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On a Class of Subdirectly Irreducible Groupoids 

T. KEPKA 

Department of Mathematics, Charles University, Prague*) 

Received 24 January 1980 

Let G be a groupoid. Define a relation t by (A, b) e t iff a, b e G and ax = bx, xa -= xb for 
every x e G. Then t is a congruence of G. In the paper, there are found some necessary and suf
ficient conditions for a groupoid G to be isomorphic to H/t for a subdirectly irreducible groupoid H 
with / 4= idH. 

B CTaTbe HaftzjeHM HeicoTopbie aocTaTo-iHwe VCJIOBHH .ZÍJIH TOTO, 4TO6W rpynnoHA G 6MJI 
H30Mop4>eH rpynnoHAy H/tH fl.ua HeicoToporo noflnpHMo Hepo3JiO)KHMoro rpynnoiwa H. 

V článku se vyšetřují některé nutné a postačující podmínky pro to, aby groupoid G byl 
isomorfní faktoru subdirektně nerozložitelného grupoidu podle jeho nejmenší kongruence. 

1. Introduction 

This paper is a continuation of [1] and the reader is referred to [1] for defini
tions, terminology, notation, references, etc. 

2; Pseudocongruences 

Let G be a groupoid and a e G. A relation r defined on G is said to be a pseudo-

congruence with companion a of G if the following two conditions are satisfied: 

(i) r is compatible, reflexive and symmetric, 

(ii) If x, y, z e G, y 4= a, (x, y), (y, z)er then (x, z) e r. 

Let r with a companion a be a pseudocongruence of a groupoid G. Put M = 
= {x | (x, a ) e r } \ { a } . It is clear that s = r | M is an equivalence on M. We shall 
say that r is of class (at most, at least) n, where 0 ^ n is an integer, if 5 has (at most, 
at least) n blocks. 

2.1 Lemma. The following conditions are equivalent for a pseudocongruence r: 

(i) r is a congruence. 

*) 186 00 Praha 8, Sokolovská 83, Czechoslovakia. 

17 



(ii) r is transitive, 

(iii) r is of class at most 1. 

Proof. Obvious. 

2.2 Lemma. Let r with a companion a be a pseudocongruence of G. Put K = 
= G\{a}, M = { x e K | ( x , a ) e r } and N = {x e K | (x, a) £ r}. Then: 

(i) K = M u N, M nN = <b. 

(ii) r | K, r | M and r | N are equivalences. 

(iii) The relation s = r u (M x M) is a congruence of G. Moreover, it is the least 
congruence containing r and s | N = r | N. 

Proof. Easy. 

In the following lemmas, let r with a companion a be a pseudocongruence of 
a groupoid G. 

2.3 Lemma. Suppose that G contains an element b such that ba 4= a (ab 4= a) 
and Lb (Rb) is a permutation of a finite order. Then r is a congruence. 

Proof. It remains to show that r is transitive. Assume that ba 4= a and I?b = 
= idG. Let x, y e G, (x, a), (a, y) e r. We have (bx, ba), (ba, by) e r, ba 4= a and 
consequently (bx, by) e r. Since r is compatible, (x, y) e r. 

2.4 Lemma. Suppose that G is a division groupoid and s is left (right) cancel-
lative, where s is the least congruence containing r. Then r = s. 

Proof. First, assume that (a, b)$r for some b e G. Let x,yeG, (x, a), (a, y) e r. 
There are u,veG with x = ub and y = uv. We have (ub, uv), (b, v)e s, since s is 
left cancellative. From this, (b, v)er and (x, y) e r. Now, let s = G x G. Suppose 
that r 4= s. Then r is of class at least 2 and the equivalence r | A, A = G \ {a}, has 
at least two blocks, say N,K,... . Farther, there exists ceG such that a 4= ac eN. 
For every x e G, (a, c), (x, a), (xa, ac) er, xaeN u {a}. Thus G .= N u {a}, 
a contradiction. 

2.5 Lemma. Suppose that G is simple and a 4= aa. Then r is a congruence. 

Proof. Let r 4= idG. It is an easy consequence of 2.2(iii) that (x, a)er for every 
x e G. Put M = G \ {a} and denote by A the block of r | M containing aa. If x, y e G, 
then (x, a), (y, a) e r, (x;;, aa) e r and xy e 5 = A u {a}. Hence GG .= £, 2? is an 
ideal of G and B = G, since G is simple. From this, r = G x G. 

2.6 Lemma. Suppose that G is simple idempotent and a is neither a left nor 
a right zero of G. Then r is a congruence. 

Proof. Let r 4= idG and M = G \ {a}. There are b, c e G with ca 4= a 4= tf&. 
Denote by A the block of r | M containing ab. We have (ft, i?), (b, a), (b, ab) e r 
and be A. Now, for every xeG and every >>eA, (x, a), (a, b), (y, b), (xa, ab)y 

(xy, ab) e r and we see that Ga .= B and GA = B, B = AKJ {a}. Consequently, 
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GB c B and ca e A, since ca =# a. Proceeding similarly, we can show that BG £ B. 
Thus B is an ideal, B = G and r = G x G. 

2.7 Proposition. Let r with a companion a be a pseudocongruence of a groupoid 

G. Then r is a congruence, provided at least one of the'following conditions holds: 
(i) There exists b e G such that ba 4= a and Lb is a permutation of finite order, 

(ii) There exists be G such that ab =f= a and Rb is a permutation of finite order, 
(iii) G is a division groupoid and the least congruence containing r is either left or 

right cancellative. 

(iv) G is simple and a =# aa. 

(v) G is simple idempotent and a is neither a left nor a right zero. 

Proof. Apply 2.3, 2.4, 2.5 and 2.6. 
2.8 Corollary. Every pseudocongruence of agroupiod Gis a congruence, provided 

at least one of the following conditions holds: 

(i) G is a division groupoid and every non-trivial congruence of G is either left or 
right cancellative. 

(ii) G is a finite quasigroup. 

(iii) G is a simple division groupoid. 

(iv) G is a simple groupoid without idempotents. 

(v) G is a simple idempotent groupoid containing no left and no right zeros. 

3. Congruences of Primitive Groupoids 

Throughout this section, let G be a primitive groupoid, a, b e G,a 4= b, (a, b) e t, 
t = tG, H = G\t. Farther, let k denote the natural homomorphism of G onto H 
and c = k(a). Finally, let r be a congruence of G and s = k(r). 

3.1 Lemma, s is a pseudocongruence with companion c of the groupoid H. 
Moreover, s is of class at most 2. 

Proof. Easy. 

We shall assume in the remaining part of this section that (a, b) $ r. Denote 
by A and B the blocks of r containing a and b, resp. Obviously, r n t = idG. 

3.2 Lemma. Let w be the least congruence of H containing s. Then w n tH = idfl. 

Proof. First, let x, y e G, (k(x), k(y)) e s n tH. There are u,veG with (x, u)> 
(y, v) et, (u,v)e r. Moreover, (xz, yz) e t and (zx, zy) e t for every z e G. But 
xz = uz, zx = zw, yz = vz and zy = zv. Thus (uz, vz)etn r, uz = i;z, zw == zvy 

(u,v)et,(u,v)etnr and w = v, k(x) = fc(>>). We have proved that s n tH = idH. 
Now, let x, y e G, (k(x), k(y)) e w n tH. We can assume that (k(x), k(y)) $ s. Then 
(k(x), c), (k(y), c)e s and there are u,veG with (u, x), (v, y) e t, (u, a), (v, b) e r. 
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Since (fc(x), k(y)) e tH, (uz, vz), (zu, zv) e t for every zeG. On the other hand, 
(MZ, az), (bz, vz)er, az = bz, (uz, vz)etn r, MZ = vz. Similarly, ZM = zv, (u, v) e 
e t, (x, y) e t and fc(x) = fc(y). 

3.3 Lemma. Let H be regular and x, y,ze G. 

(i) If (fc(x), k(y)) 6 s and fc(x) fc(z) 4= fc(y) k(z) then either a $ xG or b $ xG. 

(ii) If (k(x), k(y)) 6 s and fc(z) fc(x) * fc(z) k(y) then either a $ Gx or b $ Gx. 

Proof. There are x', y' e G with (x', y') e r, (x, x'), (y, y') e t. Then xz = x'z, 
z = y'z and (x'z, / z ) e t. Moreover, xG = x'G and we can assume that x = x' 
and y = y'. Now, suppose that a = xu and b = xv for some u, v e G. We have 
fc(x) k(u) = k(x) k(v), (k(u), k(v)) e qH and (WM, wv) e t for every w e G. Thus yM 4= y, 
^M, j v e {a, ft}, >>M = a = xu, yv = b = xv (if yu = yv then (a, b)er, a contradic
tion). From this, fc(x) k(u) = fc(>>) fc(M) and fc(x) fc(z) = fc(>!) fc(z), a contradiction. 

3.4 Lemma. Let H be regular and let xeG be such that (x, y)er for some 
x 4= y. Then either a £ xG n Gx or b $ xG n Gx. 

Proof. Since (a, b) £ r and x 4= y, fc(x) 4= fc(y). But (fc(x), k(y)) e s. By 3.2, 
(fc(x), k(y)) $ tH. The rest follows from 3.3. 

3.5 Lemma, (i) If s is transitive then either card A = 1 or card .8=1. 

(ii) If G is strongly primitive then 3 = card G\r. 

Proof, (i) Let x e A, y e B, x 4= a, y 4= b. We have fc(a) = c = k(b), (fc(x), c), 
(c, k(y)), (k(x), k(y)) e s, (x, y) e r, a contradiction. 

(ii) Let card G\r = 2. Then, taking into account the equalities aa = ba = ab = bb, 
we see that G\r is a Z-groupoid. Consequently, either GG ^ A or GG =" 8, 
a contradiction, since G is strongly primitive. 

3.6 Lemma. Suppose that H is simple and r 4= idG. Then G is not strongly 
primitive. 

Proof. Denote by w the least congruence of H containing s. Since r 4= idG and 
(a, b) $ r, w 4= idH and w = H x H. Hence card G/r = 2 (use 3A and 2.2(iii)) and 
we can apply 3.5. 

3.7 Lemma. Suppose that r 4= idG, H is a division groupoid and either G or H 
is regular. 

(i) Either 2 = card A or 2 <; card 8. 
(ii) If C is a block of r and A 4= C 4= B then 2 = card C. 

(iii) Let card A = I. Then a 4= xx for every x e G . Moreover, if a = yz and Y, Z 
are the blocks of r containing >>, z, resp., then 7 is contained in a block of pG 

and Z in a block of qG. 

Proof, (i) There is a block C of r with 2 = card C. Let x, y e C, x 4= y. We 
have (x, y) $ t, and so either (x, y)$ p or (x, y) $ q. Assume (x, y) $ p. Farther, 
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k(xz) = c for some zeG. We have xz e {a, b}. If xz = a then Cz c A and 2 = 

^ card A by [1, Lemma 3.6]. Similarly, if xz — b. 

(ii) Let C 4= A, B be a block of r and let x e C. By (i), either 2 ^ card A or 2 ^ 

s= card U. Suppose that 2 ^ card A and (y, a)$p for some y e A. We have 
k(x) = k(yz) for some z e G, and so x = yz 4= az, yz, a z e C . 
(iii) Suppose that Y is not contained in a block of p. Then 2 = card Y and there is 
u e Y with (y, u) £ /?. Hence a = yz 4= wz, wz e A and 2 = card A, a contradiction. 
Similarly for Z. Finally, let a = xx and let X be the block of r with x e X. As we 
have proved, X is contained in a block of *, card X = 1 and K = A by (i) and (ii). 
Thus x = a, a = aa = bb and card B = 1, a contradiction. 

3.8 Lemma. Suppose that G is superprimitive and either G or H is regular. Then 
2 _̂  card A, card £, provided r 4= idG. 

Proof. Since r $ f, either r $ p or r $ g. Let r $ p. Then (x, j ) £ p for some 
x j e G , (x, y) e r. There is z e G with xz = a. Now, xz 4= yz, xz, yz e A and 2 = 

_ card A. Similarly for B. 

3.9 Lemma. Suppose that r =1= idG, H is a division groupoid and either G or H 
is regular. Then 2 _ card K for every block X of r, provided at least one of the 
following conditions is satisfied: 

(i) H is commutative and a, be GG. 

(ii) H is left (right) faithful and a, be GG. 

(iii) a = xx and- b = yy for some x,y eG. 

(iv) G is superprimitive. 

Proof. Apply 3.7 and 3.8. 

3.10 Lemma. Suppose that G is regular superprimitive, pG is a congruence of G 
and pG = G x G = gG>0, where o is the first infinite ordinal. Then r = idG. 

Proof. Let r 4= idG. Then w = r n p 4= idG and (a, c) e w for some c 4= a 
(use 3.8). Since qG>0 = G x G, there is a natural number 1 ^ n with x t(... (xna)) = 
= x2(... (xnc)) for all x l s . . . , xn e G. Farther, a = da for a d e G. Then a = IHd(c). 
Let 1 = m be the least natural number with a = £3(c). Put e = L^"1^). Then 
a 4= e, (a, e)ep and da = a = de. Since G is regular, (a, e) e q, (a, e) e t, e = b. 
However, (a, e)er, a contradiction. 

4. Main Results 

4.1 Theorem. Let G be a strongly primitive groupoid and H = Gjt. Then G is 
subdirectly irreducible, provided at least one of the following conditions is satisfied: 

(i) G is torsion. 

(ii) H is torsion, 

(iii) Po> 4G are congruences of G and pG = G x G = gG. 
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(iv) If r =)= idH is a congruence of H then r n tH 4= idH. 

(v) H is subdirectly irreducible and primitive, 

(vi) Every proper factorgroupoid of G is semifaithful. 

(vii) H is simple. 

Proof. Apply [1, Lemma 2.16], 3.2 and 3.6. 

4.2 Theorem. Let G be a superprimitive groupoid such that Gjt is regular. Then G 
is subdirectly irreducible. 

Proof. Apply 3.4. 

4.3 Proposition. Let G be a primitive groupoid, H = Gjt, a,beG, a + b, 
(a, b) e tG. Denote by k the natural homomorphism of G onto H and put c = k(a). 
Suppose that every pseudocongruence of H with companion c and of class at most 2 
is a congruence. Then G is subdirectly irreducible, provided either G or H is regular 
and at least one of the following conditions is satisfied: 

(i) G is superprimitive. 

(ii) H is commutative, H is a division groupoid and a, b e GG. 

(iii) H is a left (right) faithful division groupoid and a, be GG. 

(iv) H is a division groupoid and a = xx, b = yy for some x, y e G. 

Proof. Appy 3.1, 3.5(i), 3.8 and 3.9. 

4.4 Theorem. Let G be a regular superprimitive groupoid and H = Gjt. Then G 
is subdirectly irreducible, provided at least one of the following conditions is 
satisfied: 

(i) H is a division groupoid and every non-trivial congruence of H is either left or 
right cancellative. 

(ii) pG = G x G = qGt0 and pG is a congruence of G. 

(iii) qG = G x G = p G o and qG is a congruence of G. 

Proof. Apply 4.3, 2.8 and 3.10. 

4.5 Theorem. Let G be a primitive groupoid such that H is a division groupoid 
and either G or H is regular, where H = Gjt. Suppose that every non-trivial congru
ence of H is either left or right cancellative. Then G is subdirectly irreducible, provided 
at least one of the following conditions is satisfied: 

(i) H is commutative and a, be GG, where a,beG,a + b and (a, b)e tG. 

(ii) H is left (right) faithful and a, be GG. 

(iii) a = xx and b = yy for some x,yeG. 

Proof. Apply 4.3, 2.8. 

4.6 Corollary. Let G be a strongly primitive groupoid such that G\t is a quasi-
group having only cancellative congruences. Then G is subdirectly irreducible. 
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4.7 Theorem. Let G be a primitive division groupoid and H = Gjt. Then G 
is subdirectly irreducible, provided at lest one of the following conditions is satisfied: 

(i) H is regular. 

(ii) G is regular and every non-trivial congruence of H is either left or right cancel-
lative. 

Proof. Apply 4.2 and 4.4. 

4.8 Corollary. Every primitive medial division groupoid is subdirectly ir
reducible. 

4.9 Example. Consider the following groupoid G : G = {a, b, c, d}, aa = ab = 
= ac = ad = ba = bb = bd = a, ca = cb = cc = cd = b, da = db = dc = dd = 
= d. One may verify easily that G is strongly primitive, G satisfies (C5) and G is not 
subdirectly irreducible. 

4.10 Example. Let G be a commutative loop possessing a congruence r such that 
Gjr and blocks of r are infinite countable sets. Let Ai9 A2,... be the blocks of r 
and suppose that 1 e Al9 A1 = B u C, B n C = 0, le B and card B = card C. 
L e t / be transformation of G such that/ | At is a biunique mapping of Ax onto Ai^1 

for every 3 ^ i, f | A2 is a biunique mapping of A2 onto B, / ( l ) = 1 and / 1 At 

is a biunique mapping of At onto C u {1}. There is just one element a e G with 
a -# 1 and f(a) = 1 and ker/ = {(a, l), (1, a)} u idG. Now, put x° y = f(x)f(y) 
for all x, y e G. Then G(o) is a primitive regular commutative division groupoid. 
It is easy to check that r is a congruence of G(<>). But a e A2 and (1, a) ^ r. Hence G(o) 
is not subdirectly irreducible. 

4.11 Theorem. Let H be a groupoid. Then H is isomorphic to Gjt for a sub
directly irreducible primitive groupoid G if at least one of the following conditions 
is satisfied: 

(i) H is regular and satisfies (C7). 
(ii) H is a regular division groupoid and 2 ^ card A = card B for any two blocks 

A, B of fH. 

(iii) H is a Z-groupoid. 

(iv) H is a semifaithful regular division groupoid and 2 ^ card A, 2 ^ card £ for 

every block A of pH and 2? of qH. 

(v) H is a semifaithful regular division groupoid, every non-trivial congruence of H 

is either left or right cancellative and xx = yy for some x, y eG, x =¥ y. 

(vi) H is a left faithful regular division groupoid and every congruence of H is 

either left or right cancellative. 

(vii) H is a quasigroup and every congruence of H is either left or right cancellative. 

(viii) H is a finite quasigroup. 

(ix) H is simple and not injective. 
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(x) H is subdirectly irreducible and primitive. 
(xi) H is a torsion division groupoid and card B ^ 2car(U, whenever A is a block 

of pH and B of rH. 

Proof, (i) follows from [1, lO.l(iii)] and 4.2, (ii) follows from (i) and [1,10.2(iib)], 
(iii) follows from (i) and [1, 10.2 (iia)], (iv) follows from (i) and [1, 10.2(iic)], (v) 
follows from [1, 10.1(H), 10.2(ia)] and 4.5(iii), (vi) follows from [1, 10.1 (ii), 10.2(ia)] 
and 4.5(ii), (viii) and (viii) follow from (vi), (ix) follows from [1, lO.l(ii), 10.2(ia)] 
and 4.1(vii), (x) follows from [1, 10.1(H), 10.2(ie)] and 4.1(v) and (xi) follows from 
[1, 10.1(H), 10.2(ib)] and 4.1(H). 
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