 0,120
475	1903 1	0,411	43 100	0,126	1903,20	-0,16	-0,01	10	-	1,40	1,78	8,6	2	4	27	4	0,080
476	11 2001	2,774	el,	0,128	1903,22	-0,30	-0,02	н Г	0	2,97	2,01	5,0	\$	8	48	0	0
477	111 2061	0,499	e 1,	0,129	1903,23	90,04	+0.12	ີ່	0,	0,80	1. 2.1	0,0 0,0	- 0		į	• ;	0
478	1904 1	0,330 9.708	e 1, • 1 001 36	0,100	1903,66	-0,19	-0,02	øσ		1,02 9 74	0,/0	ວຸດ ກູດ	n c	15 0	31	11	0,080
481	1904 11	1.882	e 1.	0.264	1904.84	+0.12	+0,31	,11	0.5		2,32	9.9	2.CV	30:	7.5	(>0.6:)	(100.0<)
484	1905 11	1,395	6,906	0,281	1905.04	-0.05	+0.15	10	0	1,41	0,93	9,0	<b>?</b>	; e	16	0	0
485	1905 111	1,115	226,2	0,313	1905,42	-0,19	-0,07	11,5	-	1,14	0,73	11,5	e	ŝ	14		۰.
486	1905 IV	3,339	e 1,001 05	0,345	1905,80	+0,37	+0,04	10,5	1	3,57	2,60	3,7	\$	1,2	41	30:	0,040
487	1905 V	1,052	e 1,000 19	0,346	. 1905,82	+0,06	+0,12	~	-	1,12	0,26	9,5	ო	15	27	30:	0,0097
488	1905 VI	1,296	e 1,000 18	0,359	1905,97	+0,10	+0,22	6	-	1,41	1,04	7,7	-	. 12	68	0 ^	0 ^
489	1 906 I	0,215	e 1,	0,366	1906,06	-0,13	+0,02	œ	-	1,29	1,42	8,3	ო	0 ·	31	>10	0,240
490	11 9061	0,723	e 1,	0,373	1906,14	+0,07	60'0+	00 ;	0	1,83	ຊ ເຊິ	10,2	2	ຕ (	31	0	<b>O</b>
492	19061	1-698	6,584	0,389	1906.33	+0,31	+0,47	11,5	0 0	1,97	1,02	30 ¢	2	2,5	17	0,0	0
494	1006 11	1,012	F 23 1	0,420	1906,77	+0,I0	+0,19	11	> <	2,07	0,72	6 n	2	4.0	9,00 0,00	•	•
496	1907 I	2,052	e 1.001 02	0.463	1907.21	-0.02	+0.13	11	0	1.06	1.45	6.5 1	·	1.4	14	00	
497	1907 11	0,923	164,3	0,465	1907,23	+0,04	+0,09	6,5	1	0,95	0,30	10,4	\$	12	31	öö	0,0009
498	111 7061	1,147	4,129	0,479	1907,40	+0,02	+0,04	13	0	1,15	0,98	12,3	\$	\$	14	0	) O
499	1907 IV	0,512	8,741	0,503	1907,68	-0,24	+0,69	9,5	\$	1,82	1;64	4,0	en	6	25	17	0,220
500	1907 V	0,983	e 1,	0,504	1907,70	+0,08	+0,22	8. 10	0	1,10	0,96	9,8	\$	<b>&gt;10</b>	15	0	0
503	111 8061	0,945	e 1,000 69	0,612	1908,98	-0,31	+0,03	6	-	<b>5</b> ,00	1,65	4,2	ო	ഹ	26	11	0,190
504	I 6061	0,843	2 038	0,650	1909,43	+0.02	+0,11	9,3	0	0,86	0,90	10;9	m	\$	13	•	0
507	1909 IV	1,382	6,481	0,690	1910,05	+0,02	+0,19	6	-	1,39	0,42	0°	-	<b>m</b> :	11,6	0 A	0
		- 0,129	3 906 000	0,702	1910,71	-0,02	+0,23		\$	0,13	1,12	5,0	e	ഹ	17	40	0,500
010	111 0161	1,948	1 056 000	0,757	1910,84	-0,11	+0,33	ແ ເດີຍ ເດີຍ	- •	1,98	1,54	4,0 0,1	2	9 0 A	52	45:	0,042
210		0.604	1 202	0,788	100001	10.0+	63,0+	0,9	-	1,66	0 8 8	5		~ <u>~</u>	io g	- IC	0,003
5	11.1 101	= 00 fo	2	2000	1242061	<b>`</b> ^^	10,01	4 :	-	?, 'n	30,1	+	°	01	14	-	0,000

•

,

٠

۱

120

١

,

S	A.U.	0,260	0,400	0,070	•	0,120	0	0^	>0.0015		)9 = 0(	0,007	> 0,002	0.005	0,104	0,126	0,017	×0,001	>0,003	0,680	0,043	0	0	×0,001	o	0	0	0,110	
c	•	15	30	4	0	5,5	0	<u>^</u> ^		`; ``	2	4:		30:	3,5	12	<b>₩</b> 0:	0,1:	14:	10	9	0	•	5: 	•	0	0		-
$D_{0}$	rad. <b>ð</b>	68	41	44	42	36	34	23	27	;		3,5	48	12	40	13	38	14	44	51	44	15		11	15		<b></b>	; ; ;	-
Ď	•	4	12	6	3,5	4	5 2	<del>ر</del>	4	•		12:	10	3	80	ŝ	10	0,7	4	م	~	63	<u>.</u>	2,5	<u>م</u>		,	~ 1	-
æ		5	<b>m</b>	ŝ	\$	e e	\$	\$	- 0	<b>.</b>		8	\$	\$	2	2	en .	\$	\$2	e	3	3	-	CV .	\$		- (	m ¢	
H10	magn	5,9	5,1	6,5	10,3	6,2	8,0	8,6	6 	:		10,3	8,0	10.5	8,8	8°3	9,4	4,7	6,5	1,1	3,7	9,2	10	8,8	10,7	9	12	5	000
P	A.U.	0,96	1,21	06'0	1,68	0,91	0,97	1,23	0,83	2161		0,54	1,44	09.0	0,59	0,62	0,77	2,82	0,28	3,50	2,70	1,41	1,51	0,72	0,39	0,05	0,41	1,41	40
r	A.U.	0,38	1,99	1,22	1,25	0,88	I,13	1,06	0,98		•	1,55	1.37	0.98	1,53	0,58	1,57	3,79	1,13	4,25	2,57	2,14	0,84	1,70	1,36	1,02	1,40	0,71	SX C
1		\$	\$	-	0	20	0	-		•		-	-	-	-	\$	-	-	-	3	~	0	•	<b></b>	•	•	0	c> -	-
u	magn		10	7,5	12	ō	10	10,8	00 00 20	2	923,6	10,0	8.5	10	7,8	4	9,5	14,0	3,5	10,5	8,5 2	16	9,5	9,5	10	-	11	6°2 1	5
<u>Ai</u>	Y	+0,25	0,00	+0,03	+0,15	+0,28	+0,09	+0,11	-0,09	2162 -	13,6-1 '0	+0,22	+0.09	+0.06	-0,08	+0,05	+0,26	+0,15	+0,33	0,0	+0,38	-0,11	-0,06	+0,07	+0,10	-0,11	+0,19	+0,08	19 M M M
$\Delta t_1$	y /	+:0,05	-0,27	-0,14 -	+0,04	- 0,07	+0,03 -	- 0,02	-0,10	2010	ycle: 19 0 = 10	+ 0,05	- 0.03	- 0.03	-0,16	+0,02	- 0'01	-0,10	+0,12 -	-0,86	0,43] -	-0,41	- 0,08	-0,18	- 0,04	-0,11	+0,18	-0,06	200-
ł.	Y	1911,69	1911,82	1911,87	1911,87	1912,76	1912,81	1912,82	1913,10		15 th solar c	1913,62	1913.70	1913.84	1913,90	1914,35	1914,42	1914,58	1914,59	1914,82	1915,54 +	1915,67	1915,78	1916,08	1916,19	1916,45	1916,71	1917,27	
Ø		0,839	0,850	0,855	0,855	0,929	0,934	0,934	0,958	10060	-	0,002	0,010	0.024	0,030	0,075	0,082	0,098	660'0	0,122	0,194	0,207	0,218	0,248	0,259	0,285	0,311	0,367	
P or e	У	e 1,000 17	2 126	9 246	8,071	56 650	e 1,	13,52	el, 5419			17,77	13 180	6.511	61,73	e 1,	el,	e 1,003 67	e 1,	e 1,000 16	e 1,000 24	5,871	e 1,	6,362	5,434	16,34	e1,	145,3	
đ	A.U.	0,303	0,489	0,788	1,226	0,716	1,107	1,030	0,407	101 (1		1,529	1,356	0.976	1,254	0,543	1,198	3,747	0,713	1,104	1,005	0,972	0,443	1,558	1,340	0,471	0,753	0,190	0.764
comet		VI 1161	1911 V	1911 VI -	111 I 1161	1912 11	1912 111	1912 IV	1913 I	11 0101	35	1913 111	1913 IV	1913 V	1913 VI	. 1914 I /	1914 II	1914 III	1914 IV	1914 V	11 2161	1915 111	1915 IV	1916 I	11 9 I 6 I	1916 III	1916 IV	I 2161	
sc	No	516	517	518	519	522	523	524	525	2	N =	527	528	529	530	531	532	533	534	535	538	539	540	541	542	543	544	545	P P P
63-:	20										 			•			·				<i></i>	**		. ,					-

			/
S	A.U.	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	$\sum w = 93$ $\sum w = 93$ 0,005 0,110 0,016 0,005 0,005 0,018 0,018 0,018 0,018 0,018 0,018 0,018 0,018 0,018 0,003 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,0018 0,00018 0,00018 0,00018 0,00018 0,00018 0,000018 0,00000000000000000000000000000000000
C	•	0 1,5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	× × × × × × × × × × × × × × × × × × ×
$D_0$	rad. <b>ð</b>	24 24 25 25 24 24 24 24 24 24 24 24 24 24 24 24 24	$\begin{array}{c} 22\\ 5\\ 17\\ 7\\ 5\\ 17\\ 7\\ 5\\ 2\\ 2\\ 2\\ 2\\ 3\\ 3\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\$
Q	•	າ ສາມ 3,1 3,1 10 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	۲ ۵ ۵ ۵ 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
a		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
H ₁₀	magn	111,0 10,9 10,5 111,9 111,9 111,9 111,9 111,9 111,9 111,9 111,9 111,9 111,0 111,0 111,0 111,0 111,0 111,0 111,0 10,9 10,9	0 4,0,0,4,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0
P	A.U.	$\begin{array}{c} 0,95\\ 1,06\\ 0,95\\ 0,24\\ 0,24\\ 0,24\\ 0,24\\ 0,29\\ 0,29\\ 0,29\\ 0,29\\ 0,29\\ 0,29\\ 0,26\\ 0,99\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\ 0,96\\$	$\begin{array}{c} 0,46\\ 2,19\\ 0,91\\ 1,76\\ 1,33\\ 3,42\\ 1,33\\ 3,42\\ 1,33\\ 0,62\\ 0,62\\ 0,72\\ 0,72\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\ 1,37\\$
•	A.U.	$\begin{array}{c} 1,94\\ 1,02\\ 1,36\\ 2,07\\ 1,15\\ 1,15\\ 1,14\\ 1,14\\ 1,14\\ 1,14\\ 0,50\\ 2,16\\ 0,89\\ 0,89\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\ 1,20\\$	1,27 1,27 1,27 1,27 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,33 1,33 1,33 1,33 1,33 1,33 1,33 1,33 1,33 1,33 1,33 1,33 1,33 1,33 1,33 1,33 1,33 1,33 1,33 1,33 1,33 1,33 1,33 1,33 1,33 1,33 1,33 1,33 1,33 1,33 1,33 1,33 1,33 1,33 1,33 1,33 1,33 1,33 1,33 1,33 1,33 1,33 1,33 1,33 1,33 1,33 1,33 1,33 1,33 1,33 1,33 1,33 1,33 1,33 1,33 1,33 1,33 1,33 1,33 1,33 1,33 1,33 1,33 1,33 1,33 1,33 1,33 1,33 1,33 1,33 1,33
τ		0-00-00-00-00	0-0
m	magn	14 9 8 8 8 8 8 8 8 8 8 8 9 5 7 7 7 7 7	933,8 16 16 16 10 10 10 10 10 10 10 10 10 10 10 10 10
đī	v	++0,21 -0,019 -0,019 -0,021 -0,021 +0,021 +0,021 +0,021 +0,021 +0,021 +0,021 +0,021 +0,021 +0,021 +0,021 +0,021 +0,021 +0,021 +0,021 +0,021 +0,021 +0,021 +0,021 +0,021 +0,021 +0,021 +0,021 +0,021 +0,021 +0,021 +0,021 +0,021 +0,021 +0,021 +0,021 +0,021 +0,021 +0,021 +0,021 +0,021 +0,021 +0,021 +0,021 +0,021 +0,021 +0,021 +0,021 +0,021 +0,021 +0,021 +0,021 +0,021 +0,021 +0,021 +0,021 +0,021 +0,022 +0,021 +0,021 +0,021 +0,021 +0,021 +0,021 +0,021 +0,021 +0,021 +0,021 +0,021 +0,021 +0,021 +0,021 +0,021 +0,021 +0,021 +0,021 +0,021 +0,021 +0,021 +0,021 +0,021 +0,021 +0,021 +0,021 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +0,022 +	223,61 223,61 223,61 223,6-1 230,08 230,08 231,18 231,18 231,18 231,18 231,18 231,18 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17 231,17
$\Delta l_1$	y	$\begin{array}{c} ++0,16\\0,16\\0,103\\0,01\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03\\0,03$	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $
to	У	$\begin{array}{c} 1918, 74\\ 1919, 79\\ 1919, 79\\ 1919, 79\\ 1919, 79\\ 1920, 01\\ 1920, 04\\ 1920, 94\\ 1920, 34\\ 1921, 35\\ 1921, 35\\ 1921, 35\\ 1921, 32\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\ 1922, 82\\$	16 th solar ( 116 th solar ( 11923,88 11924,68 11925,25 11925,17 11925,68 11925,68 11925,68 11925,68 11925,68 11925,68 11925,68 11925,68 11925,68 11925,68 11925,68 11925,68 11925,68 11925,68 11925,68 11925,68 11925,68 11925,68 11925,68 11925,68 11925,68 11925,68 11925,68 11925,68 11925,68 11925,68 11925,68 11925,68 11925,68 11925,68 11925,68 11925,68 11925,68 11925,68 11925,68 11925,68 11925,68 11925,68 11925,68 11925,68 11925,68 11925,68 11925,68 11925,68 11925,68 11925,68 11925,68 11925,68 11925,68 11925,68 11925,68 11925,68 11925,68 11925,68 11925,68 11925,68 11925,68 11925,68 11925,68 11925,68 11925,68 11925,68 11925,68 11925,68 11925,68 11925,68 11925,68 11925,68 11925,68 11925,68 11925,68 11925,68 11925,68 11925,68 11925,68 11925,68 11925,68 11925,68 11925,68 11925,68 11925,68 11925,68 11925,68 11925,68 11925,68 11925,68 11925,68 11925,68 11925,68 11925,68 11925,68 11925,68 11925,68 11925,75 11925,75 11925,75 11925,75 11925,75 11925,75 11925,75 11925,75 11925,75 11925,75 11925,75 11925,75 11925,75 11925,75 11925,75 11925,75 11925,75 11925,75 11925,75 11925,75 11925,75 11925,75 11925,75 11925,75 11925,75 11925,75 11925,75 11925,75 11925,75 11925,75 11925,75 11925,75 11925,75 11925,75 11925,75 11925,75 11925,75 11925,75 11925,75 11925,75 11925,75 11925,75 11925,75 11925,75 11925,75 11925,75 11925,75 11925,75 11925,75 11925,75 11925,75 11925,75 11925,75 11925,75 11925,75 11925,75 11925,75 11925,75 11925,75 11925,75 11925,75 11955,75 11955,75 11955,75 11955,75 11955,75 11955,75 11955,75 11955,75 11955,75 11955,75 11955,75 11955,75 11955,75 11955,75 11955,75 11955,75 11955,75 11955,75 11955,75 11955,75 11955,75 11955,75 11955,75 11955,75 11955,75 11955,75 11955,75 11955,75 11955,75 11955,75 11955,75 11955,75 11955,75 11955,75 11955,75 11955,75 11955,75 11955,75 11955,75 11955,75 11955,75 11955,75 11955,75 11955,75 11955,75 11955,75 11955,75 11955,75 11955,75 11955,75 11955,75 11955,75 11955,75 11955,75 11955,75 11955,75 11955,75 11955,75 11955,75 11955,75 11955,75 11955,75 11955,75 11955,75 11955,75 11955,75
Θ.		0,514 0,619 0,619 0,619 0,633 0,641 0,634 0,775 0,775 0,775 0,775 0,775 0,775 0,775 0,775 0,775 0,775 0,775 0,775 0,775 0,775 0,775 0,775 0,775 0,775 0,775 0,775 0,775 0,775 0,775 0,775 0,775 0,775 0,775 0,775 0,775 0,775 0,775 0,775 0,775 0,775 0,775 0,775 0,775 0,775 0,775 0,775 0,775 0,775 0,775 0,775 0,775 0,775 0,775 0,775 0,775 0,775 0,775 0,775 0,775 0,775 0,775 0,775 0,775 0,775 0,775 0,775 0,775 0,775 0,775 0,775 0,775 0,775 0,775 0,775 0,775 0,775 0,775 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0,922 0	0,027 0,059 0,165 0,164 0,154 0,154 0,154 0,228 0,228 0,238 0,238 0,233 0,233
P or e	Y	6,707 6,697 6,697 6,906 e 1,000 22 e 1,000 22 e 1,000 22 1 398 1 398 e 1,000 86 1 790	e 1, 26,370 e 1,001 317 7,658 e 1,000 629 16,29 16,29 e 1,000 428 e 1,000 505 e 1,000 514 e 1,000 514
đ	A.U.	$\begin{array}{c} 1,882\\ 1,882\\ 0,4013\\ 0,1013\\ 1,115\\ 0,298\\ 1,116\\ 1,008\\ 1,008\\ 1,008\\ 1,041\\ 1,041\\ 0,249\\ 0,340\\ 0,259\\ 0,924\\ 0,924\end{array}$	0,778 0,778 1,756 0,406 0,406 0,406 1,756 1,756 1,5547 1,566 1,566 1,566 1,333 0,755 0,755
cómet		1918 111 1919 111 1919 111 1919 111 1920 11 1920 11 1921 11 1921 1 1921 1 1922 1 1922 1 1922 1 1922 1 1922 1 1922 1 1923 1	44 1923 III 1924 I 1924 I 1924 I 1925 I 1925 I 1925 I 1925 V 1925 V 1925 V 1925 I 1925 V 1926 I 1926 I 1926 V 1 1926 V 1
sc	No	550 554 555 555 555 555 564 564 564 565 565	N = N = 570 577 577 577 577 587 583 583 588 588 588 588 588 588 588 588

•

S	A.U.	0 0,012 0,030	0 0,001 0,0006 0,0006	>0 0,001 >0 0,0003	0,030 0,066 > 0,066 > 0,0002	0,001 0,056 0,056 0,006	0,031 0,022 0,0014 0,016 >0,0002 0 0,0020	$\Sigma w = 79$
υ	•	$ \begin{array}{c} 0\\ 3,5:\\ 10: \end{array} $	38 - 0	°°°,∺°°,	× 0, 4, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,	30° 20° 20° 20° 20° 20° 20°	× 0, 1, 1, 2, 3, 8	
D,	rad. ð	21 48	23,5 23 6 7	37 37 5,5	18 48 89 99 99 99 99 99 99 99 99 99 99 99 99	61 88 48 48 48 48	22 23 20 21 11 22 23 20 20 20 20 20 20 20 20 20 20 20 20 20	
D	•	3 2,5	60 1 1	1 4 1 0,7 2	$15 \times 10$	3,1 5 10 10 10	18: 37 8 3 2 18:	
з		5 <b>3</b> T	- 69 69 69	• • • • • • •	* က က လ က (	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	なりなななりな	-   -
H10	magn	9,0 1,9 1,9	9,5 10,7 10,0	9,5 9,5 10,5 10,8 10,8 10,8	, 00 00 00 00 7 4 00 00 00 1	10,9 6,6 6,0 9,3 0,3	8,1 3,5 9,2 8,7 10,2 13,2 8,0 8,0	
7	A.U.	$1,53 \\ 1,39 \\ 2,70$	0,36 0,99 0,87	0,92 0,57 0,57 0,57 0,57 0,57 0,57 0,57 0,57	0,88 0,62 0,62	0,39 0,99 1,20 1,75 0,55	0,86 1,99 1,33 0,89 0,59 0,25	
~	A.U.	$1,19\\2,20\\3,68$	1,23 1,77 0,74 1,86	2,23 2,23 2,06 2,06	1,01 1,01 1,22 1,22	1,22 1,93 1,18 0,40 2,72 1,34	1,18 2,53 2,53 1,15 1,01 1,02 2,54	-
4		0	0-8-0			-0-8-0		-
٤	magn	9 12 10	8,0 16 .1 12,5	11,0 11,0 13,5 13,5	10,5 9,0	13,5 13,5 18	8 8 13 13 13 13 13	944,2
٩ī	<u>ہ</u>	+0.02 -0.09 +1.92	+0,10 +0,13 +0,13 +0,22	+0,09 +0,015 +0,15	+0,12 +0,12 +0,13 +0,13	+0.04 +0.34 +0.48 +0.14 +0.152 +0.18	+ 0,09 + 0,01 + 0,11 + 0,01	33,8-1
1t1	y	-0,09	+ 0,05	++0,10	+ 0,00 0,10,00 0,10,00 0,10,00 0,10,00 0,10,00 0,10,00 0,10,00 0,10,00 0,10,00 0,10,00 0,10,00 0,10,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00	) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) )	+0.07 + 0.03 + 0.03 + 0.03 + 0.01 + 0.25	$ycle: 19 = 10^{7}$
to	y	1927,12 1927,22 1927,24	1927,45 1927,47 1927,96 1928,08	1929,84 1929,22 1929,48 1929,49	1930,04 1930,24 1930,29 1930,35	1930,45 1930,66 1931,44 1931,65 1931,65 1932,16	1932,67 1932,72 1932,73 1933,00 1933,10 1933,55 1933,55	$17^{th}$ solar c. $P_{\mathfrak{S}}$
Ð		0,345 0,355 0,357	0,377 0,379 0,427 0,439	0,514 0,551 0,576 0,577	0,656 0,656 0,656	0,692 0,769 0,769 0,789 0,815 0,839	0,889 0,894 0,895 0,922 0,921 0,975 0,975	-
P or e	y	e 1, 8,516 83 060	11,188 6,011 e 1, 7,238	27,91 6,416 6,383 10,90	1/0 300 18 180 486,9 e 1,000 379 e 1,	b,427 e 1, 356,4 e 1,002 065 e 1,002 217 302,0	281,8 e1,001 376 e1, 262,0 e1, 7,486	
ą	A.U.	1,036 1,772 3,684	1,213 4,040 0,176 1,860	0,745 0,745 1,528 2,042	0,672 0,672 0,482 2,079 1,153	1,011 0,408 1,047 0,074 2,331 1,254	1,037 2,314 1,647 1,131 1,131 1,001 1,001 2,495	_
comet		1927 11 1927 111 1927 11V	1927 VI 1927 VI 1928 I 1928 I	1929 II 1929 I 1929 II 1929 III	1930 I 1930 II 1930 IV 1930 IV 1930 V	1930 VI 1930 VI 1931 III 1931 IV 1931 V 1932 I	1932 V 1932 V 1932 VI 1932 V 1933 I 1933 V 1933 V 1933 V 1933 V	34
sc	Ňo	594 595 596	599 601 602	605 606 608 608 608	610 611 612 613 613	614 615 619 620 621 621 621	626 627 628 628 631 632 635 635 635	-  ×

q         P or $e$ $\phi$ A.U.         y         y           A.U.         y         0,081           0,811         900,3         0,131           4,043         e1,001 97         0,281           0,518         887,3         0,281           1,100         1642         0,281           0,621         e1,000 160         0,382           0,518         887,3         0,329           0,513         0,535         0,382           0,521         e1,000 160         0,365           0,5117         1651         0,513           0,5218         10,514         0,553           0,5217         7885         0,553           0,5177         7886         0,553           0,5177         16,640         0,553           0,5248         10,514         0,553           0,5248         10,554         0,554           0,545         10,554         0,553           0,945         e1,         0,564           0,554         10,554         0,553           0,554         10,554         0,554           0,554         10,564         0,554	$t_{0} = \begin{bmatrix} d_{1} \\ d_{1} \end{bmatrix} \begin{bmatrix} d_{1} \\ m \end{bmatrix} \begin{bmatrix} m \\ \tau \end{bmatrix} \begin{bmatrix} \tau \\ d \end{bmatrix} \begin{bmatrix} d \\ H_{10} \end{bmatrix} \begin{bmatrix} w \\ D \end{bmatrix} \begin{bmatrix} D \\ D_{0} \end{bmatrix} \begin{bmatrix} C \\ d \end{bmatrix}$	·     y     y     magn     A.U.     magn     '     rad. 3     °	5 1934,68 +0.74 +0.83 13 0 4.24 3.90 4.4 2 12; 5.5 0	0  1935, 15  -0.13  +0.07  10  1  1.25  1.15  10.0  2  4  19  35:	6 1936,36 -0,72 +0,50 14 1 4,83 3,93 5,4 3 30: 8 30: ·	2 1936,52 -0,15 +0,07 9 2 1,38 1,55 6,9 3 9 41 6	3 1936,54 0,000 +0,18 5,5 2 0,52 1,01 8,4 2 48: 6,8 2	4 1936,75 -0,03 +0,04 12 0 1,50 1,52 13,3 2 36: 2,7 0	5 1936,87 + 0,72 + 0,84 13 0 3,41 2,63 5,5 2 30: 8,9 0	1 1937,14 + 0,02 + 0,12 7 1 0,63 0,86 10,4 3 >6 27 >1 >1 0,63 0,86 10,4 - 3 >6 27 >1 >1 >1 >1 >1 >1 >1 >1 >1 >1 >1 >1 >1	0         133/,4/         -0,3/         -0,0/4         12         1         2,40         1,70         0,0         3         3         2/         201           7         1037.60         0.11         0.00         7         1         1         16         1         2         10         137         00	1 1837,02 - 0,11 0,00 7 1 1,10 1,02 0,1 0 10 137 20 1 1030 10 - 0.05 ± 0.08 8 1 0.81 0.71 0.9 9 2 19 2		$\begin{bmatrix} 1 \\ 1939.32 \\ -0.21 \\ -0.04 \\ 15 \\ 1 \\ 1.91 \\ 1.91 \\ 1.91 \\ 0.91 \\ 1.91 \\ 0.91 \\ 12.2 \\ 2 \\ 30: 2 \\ 2 \\ 1: \\ 2 \\ 1: \\ 2 \\ 1: \\ 2 \\ 1: \\ 2 \\ 1: \\ 2 \\ 1: \\ 2 \\ 1: \\ 2 \\ 1: \\ 2 \\ 1: \\ 2 \\ 1: \\ 2 \\ 2 \\ 2 \\ 1: \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ $	3 1939.60 - 0.03 + 0.21 8.0 1 0.78 0.82 8.5 2 3 18.5 >1	$3 \mid 1939,71 \mid -0,25 \mid +0,03 \mid 17 \mid 0,5 \mid 2,03 \mid 1,93 \mid 11,2 \mid 2 \mid 20: \mid 2,0 \mid (2:) \mid 2,0 \mid 2,0$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2 1939,85 -0,01 +0,08 9,2 0 0,95 0,95 10,7 3 6 22 0	0 = 1940, 62 + 0, 13 + 0, 26 = 9 = 0, 51, 31 - 1, 92 = 10, 9 = 2 = 1 = 10	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9 1941,07 - 0.03 + 0.31 6 2 0.82 0.36 5.9 3 12 61 > 20	2 1941,52 -1,01 -0,27 13 1 5,55 6,44 3,5 1 3 11	5   1941,55   -0,01   +0,12   10   1   1,30   0,30   11,7   3   24:   1,4   3:   3:   3   3   3   3   3   3   3	7  1941,67  -0,27  +0,14  11  1  1,88  0,90  7,1  3  5  29  1,7	$1 \mid 1942, 13 \mid +0,06 \mid +0,08 \mid 13 \mid 0 \mid 1,34 \mid 0,36 \mid 13,2 \mid 2 \mid 20: \mid >1,0 \mid 0 \mid 0$	0  1942, 33  -0.24  +0.01  8  1  1.97  1.33  6.0  3  13  57  42:	0   1942,64   +0,61   +1,15   15   1   3,49   2,51   7,8   2   15:   4,1   2:   3,15   2,1   2.   3,15   2,1   3,15   2,1   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,15   3,			$\frac{4}{1}   1943,10  - 0,10  + 0,10  + 0,10    2   1,01  0,60  4,6  3   29   102   17  $		$\begin{array}{c c c c c c c c c c c c c c c c c c c $
A.U. A.U. A.U. A.U. A.U. A.U. A.U. A.U.		y	1, 0,085	900,3 0,130	1,001 97 0,246	1 642 0,262	887,3 0,263	8,532 0,284	593,3 0,295	1, 000 100 0.321	1,000 100 0,303	00 000 - 0,307 - 1 610	7 080 0 596	10.58 0.531	156.0 0.558	6,949 0,568	5,637 0,572	1, 0.582	1, 0,656	1, 0,0/0	371.8 0.697	18 110 0.699	16,47 0,742	5,538 0,745	1,000 968 0,757	85,52 0,801	1,000 893 0,820	7,886 0,850	1, 0,800	38,96 0,881	2 2/4 U, 694	2 000 0 010 0 010	0,000   U,0/0
	q .	A.U.	3,486	0,811	4,043 e	1,100	0,518	1,462	1,953	0,621	1,/34 6 0 062 1	0,000	0,598	1.762	0,748	1,871	1,749	0,945 e	1,064 6	1,050 6 0.368	0.942	0,790	5,523	1,305	0,875 e	1,287	1,445 e	3,390	4,113   e	1,596	1,304 0.758		1.52/1
	sc	No N	638	640	644	645	646	647	648	650	209	003	000	659	661	662	663	664	899	609	671	673	675	676	677	679	681	684	229	989	190	3	690

. .

s	A.U.	5 <i>w</i> = 118	00	o, 0	00	> 0.002	0	0,011	0,0040	0	0,0036	>0.067	0,0004	0,003	0.0088	°0	0,360	0,0003	0-0053	0,035	0,046	0,039	0,010	0,0012	0.0006	
υ	o		00	0 0	00	° √	0	35:	\$°	0		20.02	3:	ŝ	• <del></del>	0	25	1,4: F	, V	ö	ŝ	30:-	10:	.: ;; ;		
D,	rad.ð		1,4	6 <del>4</del> 0				29	6,8		12	18.5	18,5	୶	14.5		80	90 P	-11.5 W	(27)	27	38	15	16	0#1 0	c
ŋ	•		12:	30: 20:			•.	2,5	1,5		1,1	<u>م</u> ا	ŝ	12:	24:		10	:01	+	-E	00	e	2		20	4
æ				2	~ -	- 02	-	с с с	່ຕ	2	က 'c	2 00	\$	c> c	2 03	-	<b>m</b> (	2 0	2	2	2	3	<b>m</b> (	2 53	00	N
$H_{10}$	magn		11,6	7.4	11,9	9.6	10,8	6,1	0,4 0,00	9,8	5,2	9.5	11,5	8,0	5°1	9,9	6,0	4 4 4 4	200	4.3	8,4	5,3	2,00	ແດ້ ເດີຍ	ົ່	
7	A.U.		0,52	4,40	0,27	0.73	0,62	0,94	2,42	0,7	2,05	0.47	0,47	1,88	4.19	1,06	0,85	00,00	1.84	3,95	0,52	2,19	1,34	1,15	0,00	0071
L	A.U.		1,36	3,60	1,24	0,80	0,83	1,90	1,69	1,84	2,64	1,28	1,42	2,83	4.89	0,75	0,27	9,50	1,55	4.85	0,64	2,23	2,34	1,36	74,0	
12			00	0	00	>	0			0		> –	-		<b>&gt;</b> ,	0	c2 ,		-	•	0	1	~	- 0	N -	
Ľ	magn	954,4	01	14.5	10		2	നെ മ	<b>.</b> .	12	10,0	10.5	11,3	12	14,0	8,0	en ;	9 =	10	13	3,5	10	11	2° 8	0 C	7.
4i	*	14,2-1 2	+0,17	+0.14	+0,05	-0.06	-0,05	+0,57	+0,93	-0,22	+0,70	+0,10	+0,08	+0,61	+2,06	+0,13	+0,08	+0,24	10,44	+0.56	+0,29	+0,79	+0,48	+0,26	- 132.01	1
$dt_1$	y	ycle: 194 9 = 1075	-0,09	-0,12	-0,03	- 0.01	-0,05	-0,19	-0,22	-0,27	-0,26	-0,15	-0,03	0,00	+1,10	-0,01	+0,02	+0,13	80.01	+0,40	+0,05	-0,17	-0,11	+0,09+	10,01	
to -	y	18 th solar $c_{P_{\ell}}$	1944,46	1945,01	1945,30	1945,96	1945,99	1946,28 1046,26	1946,82	1946,91	1947,10	1947,38	1947,41	1947,54	1947.67	1947,88	1947,92	1947,92	1948.13	1948,27	1948,37	1948,37	1948,76	1948,81	1940,02	
0			0,025	0,079	0,108	0,113	0,175	0,204	0,257	0,266	0,284	0,312	0,315	0,327	0,340	0,361	0,365	0,309	0.385	0,399	0,409	0,409.	0,447	0,452	0,450	604
P or e	y		14,87	e 1,001 393	4,555	е I, е I,	e I,	e 1,001 201	e 1,	3,580	el,	3 357	e 1,	e 1,001 045	e 1.	e 1,	e 1,000 032	4 1 /,203	e 1,	el,	el,	e 1,	7,475	e 1,	1/1 000	- 022.5
b	A.U.		1,277	2,400	1,235	0,194	0,006	1,724	1,136	1,754 -	2,407	0,560	1,408	2,828	3,267	0,744	0,110	1,040	1,499	4,709	0,208	2,107	2,311	1,274	U, 13U	100.0
comet		56	1944 III	1945 I V	1945 II	1945 VI	1945 VII	1946 I 1946 I	1946 VI	1946 VII	1947 I	1947 IV	1947 V	1947 VI	1947 VHI	1947 X	1947 XII	134/ A111 1048 I	1948 11	1948 III	1948 IV	1948 V	1948 IX	1948 X	1040401	1 Y 2461
SC	No	N =	694	969 969	697	201	702	703	708	-602	710	713	714	715	117	719	121	221	724	725	726	727	731	732	201	134

<u>ب</u>		•
S	A.U.	$\begin{array}{c} > 0,0001\\ 0,007\\ 0,0007\\ 0,0005\\ 0,0005\\ 0,0065\\ 0,0005\\ 0,0006\\ 0,0008\\ 0,0008\\ 0,0008\\ 0,0008\\ 0,0008\\ 0,0026\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$
c	0	$\begin{array}{c} & \begin{array}{c} & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & $
$D_{0}$	rad. ð	$\begin{array}{c} & & & & & \\ & & & & & & \\ & & & & & & $
q	•	$ \begin{array}{c} & \bigvee \\ & \bigvee \\ & & \bigvee \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ $
з		- 10 20 20 20 20 20 20 20 20 20 20 20 20 20
H10	magn	16 7,55 11,90,0 11,90,0 11,12,80,90,60,1 11,12,80,90,60,1 11,12,80,90,50,0 11,12,80,90,50,0 11,12,80,90,50,0 11,12,80,50,50,50,50,50,50,50,50,50,50,50,50,50
7	A.U.	$\begin{array}{c} 0,16\\ 0,16\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,178\\ 0,17$
•	A.U.	$\begin{array}{c} 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\ 2,10\\$
1		
Ľ	magn	15 11 11 12 12 12 12 12 12 12 12
<u>4</u>	y	$\begin{array}{c} + + 0, 11 \\ - 0, 05 \\ - 0, 07 \\ - 0, 07 \\ - 0, 12 \\ - 0, 12 \\ - 0, 12 \\ - 0, 12 \\ - 0, 12 \\ - 0, 12 \\ - 0, 12 \\ - 0, 12 \\ - 0, 12 \\ - 0, 12 \\ - 0, 12 \\ - 0, 12 \\ - 0, 12 \\ - 0, 12 \\ - 0, 07 \\ - 0, 06 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07 \\ - 0, 07$
$\Delta t_1$	y	$\begin{array}{c} + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\ + & 0 \\$
lo	Y	$\begin{array}{c} 1949,78\\ 1949,82\\ 1949,90\\ 1950,96\\ 1955,06\\ 1951,08\\ 1951,08\\ 1951,08\\ 1951,35\\ 1951,83\\ 1955,13\\ 1955,13\\ 1955,13\\ 1955,10\\ 1955,10\\ 1953,44\\ 1955,10\\ 1953,44\\ 1955,10\\ 1953,44\\ 1955,10\\ 1953,10\\ 1954,05\\ 1954,10\\ 1954,10\\ 1954,10\\ 1954,10\\ 1954,10\\ 1954,10\\ 1954,10\\ 1954,10\\ 1954,10\\ 1954,10\\ 1954,10\\ 1954,10\\ 1954,10\\ 1954,10\\ 1954,10\\ 1954,10\\ 1954,10\\ 1954,10\\ 1954,10\\ 1954,10\\ 1954,10\\ 1954,10\\ 1954,10\\ 1954,10\\ 1954,10\\ 1954,10\\ 1954,10\\ 1954,10\\ 1954,10\\ 1954,10\\ 1954,10\\ 1954,10\\ 1954,10\\ 1954,10\\ 1954,10\\ 1954,10\\ 1954,10\\ 1954,10\\ 1954,10\\ 1954,10\\ 1954,10\\ 1954,10\\ 1954,10\\ 1954,10\\ 1954,10\\ 1954,10\\ 1954,10\\ 1954,10\\ 1954,10\\ 1954,10\\ 1954,10\\ 1954,10\\ 1954,10\\ 1954,10\\ 1954,10\\ 1954,10\\ 1954,10\\ 1954,10\\ 1954,10\\ 1954,10\\ 1954,10\\ 1954,10\\ 1954,10\\ 1954,10\\ 1954,10\\ 1954,10\\ 1954,10\\ 1954,10\\ 1954,10\\ 1954,10\\ 1954,10\\ 1954,10\\ 1954,10\\ 1954,10\\ 1954,10\\ 1954,10\\ 1954,10\\ 1954,10\\ 1954,10\\ 1954,10\\ 1954,10\\ 1954,10\\ 1954,10\\ 1954,10\\ 1954,10\\ 1954,10\\ 1954,10\\ 1954,10\\ 1954,10\\ 1954,10\\ 1954,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,10\\ 1054,$
ø		$\begin{array}{c} 0,547\\ 0,555\\ 0,555\\ 0,557\\ 0,675\\ 0,675\\ 0,675\\ 0,675\\ 0,776\\ 0,775\\ 0,775\\ 0,775\\ 0,775\\ 0,775\\ 0,775\\ 0,775\\ 0,775\\ 0,775\\ 0,906\\ 0,906\\ 0,906\\ 0,906\\ 0,906\\ 0,971\\ 0,971\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,972\\ 0,$
P or e	x	$\begin{array}{c} 2,311\\ e1, & 7,273\\ e1,000651\\ e1,000855\\ e1,003119\\ 3,298\\ 5,493\\ 6,381\\ 5,493\\ 6,381\\ 6,381\\ 6,381\\ 6,381\\ 6,381\\ 6,381\\ 6,510\\ e1, \\ 1445\\ e1, \\ 6974\\ e1, \\ 6974\\ e1, \\ 690\\ e1, \\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1\\ 14,1$
d	A.U.	$\begin{array}{c} 1,028\\ 2,059\\ 2,059\\ 2,553\\ 2,553\\ 1,386\\ 1,386\\ 1,388\\ 1,388\\ 1,599\\ 1,599\\ 1,691\\ 1,599\\ 1,691\\ 1,691\\ 1,691\\ 1,691\\ 1,691\\ 1,691\\ 1,692\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,353\\ 2,$
comet		1949 111 1949 11 1949 11 1950 1 1951 1 1951 11 1951 11 1951 11 1951 11 1952 1 1952 1 1953 11 1953 11 1953 11 1953 11 1953 11 1954 11 1954 11 1954 11
sc	No	738 739 748 755 755 755 755 755 755 755 755 756 766 76

¢

1

•

١

### Appendix

The two parts of "Some Problems of Cometary Physics Investigated" on the Basis of Photometric Data" are a version of the author's thesis to obtain the scientific degree of "Kandidát fyzikálně matematických věd" (Candidate of Sciences in Physics and Mathematics, CSc.). The original version of the thesis, which has been defended in November, 1963, and the heading of which is "An Analysis of Some Problems of Cometary Physics Based on Photometric Data", will not be published. It differs mostly only in details from this version in a few chapters. The only essential difference consists in including two more sections to the chapter dealing with the brightness variations connected with the comet's interior structure in the original version. The sections analyze the secular variations in the absolute brightness of short-period comets on the basis of the conception of desorption of gases from the solid nucleus. The study is published separately in the Bulletin of the Astronomical Institutes of Czechoslovakia Vol. 15 (1964), 1.

### REFERENCES

AHMAD I. I., 1954, ApJ 120, 551; Contr. McDonald Obs. No 244. ALLEN C. W., 1946, Terr. Magn. 51, 1. -, 1948, Terr. Magn. 53, 433. ALLER L. H., 1937, PASP 49, 279. BARABASCHEFF N., SEMEJKIN B., 1931, AN 241, 307. BERMAN L., SMITH C. E., 1932, PASP 44, 329. BEYER M., 1930, AN 238, 332. -, 1932, AN 246, 327. -, 1933, AN 250, 233. -, 1937a, AN 262, 217. -, 1937b, AN 264, 401. -, 1938, AN 265, 37. -, 1942, AN 272, 249. -, 1947, AN 275, 238. -, 1950a, AN 278, 217. -, 1950b, AN 279, 49. -, 1955, AN 282, 145. -, 1958, AN 284, 112. , 1959, AN 284, 241. BLAHA M., HRUŠKA A., ŠVESTKA Z., VANÝSEK V., 1958, Publ. Astr. Inst. Czech. Acad. Sci. No 34, 71. BOBROVNIKOFF N. T., 1927, ApJ 66, 439. -, 1941, Contr. Perkins Obs. No 15, 1. -, 1942, Contr. Perkins Obs. No 16, 1. BOUŠKA J., 1950, BAC 2, 24. BOUŠKA J., ŠVESTKA Z., 1949, BAC 1, 124. CHVOJKOVÁ E., 1952, BAC 3, 21. -, 1956, CCIR Doc 518. DOBROVOLSKY O. V., 1953, Bull. Stalinabad Astr. Obs. No 7, 3. -, 1954, Bull. Stalinabad Astr. Obs. No 11, 3. -, 1956, Bull. Stalinabad Astr. Obs. No 15, 3.

- -, 1957, Bull. Stalinabad Astr. Obs. No 19, 11.
- -, 1958, Bull. komis. kom. met. AS AN UdSSR No 2, 20.
- -, 1961, Nestatsion. protsesy v kometakh i solnechnaya aktivn., AN Tadj. SSR, Trudy VIII, Dushanbe.

ELVEY C. T., SWINGS P., BABCOCK H. W., 1942, ApJ 95, 218.

GADOMSKI J., 1947, Publ. Astr. Obs. Warsaw Univ. 13, Part 1.

GEHRELS T., 1956, ApJ 123, 331.

GEHRELS T., OWINGS D., 1962, ApJ 135, 906.

GEHRELS T., PETERS L. S., 1963, ApJ in preparation.

GLANCY A. E., 1919, ApJ 49, 196.

GNEVYSHEV M. N., OL A. I., 1948, AJ UdSSR 25, 18. GROENEVELD I., KUIPER G. P., 1954a, ApJ 120, 200; Contr. McDonald Obs. No 239.

-, 1954b, ApJ 120, 529; Contr. McDonald Obs. No 242.

HANSSON A., 1921, AN 214, 439.

HELLMANN G., 1909, Veröff. Preuss. Met. Inst. No 207.

HOLETSCHEK J., 1916, Denk. Akad. Wiss. Wien 93, 201. HRUŠKA A., 1957, BAC 8, 10.

HRUŠKA A., VANÝSEK V., 1958, Publ. Astr. Inst. Czech. Acad. Sci. No 41.

HULBURT E. O., 1955, N. R. L. Report 4600, 25.

HURUHATA M., 1940, Harv. Circ. No 442.

JEANS J. H., 1919, Problems of Cosmogony and Stellar Dynamics. Cambridge.

KONOPLEVA V. P., 1954, Trudy Stalinabad Astr. Obs. 4, 33.

KUIPER G. P., FUJITA Y., GEHRELS T., GROENEVELD I., KENT J., VAN BIESBROECK

G., VAN HOUTEN C. J., 1958, ApJ Suppl. 3, 289.

KUIPER G. P., HARRIS D. L., AHMED I. I., 1953, Sky and Telescope 12, 129.

LEVIN B. J., 1943, DAN 38, 82; AJ UdSSR 20, 37.

-, 1947, Uspekhi astr. nauk 3, 195.

-, 1948, AJ UdSSR 25, 246.

LINK F., 1948, Ann. Astrophys. 11, 73.

-, 1952, Symposium Liége, p. 287.

-, 1956, Rozpravy ČSAV, ser. MPV 66, issue 2.

LINK F., VANÝŠEK V., 1947, CR 225, 1284.

MARKOVICH M. Z., 1957, Bull. Stalinabad. Astr. Obs. No 20, 29.

-, 1958, Bull. Inst. Astrophys. AN Tadj. SSR No 25, 3.

-, 1959, Bull. Inst. Astrophys. AN Tadj. SSR No 28, 25.

MINKOWSKI R., 1937, PASP 49, 276.

MURMANN A., 1863, AN 60, 365.

OHMAN Y., 1941, Stockh. Obs. Ann. 13, No 11, 3.

OORT J. H., SCHMIDT M., 1951, BAN 11, 259.

ORLOV S. V., 1945, Golova komety i klassifikacya kometnykh form. Isd. Sovietskava nauka, Moscow.

RAJCHL J., 1958, Publ. Astr. Inst. Czech. Acad. Sci. No 34, 83.

RICHTER N., 1937, AN 263, 251. SCHMIDT M., 1951, BAN 11, 253.

SEKANINA Z., 1962, Publ. Astr. Inst. Charles Univ. Prague Ser. II, No. 35.

SHATZEL A. V., 1954, ApJ 120, 547; Contr. McDonald Obs. No 243.

SLIPHER E. C. et al., 1951, The Project for the Study of Planetary Atmospheres, Report No 9.

SLIPHER V. M., 1916, Lowell Obs. Bull. 2, 151.

STEPHENSON B., 1951, ApJ 114, 500.

STRÖMGREN E., 1937a, Circ. UAI No 659 (reported by S. K. Vsekhsviatsky).

-, 1937b, Circ. UAI No 661 (reported by J. Dufay).

-, 1937c, Circ. UAI No 679 (reported by W. Krat and S. Nekrasova).

SWINGS P., 1941, Lick Obs. Bull. 19, 131.

SWINGS P., HASER L., 1956, Atlas of Representative Cometary Spectra. Liege. THERNOE K. A., 1947, Circ. UAI No 1103 (reported by Dr Shane).

TIKHOV G., 1932, Poulkovo Obs. Circ. No 2, 14.

VAN HOUTEN-GROENEVELD I., VAN HOUTEN C. J., 1958, ApJ 127, 253; Contr. McDonald Obs. No 279.

VANÝSEK V., 1952, Contr. Astr. Inst. Masaryk Univ. Brno 1, No 9.

-, 1958, Publ. Astr. Inst. Czech. Acad. Sci. No 37.

-, 1960, private communication.

VANÝSEK V., GRYGAR J., SEKANINA Z., 1959, BAC 10, 116.

VANÝSEK V., HŘEBÍK F., 1954, BAC 5, 65.

## Table 107

## The asymmetry and photometric characteristics of eleven comets

## Method of expanding in a series

Comet	ło	per.	N	int r	r	1—I ₀	B ₀	B ₁	B _s	B ₃	L	H ₀	AII	.1T	Nef.
	Ů. <b>Т</b> .			A. U.	<b>A</b> . U.	đ	m m				cal/Mol	m	m	d	
1941 VIII	1941 Sept. 3.20	B	22	0.93—1.94	1.196	+45.7	7.60±0.02	$+1.928\pm0.055$	+0.074±0.072	$-0.322 \pm 0.106$	3770	6.49	0.62	3.9	BEYER, 1942
1956 IV	1956 June 19.18	A	35 `	1.19-1.94	1.484	60.3	7.36±0.03	-2.289±0.052	+0.291±0.063	+0.585±0.075	<b>693</b> 0	4.64	0.81	19.2	BEYER, 1959

# Method of symmetric positions

Comet	lg	$N_A(r)$	N _B (r)	int r,	int r _e	r	t-t _o	n_(r)	H _{AA} (r)	n _s (r)	H _{AB} (r)	L	H ₀	<b>∆</b> 11	ΔT	Ref.
	С. <b>Т</b> .			A. U.	A. U.	A. U.	d		mm		m m	cal/Mol	m	m	d	
1858 VI	1858 Sept. 30.46	4n	5n	0.61 - 0.81	0.58-0.85	0.686	<b>∓ 16.5</b>	3.89±0.17	1.91±0.02	4.54±0.12	2.49±0.02	6510	3.61	0.97	0.1	BOBROVNIKOFF, 1942
1915 (1	1915 July 17.66	5n	6n	1.38-2.46	1.43-2.60	2.051	<b>∓113.</b> 8	2.40±0.22	7.24±0.06	2.98±0.36	8.52±0.08	2400	5.08	2.08	6.9	BOBROVNIKOFF, 1942
1937 IV	1937 June 20.08	7n	5n	1.74-2.12	1.74-2.02	1.881	<b>∓ 56.6</b>	2.53±0.31	8.25±0.03	3.41±0.21	8.78±0.01	2800	6.06	1.37	8.9	BOBROVNIKOFF, 1942
1956 IV	1956 June 19.18	19	13	1.30	1.41-1.87	1.555	<b>∓ 68.3</b>	5.41±0.41	•6.85±0.04	5.85±0.15	7.70±0.02	6110	4.10	1.15	21.3	BEYER, 1959

# Method of four points

IKOFF, 1942
1KOFF, 1942
IKOFF, 1942
IKOFF, 1942
)42

# Generalized method of photometric exponent

Comet	l _e	per.	N(r)	N(q)	$N(t_m)$	int r	r	t-i	n (r)	H _d (r)	H _d (q)	$t_m - t_0$	L	Hq	∆H	∆T	Ref.
	U. T.					A. U.	A. U.	d		m m	m m.	d d	cal/Mol	m	m	d	
1862 111	1862 Aug. 23.41	B	5n	5n	5n	0.96-1.02	1.013	+18.1	14.66±1.26	5.91±0.05	4.80±0.01	$-2.8 \pm 0.5$	18 100	4.53	1.66	2.2	BOBROVNIKOFF, 1942
1930 111	1930 March 28.79	B	lln	2n	3n	0.50-1.19	0.780	+26,1	4.93 <u>+</u> 0.04	7.29±0.01	5.37±0.02	+5.7±0.2	6 630	5.84	4.64	12.3	BOBROVNIKOFF, 1942
1941 IV	1941 Jan. 27.65	B	7n	6n	6n	0.83-1.25	0.989	+31.4	3.20±0.11	5.87±0.02	5.28±0.01	+8.0±0.3	5 210	5.07	1.84	15.7	BEYER, 1942

n an ann an Anna an Ann Anna an Anna an

VANYSEK V., TREMKQ J., 1958, Publ. Astr. Inst. Czech. Acad. Sci. No 34, 59. VINTER HANSEN J. M., 1947a, Circ. UAI No 1115 (reported by J. Gadomski). , 1947b, Circ. UAI No 1118 (reported by J. Gadomski). VSEKHSVIATSKY S. K., 1956, AJ UdSSR 33, 516.

-, 1958, Fizicheskye kharakteristiki komet. GIFML, Moscow.

WALDMEIER M., 1955, Ergebnisse und Probleme der Sonnenforschung. Leipzig. WALTER K., 1937, AN 263, 376.

WATSON F., 1937, Harv. Circ. No 419.

WENZEL W., 1956, Sterne 32, 246.

WHIPPLE F. L., 1950, ApJ 111, 375. WOOD H. J., KUIPER G. P., 1962, ApJ to be published.

### NĚKTERÉ PROBLÉMY FYZIKY KOMET ŘEŠENÉ NA PODKLADĚ FOTOMETRICKÝCH ÚDAJŮ

### Č'Á'ST DRUHÁ

#### Z. SEKANINA

#### Souhrn

Tato práce je pokračováním analýzy řady otázek kometární fyziky, jejíž první část byla publikována v tomto časopise v minulém roce (Šekanina, 1962). Nyní věnuje autor nejvíce místa vlivu změn sluneční činnosti na změny v jasu komet. Tato otázka je zkoumána jednak na obsáhlém materiálu 563 komet, jednak na pozorováních komety Encke v jejích 44 návratech k Slunci a-jednak na fluktuacích pozorovaných jasností dvou souborů komet (Beyerova metoda). Dále jsou v práci zkoumány krátkodobé fluktuace v barevném indexu hlavy a chvostu komety Arend— Rolandovy a velmi častý jev – asymetrie světelné křivky komet (po redukci na jednotkovou geocentrickou vzdálenost) vůči perihelu.

Pokud to nevede k příliš složitým a na pozorovací material těžko aplikovatelným vzorcům, jsou tyto problémy řešeny na podkladě pracho-plynového modelu komety. Jinak je použito zjednodušení ve formě plynového modelu, z jehož platnosti ovšem máme právo usuzovat i na aplikabilitu modelu pracho-plynového. Poslední kapitola obsahuje katalog fyzikálních charakteristik 563 komet z let 1610–1954, jež byly objeveny nezávisle na efemeridě. Může sloužit jako materiál pro řadu statistických úvah.

### НЕКОТОРЫЕ ПРОБЛЕМЫ КОМЕТНОЙ ФИЗИКИ РАССМАТРИВАЕМЫЕ НА ОСНОВАНИИ ФОТОМЕТРИЧЕСКИХ ДАННЫХ

#### Часть вторая

### 3. Секанина

#### Резюме

Настоящая работа является продолжением анализа ряда вопросов кометной физики, первая часть которого была опубликована в этом журнале на прошлом году (Секанина, 1962). Здесь наиболее места посвящено влиянию изменений солнечной активности на изменения блеска комет. Этот вопрос исследуется отчасти на многочисленном статистическом материале 563 комет, отчасти на наблюденнях кометы Энке в 44 ее возвращениях к Солнцу, и отчасти на флюктуациях наблюдаемых яркостей двух коллекций комет (метод Бейера). Далее в работе исследованы коротковременные изменения показателя цвета в голове и хвосте кометы Аренда-Ролана, и очень частое явление — асимметрия кривой блеска комет (приведенного к единице геоцентрического расстояния) по отношению к перигелию.

Пока не приходится к очень сложным, к наблюдательному материалу плохо применительным формулам, эти проблемы решаются на основании пыле-газовой модели кометы. В противном случае используется упрощение в виде газовой модели, по действию которой мы имеем право судить даже на применимость пыле-газовой модели. Последняя глава содержит каталог физических характеристик 563 комет периода 1610—1954, которые были открыты независимо от эфемериды. Каталог может служить материалом для ряда статистических исследований.