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(Inductive and Projective Modifications 
of Closurations of Presheaves) 

J. PECHANEC-DRAHOS 
Department of Mathematics, Charles University, Prague*) 

Received 7 June 1978 

Under suitable conditions the stalks of the covering space of a presheaf Sř = { X ^ ^ l X\ 
over a topological space X are isomorphic. A topology of uniform convergence can be then 
defined in any set Г^ of all continuous sections in the covering space of Sř over an open set 
U с X by which the natural maps pv, sending any a e Xv onto its corresponding section áeTv 

are continuous. The conditions put on the presheaf are of inductive character. From this reason 
inductive closurations of presheaves are studied and also the duál notion, projective closurations 
are dealt with and shown to behave dually. 

При одном индуктивном условии фибры накрывающего пространства предпучка изо
морфны. Индуктивные и проективные модификации предггучков. — При удобных усло
виях фибры накрывающего пространства предпучка Sř = {X^o^l X} над топологи
ческим пространством изоморфны. Тогда может быть введена топология равномерной 
сходимости в каждом множестве Tv всех непрерывных резов в накрытии от Sř над произволь
ным открытым множеством, при которой естественные отображения рv, которые отображают 
всякое а е Xv на его кореспондирующий рез а е Tv, непрерывны. Требуемые условия для 
предпучка имеют индуктивный характер. Поэтому индуктивные топологизации предпучков 
вместе с дуальным понятием проективных топологизации здесь изучены и показано что они 
ведут себе дуально. 

Za vhodných podmínek jsou fibry nakrytí předsvazku Sř = { ^ | е и к | X} nad topologickým 
prostorem X izomorfní. V každé množině Г^ všech spojitých řezů v nakrytí předsvazku Sř nad 
otevřenou množinou U se pak dá zavést topologie stejnoměrné konvergence, při které jsou při
rozená zobrazení pv zobrazující každé a e Xv na odpovídající řez á eTv spojitá. Na svazku 
požadované podmínky jsou induktivní povahy. Z této příčiny se studují induktivní uzávěrování 
předsvazku a je též rozebrán duální pojem projektivního uzávěrování a ukázáno, že se chová, 
duálně. 

Introduction 

When studying in [2] different topologies in the set Av of those continuous 
sections in the covering space of a presheaf Sř = {-Х^е^ X} that naturally cor-

*) 186 00 Praha 8, Sokolovská 83, Czechoslovakia. 
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respond to the elements of Xv, such as that of pointwise or uniform convergence, we 
can see that it is difficult to find a nice way of defining the topology of uniform 
convergence on "big" sets that consist of more than finitely many points, which is 
just the case of topology of uniform convergence. There would be a way if we knew 
how to bring over neighborhoods from one stalk to another; then we would know 
which neighborhoods in different stalks are of the same size. Unfortunately we have 
not always such a bringover handy to be used. It is shown in this paper that if a con
dition of inductivity is fulfilled then the stalks are isomorphic, which is just what 
we need. It is shown then that the topology of uniform convergence can be defined 
in Av in a natural way and that the natural map pv : Xv -> Av is continuous in this 
topology, where Pu(a) = a for a e Xv, and d(x) is the germ of a over x. 

In [3] we have dealt with the question of when there is a closure t in the covering 
space of Sf such that all the natural maps pv be homeomorphisms in the topology 
of pointwise convergence in Av, and such that Av be just the set of all continuous 
sections over U. It is shown there [3, 4.3.6, 4.3.7, 4.3.9] that if the presheaf fulfils 
again a condition of inductivity then there is even a topology with the mentioned 
properties. From this reason inductivity of closure collections is studied in the second 
section. It is shown that there are some inductive modifications from below to any 
closuration of a presheaf, and some conditions for the inductivity of the given 
closuration follow. A spacial case, when the "choice" of the "stars" of a set consists 
of all open sets containing it, was solved by Z. Frolik in [1]. However, in [3] and in 
the first section of this paper we need some more general choices, which is the reason 
of why we study the problem in a more general setting in the second section. 

It turns out in [3] that some conditions of projectivity are needful for studying 
the topology of uniform convergence on compact sets and also that of uniform con
vergence. Also the possibility likewise to treat projectivity as we have done it with 
inductivity leads us to showing that a dual machinery gives us the corresponding 
dual results for projective modifications of closurations. This is done in the last 
section. Projective modifications for "choices" of covers consisting of all these were 
also fully solved by Z. Frolik in [1]. Also in [4] some special cases of the fourth 
section were dealt with. 

1. Preparatory Notions 

The set of all open subsets of a topological space X is denoted by &(X). 

1.1. Let 3F = \Sv\duv\ X} be a presheaf of sets over X. A closuration of 3F is 
a family \i = {TV | U e &(X)} (shortly \i = {TV}) such that for every U e @(X) TV 

is a closure in Sv; fi is called compatible if every QUV : (Sv, TV) -> (Sv, TV) is con
tinuous. 

1.2. Let t, t' be two closures in a set Y. If t is finer than t', we write t = t'. 
If fi = {TU}, \JL = {T'V} are two closurations of J* we write \i = \\! if TV = T'V for every 
U e &(X). Let Jt be a nonempty set of closures in Y. The finest (coarsest) closure in Y 
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coarser (finer) than each t e Ji is denoted by Hni {t \ t e Ji}jhm {t\te M} — 
(shortly Hm Jt\\im Ji). Clearly lim Ji = t = Hm Ji for each t e Ji. 

1.3. A category is called inductive if every presheaf from it has the inductive 
limit there. 

1.4. If Sf = {Sa\Qap\ <A = >} is a presheaf, B c A, we set SfB = {Sy\Qy5\ {B = >}. 

1.5. Let Sf = {SV\QUV\ X} be a presheaf over a topological space X from an 
inductive category. If xeX, we set 0(x) = {U <=. X \ U open, xeU}, Sfx = 
= {Su\Quv\ <0(X) =}, where for U, Ve 0(x) we have U = V iff Vc U; then 
^xH^Uxl ^ e 0(x)}> ( n e r e £U* : Sc; -• Jjc = lim ̂  are the natural maps) is called 
stalk over x. 

2. Homeomorphness of Stalks of a Presheaf 

2.1. Lemma. Let Sf = {Ka|(2a/j| {A = >} be a presheaf from an inductive category, 
such that (l): There is a confinal set £ c A such that for every b e B there is a right-
directed set S(b) c A with 5(b) c 5(b') if b = b'. 

(2): For every ae A there is b = s(a) e B such that Hm ^ s ( /y) = {Qay(Xa) | 
| {<?cft, | c e 5(b')}> for all b' eB,b' = b. 

Then D = u{5(b) | b e B} is right-directed and if we set lim Sf = 
= <I | {£a | a e A}>, lim «^D = <K | {sd | d e D}}, then there is an isomorphism f 
between K and I such that fsd = £d for all d e D. 

Proof. For beB let lirn «^5(ft) = <Zb | {fcb | c e S(b)}>. If b = b' then, as 
5(b) c S(b'), there is a unique map gbb> : Zb -> Zb> such that fcb, = gbyfcb for all 
ceS(b). If b, V, V'eB, b = b' = b", ceS(b) then gb.b.,gbb.fcb = gb>b„fcb> = fcb„. 
As gbb„ : Zb -> Zb„ is the unique map with gbb»fcb = fcb„ for all c e 5(b), we have 
Gb'b-Qbb' = Qbb" n e n e e 3~ = {Zb\gbb>\ (B = }} is a presheaf for £ is right directed 
being confinal in A. 

By virtue of (2) we may assume that for each b, b' e B, c e 5(b), b ^ b' we have 
A = £c&> Zfc <-= Xfc and gbb> = Qbb.\Zb. Indeed, if a e A, b = s(a) e B, B' = 
= {b' e B | V = b} then by (2), B' fulfils (1), (2) of our lemma, and Zb> = Qab>(Xa) cz 
c= Xb,, fcb, = Qcb, for all b' e B', ce S(b'). Further, as fcb, = Qcb, for all c e S(b') 
and as Qb»b,Qcb, = Qcb» for all c e S(b'), the uniqueness of gb>b>> yields gb,v> = Qb,b,.\Zb„ 

Now we shall show that Hm ZT = <T| {kb \ b e B}> is isomorphic lim Sf. 
Firstly, for each b e B, {£c : Xc -> 11 c e 5(b)} is a fan between S?s(b) and I so there 
is a unique hb : Zb ^ I with (*): hbfcb = £c for all c e 5(b) (since fcb = Qcb, ̂ bQcb = £c 

for all c e 5(b), we have hb = £>b\Zb), secondly, for any b, b' e B, b = V, c e 5(b) 
we have hb,gbb,fcb = hb,fcb, = £c wherefore the uniqueness of hb possessing the pro
perty (*) yields that hb,gbb> = hb; thirdly, by (2), for a e A there is b = a, b e B with 
%b = Qab(Xa), whence we have a map kbQab : Xa -> T. Recall that for b, b' e B, 
b = b', we have gbb = Qbb'\Zb. Thus if b' = a,b' e B, then there is b" e B, b" = b, b', 
and we have kbQab = kb„gbb„Qab = kb.gb,b„gbb,Qab = kb„gb,b„Qbb,Qab = kb,Qab, so we 
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may set (**): \a = kbQab because it does not depend on b over which we carry it. 
If a, a' e A, a = a', then there is b e B, b = a , a', a n d la>Qaa> = kbQa>bQaa. = kbQab = 
= la. Altogether we have hb : Zb -> / with hb>gbb, = hb for all b b' e B, b = b', and 
la : Xa -> Twith la,Qaa, = \a for all a, a' e A, a = a'. Thus there is a unique i : I -> T 
with /a = i(^a for all a e A and j : T -> I with hb = jkft for all b e B. We shall show 
that ji is identity on I. As identity on I is the unique map / : I -> I posessing the pro
perty f£a = £a for all a e A, it is enough to show that ji^a = £fl for all a e A. We 
have ji£a = j \ a = jk^afe = h^aft and as hb = ^b\Zb, we get hbQab = £„Ofl6 = £a as 
desired. Likewise ij is identity on T. Indeed, if b e B, we have ijkb = ihb = i(<;blzb) = 
= \b\Zb. By (**), if b' e B is large enough, we have \b\Zb = kb,(Qbb,\Zb) = kb which, 
by the same argument as above, says that ij is identity on T. Thus Tis isomorphic to I. 

Now we shall show that Hm y is isomorphic to lim SfD = <K | {sd | d e £>>. 
Firstly, since for every b e B the family {sd : Xd -> K | d e S(b)} is a fan between 
£fS{b) a n d K, there is a unique tb : Zb -> K with td/cb = sc for all c e S(b). If b, b' e B, 
b = b', then tb,gbb,fcb = tb,fcb, = sc for any c e S(b) and, as i*fr is the only map which 
being composed with any fcb,, c e S(b) yields sc>, we get tb = tb,gbb,. On the other 
hand, for d e D we have the maps \d : Xd -> T, with /d,, 0ad, = \d, whenever d, d' e D, 
d = d', found above. Thus there are p : K -> T, q : T-> K with psd = /d, qkb = r6 

for all d e D, b e B. If d e D then d e S(b) for a b e B, and we have qpsd = q/d = 
= qkbQdb = tbQdb = tbfdb = sd showing that qp is identity on K. To show that pq 
is identity on T, it is enough to prove that pqkb = kb for any b e B. We have pqkb = 
= ptb, and for all c e 5(b) we have ptbfcb = psc = lc = kbQcb = kbfcb since Qcb = fcb 

when c e S(b). This shows that ptb = kb as desired. 

Finaly, we set / = jp : K -> I. If d e D then there is b e B with d e S(b), and 
by (*), / s a = j>5d = j \ d = jkbQdb = hbfdb = £d. The proof is thereby finished. 

2.2. Notation. Let X be a connected topological space, M,N c X, let £#(M, N) 
be the set of all filters J* consisting of connected open sets such that M u N c B 
when 5 e l If al9 @2

 e ^ ( M . -V), let ^x = ^ 2 if ^ 2 majorizes ^ x (meaning that 
for any Bx e $x there is B2 e $2 with B2 c: Bj). The Maximality Principle readily 
yiels for any & e 0t(M, N) a maximal $) e 0t(M, N) with @ = 3). The maximal 
filters in 0t(M, N) shall be called branches between M and N. The set of all these is 
denoted by @(M, N); if N is a point {x}, we shortly write 3&(M, x). If also M = {y}, 
we write S»(y, x). As ^(M, N) = St(N, M), we have ^ (M, N) = &(N, M). If 
M a L,@e @(M, N), we set S(L) = {B e @ \ L c= B}. Every @(L) can be completed 
t o a ^ e ^(L, N). Again we wirte @(x) instead of 8({x}). 

2.3. Lemma. Let Sf = {Xv, QUV \X} be a presheaf from an inductive category, 
let X be connected and locally connected. 

For any open connected U, V cz X with F c [ / , any x, y e X with xeV, and 
any $ e @l(x, y) let us have 

lim sraiV) = <QUV(XV) | {Qwv | We ®(v)}y. (*) 
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Then for every x, y e X there is an isomorphism hxy :IX -• Iy between the stalks 
<IX | {£Ux | U G 0(x)}} = \M^x and <J, | {{Uy \ U e 0(y)}> = M &„ such that 
for any open U a X with x, y e U we have hxy£Ux = £Uy. 

Proof. We use lemma 2.1 to Sfx with the set of all connected open nbds of x as B. 
If @ e ®(x, y), Ve ®, we set S(V) = 0[V); then the condition (1) of 2.2 is fulfilled, 
and also the condition (2) of 2.1 because of (*). Let D = U{@(V) \ Ve &}, Hrri ,9^ = 
= <K | {sv | Ve D}>. Since D is confinal in @ we can for Ve @ find a We D with 
W cz V and set rv = SWQVW : Xv -> K. It is easy to show that rv does not depend 
on the choice of W. Also it is easy to see that <K | {rv | Ve &}} = Hni Sf#. By 2.2, 
there is an isomorphism / : K -> Ix with fsv = £Vx for all V e D. If U cz X is open, 
x, y eU then U e 81 and there is We D with rv = SWQUW whence frv = fswQuw = 
= ZwxQuw = £Ujc- Likewise there is an isomorphism g :K -> Iy such that gr^ = £Uy 

for all open U cz X with x j e l / . Setting hxy = gf'1 we have for open U cz X 
with x j e [ / : h^U* = g/"1^* = g^U = Ûy and we are done. 

2.4. Remark. Let Sf = {(Xv, tv) \QUV\ X} be a presheaf from the category of 
topological spaces such that the conditions of 2.3 are fulfilled. For open U cz X let 
Av = {a | a eXv}, where d(x) = £Ux(a) for xeU. The homeomorphisms hxy 

between the stalks (lx, tx), (ly, ty) enable us to bring over open nbds of elements from 
one stalk to another within connected sets, and thus define the topology of uniform 
convergence in Av, for now we know what it means that two nbds in different stalks 
are of the same size. Namely, if U is open and connected, a e Xv, xeU, and 
if W is a t-nbd of d(x), we set 0(d, W) = {BeAv\ B(y) e hxy(W) for all y e U}. 
Letting W run through the set of all fx-nbds of d(x) and doing it for all a e Av, we 
get a topology sv (which may be called the topology of uniform convergence). Uf U 
is not connected then — as X is locally connected — its components are open; we 
projectively define sv in Av by the maps {ruv : Av -> Av \ Ve #(U)}, where #(U) 
is the set of all components of U, and ruv(d) = d\V. While in [2] there were difficul
ties with the continuity of the natural map pv : (Xv, tv) -> (Av, sv) which sends 
a e Xv onto a e Av, in our setting we have 

2.5. Proposition. Under the conditions of 2.4, the map pv is continuous. 

Proof. Given U cz X open and connected, a e Xv, and an s^-nod O = 0(d, W) 
of d, then from hxy^Ux = £Uy for any x j e [ / w e get pv(W) cz 0. If U is not connected 
it is enough to show that ruvpu is continuous for every Ve ^(U); but ruvpu — pvQuv 

and both pv, QUV are continuous. 

3. Inductive and Semiinductive Modifications 

If Ji is a family of subsets of a set Y, we set 0 * ^ = P\{M \ M e Ji}. 

3.L Definition. If X is a topological space, U e @l(X), then a star of U is a set 
Sf cz @(X) such that U cz {\Sf. The set of all stars of U is denoted by <r(U). Let 
A* = {Tu} De a closuration of a presheaf & = {SV\QUV\ X} (see 1.1), U cz X open. 
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If Sf e o(U), we have a set of maps A(^) = {QVU | Ve S?} of the closure spaces 
(Sv, TV), Ve Sf into Sv (the closure TV is not considered now). The closure inductively 
generated in Sv by the maps from A(^) is denoted by Tv(Sf). 

3.2. Definition. Let U, Ve *(Jf), F c C / , ^ 6 <j(U), Sf2 e c(V). We say that Sfx 

refines ^ 2 (Sfx = ^ 2 ) , if for every MeSfx there is N e <^2 such that N c M. 
If moreover N can be found such that £MiV : ( S M T M ) -» (S^N) is continuous, we say 5 ^ 
strongly refines Sf2 (&\ < Sf2). 

3.3. Proposition. Let Sf x < Sf2. Then the map QUV : (Sv, Tv(Sf ̂ )) - (Sv, Tv(Sf2)) 
is continuous. 

Proof. We take the following commutative diagram for any MeS^t and N e Sf2 

such that N c M and that QMN : (SMtM) -> (S^T*) is continuous. 

(Sv, Tv(^i)) — (SM, TM) 

Quv QMN 

(Sv, TV(<?2)) J™- (SN9 TN) 

Here QUV is continuous if so is QUVQMU f° r each Me Sfv As QUVQMU — QNVQMN and 
both QVN, QMN a r e continuous, we are done. 

3.4. Definition. A choice of stars is a map s : {U -> s(U) c= <j(U) | U e ^(K)} 
with s(U) #= 0 for all U's. A closuration \i = {TV} of & is called s-semiinductive 
(s-inductive) if (3.5) TV(^) = TV (TV(^) = TV) for every U e @(X), ^ e s(U). 

The following two propositions are clear: 

3.6. Proposition. If U e &(X), Sf e s(U), then TV(^) = TV iff the following 
condition is fulfilled: If (P, t) is any closure space andf : (Sv, TV) -> (P, t) any map, 
then the continuity offQvu for all Ve Sf yields that off 

3.7. Proposition. Let U e »{X\ ST e o(U). TFAE: 

a) Tv(Sf) = T; 

b) If (P, t) andf are as in 3.6, then the continuity off yields that O{/QVU for each 
VeSf. 

c) Qvu '• (SvTv) "* (Su> TU) is continuous for each Ve Sf. 

If \i is s-inductive, it need not be compatible, but we have 

3.8. Proposition. Each of the following properties of s yields the compatibility 
of the s-inductive closuration /r. 

a) If V c= U then there are Sf e s(V), S/> e s(U) such that Sf < Sf (see 1.2). 

b) If V c= U then there is Sf e s(V) with U e Sf. 

Proof. Let \i = {TV} be s-inductive, V c= U. (a): Let Sf e s(V), S? e s(U), & <> Sf. 
As TV = TV(^\ TV = TV(SS), (a) follows from 3.3. (b): We take ^ e s ( V ) with 
U e Sf. As TV = TV(SS) and O^ : (S^v ) -* (SV, ?V(^))

 i s continuous, we are done. 
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3.9. Remark. Clearly if \i is s-semiinductive and compatible then it is s-inductive 
since by 3.7c, a, the compatibility yields TV(SF) — TV for SF e s(U), and the s-semi-
inductivity yields TV = T ^ ^ ) . SO if any of the conditions of 3.8 is fulfilled then \i 
is s-inductive iff it is compatible and s-semiinductive. 

3.10. Proposition. Let Q be a nonempty set of closurations of a presheaf 3F9 

let /z" be its supremum, i.e. //* = {T"}, where T " = Hm {T^ | v = {T^}, v e Q}. 

(a) If every v e Q is compatible then jf1 is. 

(b) If every v e Q is s-semiinductive then pf1 is. 

(c) If every v e Q is s-inductive then jiQ is. 

Proof. To prove (b) it is enough by 3.6 to show the following: "Let U e @(X), 
SF e s(U)9 let (P, t) be any closure space, / : (Sv, T") -> (P, t) a map. Then the con
tinuity offQvu for all Ve SF yields that of/". Let us look at the following commutative 
diagram for SF e s(U), VeSF.ve Q: 

(SV9TV)-^U (SuTl) 

(Syт?) - Ä (S^) - - - > (P, t) Qvu ,rS oч / 

Here / is continuous iff for each v e Ofiv is. Let v e Q. Both iv,fQvu are con
tinuous for each Ve SF, so for every Ve SF, fQvuiy = fiuQvu is. But v = {T^} is 
s-semiinductive, thus fiv is continuous for each v e Q, hence/is. 

(c) By 3.6, 3.7a, b, it is enough to show the following: "Let U e @(X), SF e s(U), 
let (P, t) be a closure space and / : (Sv, T") -> (P, t) a map. Then / is continuous iff 
for every Ve SF fQvu : (Svtf) -• (S„, T°) -> (P, t) is." The "if" part has just been 
proven. Now, let / be continuous. We can see from the above diagram that fQvu is 
continuous iff for any v e QfQvuiv is. But it is just fiuOvu- As/ and iv are continuous 
for every v, fiv is, too, and the s-inductivity of v yields the continuity of fiuQvu-
Likewise (a) can be proven. 

The part of the following theorem concerning fiT

s if s(U) = G(U) is due to Z. 
Frolik, [1, p. 58, 59]. 

3.11. Theorem. Let \i be a closuration of 3F> s a choice. Then there is a closura-
tion /4 and /if1 of 3F such that 

a) ii = £* = ii. 
b) £ is s-inductive (hence compatible if (a) or (b) of 3.8 is fulfilled), fiSI is 

s-semiinductive. 

c) If pi}(ix2) is an s-inductive (s-semiinductive) closuration of 3F such that 
/x1

 = ^ = /*) then v> = fiKfi2
 = /if)-
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Proof. If QJ(fi) is the set of all s-inductive closurations of & finer than \i, we put 
\i\ = {?utS} where TUS = hm {T^ | v = {TV}, veft7(/i)}. By 3.10, /is is s-inductive. 
Likewise we make /if7. 

3A2. Definition. fiKfi^1) is called s-inductive (s-semiinductive) modification of \i. 

3A3. Proposition. Let / i b e a closuration of !F, s a choice. For U e &(X) let 

T£S = lim {^(Sf) | Sf e s(U)} , / is
D = {T D

S } . (3.14) 

Then /if7 ^ /iD . If \x is s-semiinductive (s-inductive) then \i = /iD(/z = /iD). 
Suppose moreover the following condition C: "For every U there is Sf e s(U) such 
that for every Ve Sf the map QVU : (SVTV) -» (Sv, TV) is continuous." Then /iD ^ \i. 
(C is fulfilled namely if \i is compatible or if {U} e s(U) for each U). 

Proof. Let U e ®(X), Sfes(U). If /if7 = {T*7
S} then T £ S = JJJ&) = T ^ ) , 

hence by 3A4, T^7
S <̂  T^S for all U so /if = /iD. If/i is s-semiinductive (s-inductive), 

then for each Sf e s(U) we get TV = TV(^) (TV = Tv(Sf)). Thus \i = \i^(\i = /iD). 
If C holds then /xD _ /i follows from 3.7a, c and 3.14. 

3.15. Proposition. If /i = /*D then \i = /if7. If moreover /i is compatible, then 
/i7 = /i iff/i= /iD. 

Proof. If j * = /is
D then by 3A4, TV = T^S = Tv(Sr) for any U e &(X), Sf> e s(U), 

hence /i is s-semiinductive and thus /i = /if7. If /i is moreover compatible, then having 
already been shown to be s-semiinductive, it is also s-inductive, by 3.9, hence /i = /i7. 
On the other hand, if \i = \i\ then \i is s-inductive hence /iD = jn by 3.14. 

3.16. Lemma. Let s fulfil the following: Q: "For every U, Ve ®(X), V <= U 
and any <9" e s(V) there is Sf e s(U) with Sf < SP." Then /iD is compatible if /i is. 
(Q holds if/i is compatible and Q is fulfilled with = instead of < — see 3.2). 

Proof. For open U, V c X, V c U, .$" e s(V), ^ e s(U), Sf <> SP let us take 
the following commutative diagram, with identical iv, iv: 

(SV, tf,s) - ^ - > (St/, T ^ ) ) 

2UV °t/V 

(Sy, T° ,) - - - U (SK) T ^ ) ) 

Here o^ on the left hand side is continuous iff ivQuv is for any SP e s(V), by 
3.14. But ivQuv = Quviv. H e r e 'cj *s continuous by 3.14, and QUV on the right hand 
side by 3.3. 

3.17. Theorem. Let s fulfil Q and \i be compatible. Then /if7 = /i7 and they 
both are compatible. Moreover, /i7 can be reached by letting the operator v —> vD 

work upon \i for enough times. 
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Proof. Set /x1 = /x. Let a be any ordinal and let us have already made n* for 
all P < a, with /xf = / = /x. If there is a - 1, we set /xa = (/ia_1)° - which is by 
3A6 compatible, and /xf = (/if)° = /x* = /xa_1

 = /x by 3.11a, 3.13, 3.14, hence 
/xf7 = /xa

 = /x. If there is not a - 1, we set /xa = lim {// | j8 < a}. Again /xf7 = 

<L na
 = H and /x is compatible by 3.10a. For a large enough (say, if card a > 

> card {v | v is a closuration of 3F, /xf7 = v _ /x}) we have iia = (/xa)°. As /xa is 
compatible, we get from 3.15 that \xa is s-inductive. As /x7

 = /xf7 ^ /za -> /x, we get 

.«" = ľí = /4'-
4. Projective Modifications 

In the foregoing section inductive modifications have been dealt with. Here we 
show for completeness that the projective ones can be treated likewise. 

4.L Definition. If X is a topological space then the set of all open covers of 
U e &(X) is denoted by <$(U). Let /x = {T^} be a closuration of a presheaf Sf = 
= {Si/|eUV| X}, U e @(X), r e <tf(U). The closure projectively defined in Sv by the 
set of maps A(r) = {QUV : Sv -> (Sv, TV) | Ve r} is denoted by Tv(r). 

4.2. Definition. Let U, Ve&(X), Vcz U, rteV(U)9 r2e^(V). We say r 2 

refines ^ i ( ^ * 2 = rx) if for every M e r 2 there is Nerx such that M c N. If 
moreover N can be found that QNM : (SNTN) -> (iSMTM) be continuous, we say r 2 

strongly refines rx(r2 <; rx). 

4.3. Proposition. Let U, Ve @(X), V^U,r^e <#(U), r 2 e <g(V), r 2 <> rx. 
Then QUV : (Sv, T^r^) -> (Sv, T F ( ^ 2 ) ) is continuous. 

Proof. The same as that of 3.3 for inductive case, only we use the projective 
definition of TV(T2). 

For the part of the following definition concerning projective closurations see 
Z. Frolik, [1, p.58, 59]. 

4.4. Definition. A choice of covers is a map c : {U -> c(U) a <£(U) | U e @(X)} 
with c(U) #= 0 for all U's; /x = {T^} is called c-semiprojective (c-projective) if 
Tv(r) = Tv(Tv(r) = TV) for every U e @(X), r e c(U). 

The following two propositions are clear: 

4.5. Proposition. If U e @(X), r e <#(U), then TV(T) = TV iS the following 
condition is fulfilled: "If (P, t) is a closure space and / : (P, t) -> (SU9 TV) a map, 
then the continuity of Quvf for all Ve r yields that of/". 

4.6. Proposition. Let U e @(X), r e <#(U). TFAE: 

a) Tv(r) = TV. 

b) If (P, t) and / are as in 4.5, then the continuity o f / yields that of Quvf for 
every Ve r . 

c) Quv • (Si/T-/) -• (SVTV) is continuous for each Ve r . 
If /x is c-projective it need not be compatible, but we have 
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4.7. Proposition. Each of the following properties of c yields the compatibility 
of the c-projective closuration fi: 

a) If V c U then there is iT e c(U), r e c(V) with r <> r (see 4.2). 
b) If V c U then there is <T e c(U) with Ve iT. 

Proof. Since TV = Tv(iT), TV = TV(T\ (a) follows from 4.3. To prove (b), we 
take ir e c(U) with Ve ir. As TV = Tv(ir) and QVV : (SVi Tv(ir)) -> (Sv, TV) is 
continuous, we are done. 

4.8. Remark, fi is s-projective if it is compatible and s-semiprojective, since 
by 4.6c, a, the compatibility yields TV ^ ^v{^) f ° r a n y "^ e c(U), and c-semiprojec-
tivity yields iv(ir) = TV. So if any of the conditions of 4.7 is fulfilled then /x is c-pro
jective iff it is compatible and c-semiprojective. 

4.9. Proposition. Let Q be a nonempty set of closurations of a presheaf &, 
fin its infimum, i.e. /zn = {T^Q}, where Tvil = Hm {T^ | V = {TJ,}, v G Q} — see 1.2. 
If each v e H i s compatible (c-semiprojective, c-projective), then /in is. 

Proof. As in 3.10, only we use the properties of projectively defined closure. 
The statement of the following theorem for fiP with c(U) = ^(U) is due to Z. 

Frolik [1, p. 58, 59]. 

4.10. Theorem. Let \i be a closuration of # \ c a choice. Then there is a closura
tion fip and fiSP such that 

a) n = /if = £, 
b) fip is c-projective (and if the condition (a) or (b) of 4.7 holds compatible), 

lis
c
p is c-semiprojective. 

c) If ^(fi2) is c-projective (c-semiprojective) closuration of !F and \i = 

g / i V ^ ^ t h e n M f ^ ^ f = /.2)-

Proof. Easy from 4.9. 

4.11. Definition. fiP(fiSP) is called c-projective (c-semiprojective) modification 
o f fl. 

4.12. Proposition. Given a choice c, we set 

rv,c = lini {Tv(r) | iT e c(U)} , £ = {x*.c | U e <%(X)} . (4.13) 

Then fi* = fiSP. If \i is c-semiprojective then /i* = \i. Suppose moreover the 
following condition D: "For every U e 08(X) there is ir e c(U) such that for every 
Ve iT the map QVV : (SVTV) -> (SVTV) is continuous." Then \i ^ n*. (D holds namely 
if \i is compatible or if U e c(U)). 

Proof. If [i is c-semiprojective then tvi^) = Tu f° r anY ^ 6 c(^/) s o A*? = A*-
This yields n* = (juf)* g fisp. If D holds then \i = \i* by 4.6c, a and 4.13. 

4.14. Proposition. If \i = fi* then \i = /xc
p. If /z is compatible then JJ,P = \i iff 

/i = nc. 
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Proof. If /x = /x* then by 4.13, TV = *u,s = % 0 O for any U e a(X\ r e c(U), 
hence /x is c-semiprojective and thus /x = fiSP. If \i is compatible, then having already 
been shown to be c-semiprojective, it is also c-projective by 4.8, hence /x = /xP. 
On the other hand, if /x = /xP then /x is c-projective hence /x* = 11 by 4.13. 

4.15. Lemma. Let fi and c fulfil the following condition R: "If U,Ve&l(X)9 

V c U then for every TT e c(U) there is TT e c(V) with W < if (see 4.2, it namely 
holds if/x is compatible and R holds only with = ) . Then /x* is compatible. 

Proof. Take the following commutative diagram for if e c(U), iV e c(V) with 
^ ^ ^ , and with identical i^, iK: 

^ ^ ^ ^ - ( S ^ T ^ ) ) 

-?Í7V °C7K 

(sv,4,c) «-^{sv,TV(ir)) 

Here 0UF is continuous iff Quviv is for any V e c(U). But Quviu — WQVV> where 
both maps on the right hand side are continuous by 4.3, 4.13. 

4.16. Proposition. If/x is compatible and c fulfils R then iisp = /xP, and they both 
are compatible. Further, /xf can be reached by letting the operator v -> v* work upon /x 
for enough times. 

Proof. Set /x1 = /x. Let us have made a compatible /x̂  for each ordinal ft < cc 
with /x = /x^ = /x*p. If there is a — 1, we set /xa = (/xa_1)*, if there is not a — 1, we 
set /xa = Hm {/x̂  | /? < a}. In the both cases /xa is compatible, by 4.15 in the former 
case, by 4.9 in the latter, and /x = /xa _ /zfp. For a large enough (say, if card a = 

^ card {v | /x = v = /xf}) we have /xa = (/xa)* and by 4.14, /xa = (/xa)P whence /xa 

is s-projective. As /x = /xa
 = /x£p

 = /xP, we have /xa = /xP = /x*p and we're done. 
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