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Let (H, *> be a multiplicative hypergroup as defined in [1], [2] i.e. the non
empty set H equipped with a non-degenerate hyperoperation 

* :H x H -> 0>(H) :(x,y)\-+x*yczH, x* y 4= 0 

(If A, B c H, we set A * B = (J a * b. If A = {a}, we write A * B = a * B.) which 
aeA 
beB 

is associative: x * (y * z) = (x * y) * z, Vx, y9 z e H9 and the condition a * H = 
= H * a = H, Va G H, is valid. 

For every integer v > 0, and Vs e if, we get the powers of s : sl = {s}, sv + 1 = 
= sv * s c H. 

Now, using the original definition of cyclic hypergroup as we can see in [3] 
as well, we give the following definitions. 

Definitions. A hypergroup H is called cyclic, if 

H = h1 u h2 u ... u hnu . . . , for some heH. (1) 

If there exists an integer n > 0, the minimum one with the following property 

H = h1 U / J 2 U . . . U K9 (2) 

then we call H cyclic hypergroup with finite period and we call h generator of H 
with period n. If there is no number n for which (2) is valid, but (1) is valid, then we 
say that H has infinite period for h. If all generators of H have the same period, then 
we call H cyclic with period. 

If there exists an integer n > 0, the minimum one with the following property 

H = hn , (3) 

then we call H single-power cyclic hypergroup and h generator of H with period w. 
If (1) is valid and also Vn e M0 and n ^ n09 for constant n0 e N0, the following con
dition is valid 

h1 uh2u ...uh"-1 £ h\ (4) 



then we call H single-power cyclic hypergroup with infinite period for h. 

Obviously we can prove the following proposition. 

Proposition 1. Let (H, •) be a commutative group and P a subset of H. Then 

H, \ is a hypergroup, where the hyperoperation is defined by the relation 

' : H x H - &(H) : (x, y) r-> x P^y = xy({e} u P) , (5) 

where e is the unit element of (H, •). 

We shall call the above hypergroup P-hypergroup. 

Proposition 2. Let (Hn, •) be a finite cyclic group #H„ = n and P a Hn. Then 
P\ P 

H„, ) , where is defined by (5), is a cyclic hypergroup which we shall call P-cyclic 

hypergroup. 

Proof. From now on we denote the powers of the elements of Hn for the hyper
operation in square brackets. 

We can easily see that: 

x™ = xiv\{e} u P u ^ u . ^ u P ^ 1 ) , V v e N 0 . (6) 

So if a e H„ is a generator of (Hn, •), all over in this paper, then 

a[1]ua[2]u...ua["] = H„, 

so a is a generator of ( Hn, \ with period at most n. 

In the following, we shall prove some theorems which are valid in the special 
case of P-cyclic hypergroups, where P = {p} is a set with only one element. We write 

it as /HM, P 

Theorem 1. In the P-cyclic hypergroup / Hni \ the element ax is a generator 

iff (A, x, n) = 1, i.e. k, x, n are relatively prime. 
ax 

Proof. The /*-th power of the element ak under the hyperoperation , using the 
relation (6), is 

a™ = {aA*, aA«+*, ..., a ^ * " 1 * } . (7) 

Therefore the elements of the powers of ak have the form 

aXs+t* , where seN0 and t = 0, 1, . . . , s - 1 . 

Also we have 

As + tx = 1 mod n iff 3g e Z : h + tx - Qn = 1 iff (A, x, n) =- 1 . 



So if we choose appropriate s, t, Q mod n, as we need above, the relation a
Xs+t* = 

= a
l = a is valid iff (X, x,n)=l. Therefore the element ae Hn belongs to some 

power of ax iff (X, x, n) = 1. 
Now, if a belongs to some power of ax, then VveN0 the element av e Hn belongs 

to some power of ax, because 

aA(vs) + (vr)x __ a v ^ 

From the above, we obtain that the element ax is a generator of ( Hn, ) iff 

(X, x, n) = 1. 
ď Theorem 2. In the P-cyclic hypergroup / Hn, \ ax 4= an = e, 

(i) the element ax is a generator with period \x = [n/2] + 1 (where [n/2] = z, 
when n = 2z or n = 2z + 1), 

(ii) the element an~x is a generator with period n iff (n, x) = 1. 

Proof (i) From (7) VX e N0, we get 

ax[A] = | a x A a x ( A + l) j a x ( 2 A - l ) } 

and 
ax[A + l ] = | a x(A + l) ax(A + 2)̂  ^ ax(2A-l)^ flx2A^ a x ( 2 A + l ) | 

Therefore, increasing the power of ax from X to X + 1, there appear at most two new 
elements, i.e. ax2X and a

x ( 2 A + 1 ) . Since ax [ 1 J = {ax} is a set with only one element, 
to cover Hn we need at least [n/2] other successive powers of ax. In either case, if n 
is odd or even, for \i = [n/2] + 1 we get 

a x [ i ] u a x [ 2 ] UmmmU a*M = | a x ? a x 2 ? ^ a««-D9 e] ( 8 ) 

and in every higher power of ax the same elements are appearing. 
If (n, x) = 1, then the elements of the set (8) are different, so ax is a generator 

with period [n/2] + 1. 
If (n, x) 4= 1, then (x, x, n) # 1; so from theorem 1 we get that ax is not 

a generator. 

(ii) From (7), VXeN0 and ^ < n, we get 
a(n-x)[A] = ja(rt-x)A a(»i-x)A + x ^ a(rt-x)A + (A-l)x) ^^ 

a (я-x)[Л + l ] = fa(я-x)(A + l) a(я-x)(Л + l) + x ^ a(я-x)(Л + l) + Axì 

from where we can see easily that 

a(«-x)[A+i] = | a ( « - x ) ( A + i n u a(«-x)[A] ^ ^ < n . 

Let (n, x) = 1, then 
(я-x)(A + l) a _(я-x)[A] 

a(я-x)(A + l ) £ a , 



because, if there exists te{0, 1,. . . , k - 1} such that fl(«-*x*+-> = fl0i-*>*+* t h e n 

x(t + 1) = 0 mod n, which is a contradiction. Therefore the sequence of sets 

a 0 . - * ) [ l ] a("-*)[2] fl(n-x)[n] 

is strictly increasing and also the set a^"x)Cn] has exactly n different elements of Hn, 
i.e. a<"-*>-"- = #„. 

So the element an~x is a generator with period n of (Hn, Y when (n, x) = 1. 

Let now (n, x) + 1, then (x, n — x, n) 4= 1. Hence from theorem 1 we get that 
an~x is not a generator. Q.E.D. 

The above theorem states that from n P-cyclic hypergroups (Hn, Y <p(n) 

elements ax and <p(n) elements an~x are generators, where cp(n) is the Euler's phi-
function. 

Theorem 3. The P-cyclic hypergroup ( Hn, Y ax -# e, is a single-power cyclic 
« ) • " * 

hypergroup iff (x, n) = 1 and in this case every element of Hn is a generator of 
ax 

Hn, \ with period n. 

/ ax 

Proof. In the relation (7) we have at most \i different elements, so in order / Hn, 

to be a P-cyclic hypergroup we must have \i = n. 

For \x = n, we have 

aA-w- = {aA", aArt+x,..., <,*•+<»-->*} = {̂ , a
x

} . . . , a
(n"1)x} , 

while, for every a e N, we get 
^A[fi + <r] __ flA<r flA[n] 

Therefore (Hn, Y ax #= e, is a single-power P-cyclic hypergroup with generator ax 

iff exactly the n-th power of ax is equal to H„. 
The n elements of j>ACn] are different iff (x, n) = 1, independently of k, and the 

period of ax is n. 
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