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A Reduction Method 
for Approximate Solving Large Elliptic Systems 

I. MAREK 

Faculty of Mathematics and Physics , Charles Universi ty, Prague 

A method is presented for reducing a linear elliptic system with AT-component solution-vector 
to solving an approximate system consisting of 2n, n < N, unknowns. Some well known pro
cedures are obtained as particular cases, e.g. coarse mesh methods and various averaging procedures 
appearing in reactor physics calculations are included into the scheme shown. 

I. Introduction. Formulation of the Problem 

Let H)k) and K)k), j = 1, ..., N, k = 1,2, be complex Hilbert spaces such 
that #<•*> C K)k) and the embedding be compact. Let #<*>=#<*> x ... X #$> 
and KM = K[k) x ... X MT&. The inner product on H\k) and K^k) is denoted by 

N 

(ujy Vj)Hj(k) and (UJ, Vj)Kj(k) respectively; as usual (C7, V)H(k) = 2 (uh Vj)Hj(k) 
N 

and (C7, V)K(k) = 2 (uh Vj)Kj(k), C7 = (m, ...,UN)T, V = (vu . •> vN)T- Further 
y - i 

Mine*) = (uj,Uj)H(k) and ||C7||H<*) = (C7, C7)H(*) etc. 
Let B and C be bilinear forms on #<!> X #<2> and K<M X -K"<2> respectively 

and let B and C have the following properties 

(i) |B(C7,JOI^ci||C7||H(i)||F||H(a), 

(ii) inf sup \B(U, V)\ > C2 > 0 , 
UEHM VEHW 

| |U | |H(i) = l | | V | | H ( 2 ) ^ 1 

(iii) sup \B(U, V)\>0 V V e#<2>, V 4- 0 , 
UeHw 

(iv) \C(U,V)\^c3\\U\\Ka)\\V\\K(2), 

where a, C2, C3 are positive constants. 

We consider the following eigenvalue problem. To find a parameter 2. and 
a nonzero element C7 e #(1> such that 

B(U, V) = ^- C(C7, V) V V G#<2>. (1) 
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Remark. In applications to reactor physics problems which we are mainly 
concerned with the required parameter X is maximal in the modulus in the set 
of all eigenvalues of (1). We thus restrict ourselves to finding the eigenvectors 
corresponding to the eigenvalue with maximum modulus. 

Since the dimension N of the forms B and C is too large, the system of algebraic 
equations resulting from (1) by discretization contains a large number of unknowns, 
and this number exceeds the capacity of computer memory as a rule. This is the 
case if an essentially threedimensional problem is solved. Thus, we are concerned 
with the problem of reducing the number N in a way to obtain an effective computing 
scheme for determining the approximate eigenelements. 

We propose a method which can be considered as a two step finite element 
method. It is based on an idea of KANTOROVICH and KRYLOV [4] and some ideas 
typical for the finite element method. The resulting special averaging procedure 
implied by the method to the diffusion coefficients is suitable namely if an already 
homogenized problem [2] is solved. In this case the averaging procedure is easily 
to be performed. Some reactor criticality calculation methods which are special 
cases of our method were described in [5]. 

2. Group Reducing Method 

n 

Let n < N and pi, ...,pn be positive integers such that N = 2 Pi- L e t Pi 

be an orthogonal projection of the Euclidean space RN onto RN CI RN, j = \, ..., n, 
n 

and let ^ Pj = IN, where IN is the identity operator on RN, dim RN = pj. We let 
y - i pj 

U<n eRN, UtN)eRN 

Pk Pk 

Uh = {upk.Pk t/W} £u}t u£\ k = 1, ..., n, (2) 
where Upk is an element of a Hilbert space W& ; here pk characterizes the set of 

independent components of PkRN; we write 2 t o d e n o t e t n e fact t n a t t n e 

JEpk 

summation is to be taken over linearly independent vectors belonging to PkRN-
According to (2) we can write U approximately as 

ff - V r UiN) u* e Wil) U{N) e RN 

U - 2 , uPk Ufo > uPk € Wik , u*k 6 i c ^ 

£.= i 

V=IvkVg\ %eH£, V^eRg. (3) 
/ 5 = 1 

We require U e f f w and this implies the existence of a projection 7t£k of WX) 

onto Ipco such that 0 = n$k U, n}k U= u}kUJ;N); similarly for V e H<2K 
Pk Pk 

98 



Let us consider problem (1) in the subspaces generated by the elements of the 
type (3). We let jfr<*> = W& X ... X W^, k = 1,2. We then solve the system 

B(U, V) = -^ C(U, V) V V e Jf<2>. (4) 

Let us assume that the vectors U^N) and V^, k = 1, ..., n> are known. To find 
Pk Pk 

the conditions which must be satisfied by still unknown Upk we substitute (3) 
into (4); we obtain 

n n 

2 Btouj?, ** vf)=42c^ W' v»v^ • (5) 

k=\ k=l 

Let fat and yw be bilinear forms on W^ x W® and bjk and Cj* bilinear 

forms on RN
k x RN such that the following holds 

(v) " BfaUg*, vh Vg) = Mupk, vh) bjk(Ug\ Vg>), 

C(upkU^, v$,vF>) = yik(M$„ v$ c*Ug>, V£°). 

It follows from (5) that Upk must satisfy 
n n 

/ hk fak (iipk, i>p,) = - j 2^ C}*y]k ("**' *$ V ip> e WPI ® 
*=1 *=1 

where 
/ UW v±N) \ I U^ VlN) \ 

bjk=blk\liuh\'if^/' Cik = c"vlii^iif'~W~) (7) 

and 

fiA = nielli' ^ = 1110^ 
and where |||L^||| is an appropriate norm on R^. The importance of introducing 
the norms ||| . |l| will be elucidated below. 

If the vectors Upk and Vpk in (3) are known then U{£N) must satisfy 
n n 

where 

p,k = ̂ k\w*m' TIMP)' 

and 

or= lll«*lll« wg°> ^ f = IIMI<2> c • 
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Let us note that the systems (6) and (8) have the same spectra. 
An appropriate choice of the norms |||£7jf |̂|| is as follows 

lliug°lll--.jy*(ur»«). 
lEPk 

where y)jc is a norm on R~k and U^\ denotes the Z-th component of U^ in a sui

table basis of R^\ We then have that 
Pk 

»P* = 2 V*(£© UA and ug> = |||^|||0) U$? . 

It follows that 
r V 

,, ̂  rr^ . _ £ - pkij — upk r/- • 

«*u,w_«„ 2 IlloSir IH*|H(1) 

/Gift 

and we see that we obtained a formula for they-th component of the required solution 
expressed in terms of averages over the groups pi, ..., pn respectively. 

Remark. If we choose vfi V~ * in (3) in a special way we obtain by (7) and (9) 
some averaging procedures which are well known in the reactor physics literature, e.g. 
(a) Vpj-V? = u*£ (U?)*, where the asterisk means the Hermite conjugation, 
gives Marchouk's method [6, chapter 16]; 

(b) the choice Vp3 Vj = Up} U^ is identical with the Galerkin type procedure; 

(c) if vpj- V^ = E^\ where vfa = 1 and for the components et of E^ we 
have that et = 1 if t e pj and et = 0 if t $ pj, we obtain the so called neutron 
rebalancing method [3]. 

Concerning the convergence and error estimates, the method described above 
can easily be included formally into the general framework of the finite element 
method; in particular, all of the theorems of Sextion 10.5 in [1] apply. 

By proceedings as described above we reduce the initial problem with N com
ponent vector-solution to the systems (6) and (8) both determining w-component 
vectors. 

As a rule the system (8) is algebraic and (6) differential. Hence, the finite 
element method can be used to get approximate solutions. This is the secondary 
use of the finite element method in solving problem (1). 

3. Determining the Self-consistent System 

We see that the coefficients in (6) depend nonlinearly on the solution of (8) 
and vice versa. A new problem arizes, how to solve this nonlinear system. We propose 
a simple iterative procedure which is very effective in concrete calculations. 
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We let 

^ W M*% > *Ä> = -Jm 2 *' ***%'è$l) V *Ä Є W» m 

k=l k=\ 

and 

î /чr+» мoГ ( , в + 1 ) ' O = 
n 

Ä=I 

where 

and 

bT = hKWf^, \W), #> = c,*(ofw"°, rf>), 

n 

If(0) = 2 U^0) being an in a sense arbitrary element. 
k=i pk 

Besides the already mentioned assumptions concerning B and C let us assume 
further that 
(vi) The eigenspace 9? of (6) and the eigenspace Wl of (8) corresponding to the 
eigenvalue with maximal modulus are one-dimensional for every u e V e / / ( 1 ) and 
U(N) e *jrw) CZ J?<-V), where iT and TTW are suitable convex sets. 

It follows from the assumptions (i) — (vi) that the iteration process (10) — (11) 
is convergent fig) -> w°v Ul*Mm) -> u£°'°, v<™> ->1., ^(») - > I and it holds 

y hkfaktu^ ©5) = - y \ cjkyjk(u°£k, v&) V z>£ 6 W|° 

* = 1 / 5 = 1 

and 
71 

2 Ã*ЫoГ°> T ) =т ӮюtOg*. Ф v í>f є я ? , 
* = 1 A - - 1 

where 

*.=won?*, *f)> « i * = ^ r ^ C ) 
and 

A* = A*(«^3 »*/)> W* = ?:-*(«&> $£) . 
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