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Every groupoid containing a zero element is isomorphic to a factorgroupoid of a subdirectly
irreducible groupoid.

Ecnu rpynnoun G siBnseTcs GpakTOprpynnoMaoM MNOANPAMO HEPO3JIOKHMOIO IPYNIOHAA, TO
nepeceyeHnre BCeX HaeanoB B G Hemycro. Hao60poT, BCAKHHA rpynnou ¢ HyJieM H30MopdeHn TakoMy

daxroprpynnouny.

Kazdy grupoid s nulovym prvkem jé izomorfni faktorovému grupoidu néjakého subdirektné
nerozlozZitelného grupoidu.

1. Ideals

Let G be a groupoid. We put MN = {xy | xeM, yeN} for any subsets M
and N of G. A non-empty subset I of G is said to be an ideal of G if GI = I and
IG < I. We denote by I(G) the set of all ideals of G. This set is not empty, since G
is an ideal of G. Farther, we put Int (G) = NI, I  I(G).

1.1 Proposition. Let G be a groupoid. Then:
(i) The intersection of a system of ideals of G is either empty or an ideal.
(ii) If Int(G) is non-empty then it is the smallest ideal of G.
(iii) The union of a non-empty system of ideals is an ideal.
(iv) If 1, J are ideals of G then IJ = I n J and I n J is an ideal.
(v) The intersection of a finite non-empty system of ideals of G is an ideal.
(vi) I(G) is a distributive lattice with respect to inclusion of ideals. Moreover, if
Int(G) is non-empty then I(G) is a complete lattice.
(vii) Any subset of G containing GG is an ideal of G.

Proof. Easy.

An element 0 of a groupoid G is said to be a zero element if Ox = 0 = x0 for
every x € G. Obviously, G contains at most one zero element.

*) 186 00 Praha 8, Sokolovska 83, Czechoslovakia.
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1.2 Lemma. Let G be a groupoid, 0 G and I = {0}. Then I is an ideal of G
iff 0 is a zero element of G. In this case, [ = Int(G).

Proof. Obvious.

1.3 Lemma. Let I be an ideal of a groupoid G. Put r = (I x I) U idg. Then r
is a congruence of G and I/r is a zero element of the groupoid G/r.

Proof. Easy.

1.4 Lemma. Let f be a homomorphism of a groupoid G onto a groupoid H.
Then f(Int(G)) < Int(H). Moreover, if Int(G) is non-empty, then f(Int(G)) = Int(H).
Proof. Easy.

2. Subdirectly Irreducible Groupoids

2.1 Proposition. Let G be a subdirectly irreducible groupoid. Then Int(G) is
non-empty.

Proof. We can assume that G is non-trivial. Let s be the smallest non-trivial
congruence of G. There are a, b € G such that a + b and (a, b) € 5. Let I be an ideal
of G. Consider the congruence r defined in 1.3. If r + idg then s = r, (a, b)er
and a, b el. Suppose r = idg. Then I = {0} is a one-clement set, 0 is a zero element
of G and Int(G) = I by 1.2. Thus we can assume that G contains no zero element.
Then a € Int(G).

2.2 Corollary. Let G be a homomorphic image of a subdirectly irreducible
groupoid. Then Int(G) is non-empty.

Let G be a subdirectly irreducible groupoid. If G is non-trivial then we denote
by s; the least non-trivial congruence of G. If G is trivial then we put s = idg.

A groupoid G is said to be faithful if a = b, whenever a, b € G and either ax = bx
for every x or xa = xb for every x € G.

2.3 Proposition. Let G be a groupoid containing a zero element. Then there
exists a faithful subdirectly irreducible groupoid H such that G is isomorphic to H/sy.

Proof. We can assume that G is non-trivial. Let 0 be the zero element of G and
K = G\ {0}. One may see easily that there exists a groupoid L with the following
properties: Lis simple, L is faithful, L contains at least three elements, LN G = 0,
there is an injective mapping f : K x K — Land there are elements a, b € Lsuch that
a + band a # cc + b for every ceIm f. (For example, we can take a sufficiently
large simple idempotent commutative groupoid.) Put H = K U L and define a partial
operation * on H as follows: x * y = xyif x, ye Kand xyeK;x*y = aifx,ye K
and xy =0; xxf(x,y)=a=f(x,y)*x and y=*f(x,y)= b=f(x,y)*y if
x,yeKand x = y; x *y = xy if x, y € L. It is easy to check that this partial opera-
tion can be extended to a complete operation * defined on H and satisfying the fol-
_lowing conditions:
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(i) x*yeL, yxxeLforall xe H and ye L.
(i) x*y+ y*xy =+ ysx forall xeK and yeL.

Now, put s = (L x L) U idg. Since L is an ideal, s is a congruence of H(*). Moreover,
s % idy and H(*)[s is isomorphic to G. Let r =+ id, be a congruence of H(*). We are
going to show that s < r. There are ¢, de H such that ¢ + d and (c, d) € r. The fol-
lowing cases can arise:

(1) c,de L. Thenr|L#id,, Lx L< rand s  r, since L is simple.

(2 ceK,deL. Then (c*xd,d*d)er,c+xd,dxde L and c »d + d » d. Now, we
can proceed similarly as in (1).

(3) ce L, de K. Dual to (2).

(4) c,deK. Thena = ¢ * f(c,d), b = d * f(c, d), (a, b) € r and (1) may be applied.

We have proved that H(x) is subdirectly irreducible. It remains to show that this
groupoid is faithful. For, let x, y € H, x + y. If x, y € K then we have x * f(x, y) *
+ y*f(x,y) and f(x,¥)*x + f(x,y)*y. If xeK, yeLthen x*y £ y*y *
#+ y * x. Similarly, if xe L, y e K. Finally,if x, ye Lthen x *u + y*u andv * x +
% v * y for some u, v e L, since L is faithful.

2.4 Proposition. Let G be a subdirectly irreducible groupoid containing two
elements a, b such that a + b, a = aa and (a, b) € sg. Then there exists a subdirectly
irreducible groupoid H such that G is isomorphic to H/s.

Proof. Let « be an element not belonging to G and H = G U {a}. Define an opera-
tion * on H as follows: x * y = xy if x, y€ G; x * « = xa and a * x = ax forevery
a+xeG axa=a=axa; axa=a. Put s={(a,a), (¢ a)} vid,. It is easy
to see that s =+ idy is a congruence of H(*) and H(x)/[s is isomorphic to G. Now, let
r + idy be a congruence of H(x). There are ¢,d € H with ¢ + d and (c, d)er. We
can assume that ¢ € G. The following cases can arise:

(i) de G. Then r|G * idg, (a,b)er and (a,a)er, since « = a*a, a* b = ab,
(¢, ab)e r and (a, ab) e r.

(ii) d = «. We can assume that ¢ # a. Then (a,®)€r, since ac = a*c, a = a*a,
(ac,a)er,ac=axc,a =axa, (ac,a)er.

2.5 Proposition. Let G be a groupoid satisfying at least one of the following
conditions:
(i) G has a zero element.
(ii) G is subdirectly irreducible and idempotent.
(iii) G is subdirectly irreducible and there exist a, b € G such that a + b and ac =
= bc, ca = cb for every ce G.
(iv) G is simple and contains at least one idempotent element.
(v) G is simple and ab = cd for some a, b, c, d € G with (a, b) * (c, d).
(vi) G is simple and finite.
(vii) G is a quasigroup and every congruence of G is either left or right cancellative.
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(viii) G is a finite quasigroup.
(ix) G is a group.
Then there exists a subdirectly irreducible groupoid H such that G is isomorphic to
H|sy.
Proof. See 2.3, 2.4 and [1, Theorem 4.11].
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