Acta Universitatis Carolinae. Mathematica et Physica

P. Holan; J. Kvasil; F. Štěrba; M. Smrčková
The splitting of the states and p-n interaction in odd-odd deformed nuclei

Acta Universitatis Carolinae. Mathematica et Physica, Vol. 23 (1982), No. 2, 3--13

Persistent URL: http://dml.cz/dmlcz/142491

Terms of use:

© Univerzita Karlova v Praze, 1982

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

The Splitting of the States and $\mathrm{p}-\mathrm{n}$ Interaction in Odd-odd Deformed Nuclei

P. HOLAN, J. KVASIL, F. ŠTĚRBA, M. SMRČKOVÁ*)
Department of Nuclear Physics, Faculty of Mathematics and Physics, Charles University, Prague**)

Received 19 April 1982

The expressions for proton-neutron residual interaction in odd-odd deformed nuclei are calculated. Nuclear potential including Wigner, Bartlett, Majorana, Heisenberg and tensor forces is considered. Expressions permitting numerical calculations are derived using δ-function, oscillator, square-well, Gaussian and Yukawa radial dependences for proton-neutron potential.

V práci jsou odvozeny vztahy pro proton-neutronovou zbytkovou interakci v licho-lichých deformovaných jádrech. Při výpočtu byl uvažován potenciál, zahrnující Wignerovy, Bartlettovy, Majoranovy, Heisenbergovy a tenzorové síly. Vztahy, umožňující numerické výpočty, byly odvozeny pro radiální závislost potenciálu, odpovídající δ-funkci, harmonickému oscilátoru, pravoúhlé jámě, Gaussovu a Yukawovu potenciálu.

В работе даются формулы для остаточного протон-нейтронного взаимодействия в нечет-но-нечетных деформированных ядрах. Учитавается потенциал включающий Вигнера, Бартлэтта, Майорана, Гейзенберга и тензорные силы. Выражения удобные для нумерических вычислений получены для радиальной зависимости потенциала в виде δ-функции, гармонического осциллатора, прямоуголной ямы и потенциалов Гаусса о Юкавы,

Residual proton-neutron interaction in odd-odd deformed nuclei is calculated. Nuclear potential including Wigner, Bartlett, Majorana, Heisenberg and tensor forces are considered. Expressions permitting numerical calculations are derived using δ-function, oscillator, square-well, Gausian and Yukawa radial dependences for proton-neutron potential.

1. Introduction

In last twenty five years the understanding of the structure of deformed nuclei has reached rather big progress. Many excited states were succesfully interpreted in framework of unified model based on the single particle motion in Nilsson or Woods-

[^0]Saxon potentials with pairing interaction included [1]. Nevertheless, some substantial difficulties were met if the states in odd-odd deformed nuclei were interpreted. They are connected mainly with residual interaction between odd proton and odd neutron, which affects strongly individual quasiparticle states in odd-odd nuclei. As a result the intrinsic states with $K=\left|\Omega_{\mathrm{p}} \pm \Omega_{\mathrm{n}}\right|$ have different energy. The splitting, ΔE, is rather sensitive to the form of the potential describing the $\mathrm{p}-\mathrm{n}$ residual interaction.

Role of $\mathrm{p}-\mathrm{n}$ interaction in heavy odd-odd deformed nuclei was examined in relatively few papers (e.g. [2-5]). Analysis with rather general form of the $\mathrm{p}-\mathrm{n}$ potential was carried out in Ref. [2], but only the "odd-even shift" in $K=0$ rotational bands was discussed. Splitting of the $K=\left|\Omega_{\mathrm{p}} \pm \Omega_{\mathrm{n}}\right|$ states was discussed by Pyatov [3], however only potential for zero-ıange forces was considered. More detailed calculations were performed by Jones et al. [4] and Lassjo et al. [5] who took general form of the $\mathrm{p}-\mathrm{n}$ potential, but calculations are limited to the Gaussian form of the radial dependence.

In the present work are derived the expressions permitting numerical calculation of the splitting in odd-odd deformed nuclei. The $\mathrm{p}-\mathrm{n}$ potential, $V_{\mathrm{p} n}$, including Wigner, Bartlett, Majorana, Heisenberg and tensor forces is taken into account. Influence of different radial dependence of central part of V_{pn} on the $K=\left|\Omega_{\mathrm{p}} \pm \Omega_{\mathrm{n}}\right|$ splitting is examined and formulas for δ-function (zero-range), oscillator, square-well, Gaussian and Yukawa dependences are expressed in form convenient for numerical calculations.

2. General formulation of problem

Total hamiltonian of odd-odd deformed nucleus can be written in the form [1]

$$
\begin{equation*}
H=H_{\mathrm{p}}+H_{\mathrm{n}}+V_{\mathrm{pn}}+H_{\mathrm{R}}+H_{\mathrm{Cl}} . \tag{1}
\end{equation*}
$$

Here H_{p} and H_{n} are the hamiltonians for proton (p) and neutron (n) single particle motion respectively, H_{R} represents rotation of the nucleus as a whole and H_{CI} describes coupling between rotational and intrinsic motion (Coriolis interaction). V_{pn} is potential of residual $\mathrm{p}-\mathrm{n}$ interaction which is assumed to be fully responsible for the splitting of the $K=\left|\Omega_{\mathrm{p}} \pm \Omega_{\mathrm{n}}\right|$ states in the nucleus.

Neglecting H_{CI} term the wave function of unperturbed hamiltonian $H_{0}=H_{\mathrm{p}}+$ $+H_{\mathrm{n}}+H_{\mathrm{R}}$ can be written in the form [6]

$$
\begin{equation*}
\left|I K, \Omega_{\mathrm{p}} \Omega_{\mathrm{n}} \gamma\right\rangle=\left(\frac{2 I+1}{16 \pi^{2}}\right)^{1 / 2}\left(1+R_{1}\right) \mathscr{D}_{M K}^{I} \Phi_{K} \tag{2}
\end{equation*}
$$

with intrinsic wave function defined as

$$
\begin{equation*}
\Phi_{K}=\chi_{\Omega_{\mathrm{p}}} \chi_{\Omega_{\mathrm{n}}}, \quad K=\left|\Omega_{\mathrm{p}} \pm \Omega_{\mathrm{n}}\right|, \quad \gamma=0 \tag{3}
\end{equation*}
$$

for $K>0$ and

$$
\begin{equation*}
\Phi_{K=0}=\frac{1}{2}\left(\chi_{\Omega_{\mathrm{p}}} \chi_{-\Omega_{\mathrm{n}}}+\gamma_{-\Omega_{\mathrm{p}}} \chi_{\Omega_{\mathrm{n}}}\right), \quad \gamma= \pm 1 \tag{4}
\end{equation*}
$$

for $K=0$. The single particle wave functions χ_{Ω} are further considered as calculated from the Nilsson potential [1, 6].

The splitting, ΔE, of the states in odd-odd deformed nucleus can be then defined $a s^{\mathrm{a}}$)

$$
\begin{align*}
\Delta E & =\left\langle I K_{1}, \Omega_{\mathrm{p}} \Omega_{\mathrm{n}} \gamma\right| V_{\mathrm{pn}}\left|I K_{1}, \Omega_{\mathrm{p}} \Omega_{\mathrm{n}} \gamma\right\rangle- \\
& -\left\langle I K_{2}, \Omega_{\mathrm{p}} \Omega_{\mathrm{n}} \gamma\right| V_{\mathrm{pn}}\left|I K_{2}, \Omega_{\mathrm{p}} \Omega_{\mathrm{n}} \gamma\right\rangle \tag{5}
\end{align*}
$$

where $K_{1}=\Omega_{\mathrm{p}}+\Omega_{\mathrm{n}}$ and $K_{2}=\left|\Omega_{\mathrm{p}}-\Omega_{\mathrm{n}}\right|$ correspond to the parallel and antiparallel coupling of $\Omega-\mathrm{s}$.

3. The residual $p-n$ interaction

Expressions for the splitting, ΔE, were calculated with proton-neutron potential V_{pn} including Wigner (W), Bartlett (B), Majorana (M), Heisenberg (H) and tensor (T) types of nuclear forces. As the calculation with customary form of potential V_{pn} is very complicated and unclear more convenient form of V_{pn} was used and V_{pn} was written as

$$
\begin{equation*}
V_{\mathrm{pn}}=V\left(\left|\vec{r}_{\mathrm{p}}-\vec{r}_{\mathrm{n}}\right|\right) \sum_{i=1}^{5} \alpha_{\mathrm{i}} O_{\mathrm{i}} \tag{6}
\end{equation*}
$$

α_{i} are parameters connected with strength parameter $V_{k}, k \equiv W, B, M, H, T$ (deepness parameter) for individual types of $\mathrm{p}-\mathrm{n}$ potential and are equal

$$
\begin{align*}
& \alpha_{1}=V_{W}+\frac{V_{B}}{2}, \quad \alpha_{2}=\frac{V_{B}}{2} \tag{7}\\
& \alpha_{3}=V_{M}+\frac{V_{H}}{2}, \quad \alpha_{4}=\frac{V_{H}}{2}, \quad \alpha_{5}=V_{T} .
\end{align*}
$$

Operators O_{i} were used in the form

$$
\begin{gather*}
O_{1}=1, \quad O_{2}=\left(\vec{\sigma}_{\mathrm{p}} \vec{\sigma}_{\mathrm{n}}\right), \quad O_{3}=P_{\mathrm{M}}, \quad O_{4}=\left(\vec{\sigma}_{\mathrm{p}} \vec{\sigma}_{\mathrm{n}}\right) P_{\mathrm{M}} \tag{8}\\
O_{5}=S_{\mathrm{pn}}=\frac{3\left(\left(\vec{r}_{\mathrm{p}}-\vec{r}_{\mathrm{n}}\right) \vec{\sigma}_{\mathrm{p}}\right)\left(\left(\vec{r}_{\mathrm{p}}-\vec{r}_{\mathrm{n}}\right) \vec{\sigma}_{\mathrm{n}}\right)}{\left|\vec{r}_{\mathrm{p}}-\vec{r}_{\mathrm{n}}\right|^{2}}-\left(\vec{\sigma}_{\mathrm{p}} \vec{\sigma}_{\mathrm{n}}\right)
\end{gather*}
$$

which made it possible to express simply individual parts, $\left(V_{\mathrm{pn}}\right)_{\mathbf{k}}$, of the total $\mathbf{p}-\mathrm{n}$ potential V_{pn} and simultaneously simplifies substantially the calculations. For radial

[^1]part, $V\left(\left|\vec{r}_{\mathrm{p}}-\vec{r}_{\mathrm{n}}\right|\right)$, of the potential the δ-function (d), Gaussian (g), harmonic oscillator (h), square-well (w) and Yukava (y) dependences in the forms
\[

$$
\begin{align*}
V_{d}(r)= & -\frac{4 \pi}{r^{2}} \delta(r) \tag{9}\\
V_{g}(r)= & -\frac{2}{\pi^{1 / 2} r_{g}} \mathrm{e}^{-\left(r / r_{g}\right)^{2}} \tag{10}\\
V_{w}(r)= & -\frac{1}{r_{w}} \text { for } r \leqq r_{w} \tag{11}\\
& 0 \quad \text { for } r>r_{w} \\
V_{h}(r)= & -\frac{3}{2 r_{h}}\left[1-\left(\frac{r}{r_{h}}\right)^{2}\right] \text { for } r \leqq r_{h} \tag{12}\\
& 0 \quad \text { for } r>r_{h} \\
V_{y}(r)= & -\frac{1}{r} e^{-r / r_{y}}
\end{align*}
$$
\]

respectively were considered. Here $r=\left|\vec{r}_{\mathrm{p}}-\vec{r}_{\mathrm{n}}\right|, r_{\rho}, j \equiv g, h, w, y$ is the range parameter. The energy splitting (5) can be then rewritten in more explicite form

$$
\begin{equation*}
\Delta E=\sum_{i=1}^{5} \alpha_{i}\left(A_{i}^{p}-A_{i}^{a}\right) \tag{14}
\end{equation*}
$$

in which A_{i} are diagonal matrix elements of operators $O_{\mathrm{i}} \cdot V(r)$

$$
\begin{equation*}
A_{\mathrm{i}}=\left\langle I K, \Omega_{\mathrm{p}} \Omega_{\mathrm{n}} \gamma\right| V(r) O_{\mathrm{i}}\left|I K, \Omega_{\mathrm{p}} \Omega_{\mathrm{n}} \gamma\right\rangle \tag{15}
\end{equation*}
$$

for fixed form of radial dependence $V(r)$ given by Eq. (9)-(13). Indexes " p " and " a " in (14) refer to the parallel and antiparallel coupling of Ω-s respectively. Derivation of general expressions is now connected with explicite evaluation of A_{i} for corresponding form of $\mathrm{p}-\mathrm{n}$ potential.

Structure of operators in (15) made it possible to separate the space and spin dependence in matrix elements A_{i}. It is therefore convenient to express Nilsson functions χ_{Ω} in intrinsic wave function Φ_{K} (Eq. (3) and (4)) as a product of the space and spin parts. Intrinsic wave function Φ_{K} can be then rewritten in term of Nilsson coefficients $a_{N I A}$ for proton and neuton parts [7] and corresponding Clebsch-Gordon coefficients. After rather long calculations matrix elements A_{i} can be expressed in the form

$$
\begin{equation*}
A_{\mathrm{i}}=Q_{I K \gamma} \sum_{a} R B_{\mathrm{i}}, \quad i=1,2,3,4,5 \tag{16}
\end{equation*}
$$

where $Q_{I K \gamma}$ is equal

$$
\begin{equation*}
Q_{I K \gamma}=1+\delta_{K, 0} \frac{\prod_{\mathrm{p}} \prod_{\mathrm{n}}(-1)^{I} \gamma-1}{2} \tag{17}
\end{equation*}
$$

Factor R is composed from Clebsch-Gordon coefficients for coupling of proton and neutron orbital and spin moments and from corresponding Nilsson coefficients $a_{N I L}$. Addition in (16) is carried out through indexes $a \equiv\left(N_{\mathrm{p}} l_{\mathrm{p}} N_{\mathrm{n}} l_{\mathrm{n}} L N_{\mathrm{p}}^{\prime} l_{\mathrm{p}}^{\prime} N_{\mathrm{n}}^{\prime} l_{\mathrm{n}}^{\prime} L^{\prime} \Lambda_{\mathrm{p}} \Lambda_{\mathrm{n}}\right.$. $\left.\Sigma_{\mathrm{p}} \Sigma_{\mathrm{n}} \lambda \Lambda_{\mathrm{p}}^{\prime} \Lambda_{\mathrm{n}}^{\prime} \Sigma_{\mathrm{p}}^{\prime} \Sigma_{\mathrm{n}}^{\prime} \lambda^{\prime} s \sigma s^{\prime} \sigma^{\prime}\right)$ for which relations

$$
\begin{array}{ll}
\Lambda_{i}+\Sigma_{\mathrm{i}}=\Omega_{\mathrm{i}}, & i=p, n \tag{18}\\
\lambda=\Lambda_{\mathrm{p}} \pm \Lambda_{\mathrm{n}}, & \sigma=\Sigma_{\mathrm{p}}-\Sigma_{\mathrm{n}}
\end{array}
$$

are valid. By stroke are distinguished the indexes related to both wave functions in matrix elements A_{i}. It should be noted that if the $\Delta N \neq 0$ interaction in nucleus is neglected the addition through N falls off.

Matrix elements B_{i} in (16) break down in a few parts as a result of the term $\left(1+R_{1}\right)$ in wave function (2) and can be written in the form

$$
\begin{gather*}
B_{\mathrm{i}}=\frac{1}{2}\left\{\left[C_{i}^{++}+(-1)^{L+s+L^{\prime}+s^{\prime}} C_{i}^{--}\right] \pm\right. \tag{19}\\
\left. \pm(-1)^{I-L-s} \delta_{K, 0}\left[C_{i}^{+-}+(-1)^{L+s+L^{\prime}+s^{\prime}} C_{i}^{-+}\right]\right\}
\end{gather*}
$$

for $K=\left|\Omega_{\mathrm{p}} \pm \Omega_{\mathrm{n}}\right|$ respectively. The expressions $C_{i}^{\varphi_{\mathrm{p}} \varphi_{\mathrm{n}}}$ are matrix elements

$$
\begin{gather*}
C_{i}^{\varphi_{\mathrm{p}} \varphi_{\mathrm{n}}}=\left\langle N_{\mathrm{p}}^{\prime} l_{\mathrm{p}}^{\prime} N_{\mathrm{n}}^{\prime} l_{\mathrm{n}}^{\prime} ; L^{\prime} \varphi_{\mathrm{p}} \lambda^{\prime}\right|\left\langle\frac{1}{2} \frac{1}{2} ; s^{\prime} \varphi_{\mathrm{p}} \sigma^{\prime}\right| \tag{20}\\
\left.V(r) O_{i} \frac{1}{2} \frac{1}{2} ; s \varphi_{\mathrm{n}} \sigma\right\rangle\left|N_{\mathrm{p}} l_{\mathrm{p}} N_{\mathrm{n}} l_{\mathrm{n}} ; L \varphi_{\mathrm{n}} \lambda\right\rangle .
\end{gather*}
$$

The indexes " φ_{p} " and " φ_{n} " are equal to " + " or " - " and are connected with development of the wave functions.

Matrix elements $\mathrm{C}_{i}^{\varphi_{\mathrm{p}} \varphi_{\mathrm{n}}}$ have to be calculated independently for each operator O_{i} (8). Calculations are rather complicated and very tedious and are similar for all O_{i} (except for O_{5}, for which different kind of terms appears). Therefore we present here as an illustrative example of used method only evaluation of the matrix elements for O_{2} operator in more details. For other operators, including O_{5} one, only the resulting expressions are given.

First we rewrite matrix elements $C_{2}^{\varphi_{\mathrm{p}} \varphi_{\mathrm{n}}}(20)$ as a product of space ($D_{2}^{\varphi_{\mathrm{p}} \varphi_{\mathrm{n}}}$) and spin $\left(\mathscr{D}_{2}^{\varphi_{\mathrm{p}} \varphi_{\mathrm{n}}}\right)$ parts

$$
\begin{equation*}
C_{2}^{\varphi_{\mathrm{p}} \varphi_{\mathrm{n}}}=\mathscr{D}_{2}^{\varphi_{\mathrm{p}} \varphi_{\mathrm{n}}} D_{2}^{\varphi_{\mathrm{P}} \varphi_{\mathrm{n}}} . \tag{21}
\end{equation*}
$$

Further we will evaluate only the term with $\varphi_{\mathrm{p}}=\varphi_{\mathrm{n}}=+$. Corresponding term \mathscr{D}_{2}^{++} can be rewritten with respect to the properties of the \vec{S}^{2} operator in simple form

$$
\begin{equation*}
\mathscr{D}_{2}^{++}=\delta_{s^{\prime}, s} \delta_{\sigma^{\prime}, \sigma}[2 s(s+1)-3] . \tag{22}
\end{equation*}
$$

For evaluation of space matrix element D_{2}^{++}it is convenient to transform the expressions to new coordinates

$$
\begin{equation*}
\vec{r}_{\mathrm{t}}=\frac{\vec{r}_{\mathrm{p}}+\vec{r}_{\mathrm{n}}}{2^{1 / 2}}, \quad \vec{r}_{\mathrm{r}}=\frac{\vec{r}_{\mathrm{p}}-\vec{r}_{\mathrm{n}}}{2^{1 / 2}} \tag{23}
\end{equation*}
$$

The wave function $\left|N_{\mathrm{p}} l_{\mathrm{p}} N_{\mathrm{n}} l_{\mathrm{n}}, L \lambda\right\rangle$ can be then rewritten using the TalmiMoshinski coefficients $\left(N_{\mathrm{p}} l_{\mathrm{p}} N_{\mathrm{n}} l_{\mathrm{n}}|L| N_{\mathrm{r}} l_{\mathrm{r}} N_{\mathrm{t}} l_{\mathrm{t}}\right)[8,9]$ and ;

$$
\begin{gather*}
\left|N_{\mathrm{p}} l_{\mathrm{p}} N_{\mathrm{n}} l_{\mathrm{n}} ; L \lambda\right\rangle= \tag{24}\\
=\sum_{N_{\mathrm{r}} l_{\mathrm{N}} N_{\mathrm{t}} l_{\mathrm{t}}}\left(N_{\mathrm{p}} l_{\mathrm{p}} N_{\mathrm{n}} l_{\mathrm{n}}|L| N_{\mathrm{r}} l_{\mathrm{r}} N_{\mathrm{t}} l_{\mathrm{t}}\right)\left|N_{\mathrm{r}} l_{\mathrm{r}} N_{\mathrm{t}} l_{\mathrm{t}} ; L \lambda\right\rangle .
\end{gather*}
$$

Now the operator $V(r)$ acts only on new coordinate r_{r}. This made it possible, after rearrangement of wave functions, to express matrix element D_{2}^{++}in more insight form

$$
\begin{equation*}
D_{2}^{++}=\delta_{L^{\prime}, L} \delta_{\lambda^{\prime}, \lambda} Z \tag{25}
\end{equation*}
$$

with matrix element Z defined as

$$
\begin{align*}
& Z=\sum_{N_{\mathrm{r}} l_{\mathrm{r}} N_{\mathrm{t}} l_{\mathrm{t}} N_{\mathrm{r}}^{\prime}}\left(N_{\mathrm{p}}^{\prime} l_{\mathrm{p}}^{\prime} N_{\mathrm{n}}^{\prime} l_{\mathrm{n}}^{\prime}|L| N_{\mathrm{r}}^{\prime} l_{\mathrm{r}} N_{\mathrm{t}} l_{\mathrm{t}}\right) \times \tag{26}\\
& \times\left(N_{\mathrm{p}} l_{\mathrm{p}} N_{\mathrm{n}} l_{\mathrm{n}}|L| N_{\mathrm{r}} l_{\mathrm{r}} N_{\mathrm{t}} l_{\mathrm{t}}\right) F\left(N_{\mathrm{r}}^{\prime}, l_{\mathrm{r}}, N_{\mathrm{r}}, l_{\mathrm{r}}\right) .
\end{align*}
$$

Here $F\left(N^{\prime}, l^{\prime}, N, l\right)$ is radial integral calculated in coordinate system r_{r}

$$
\begin{equation*}
F\left(N^{\prime}, l^{\prime}, N, l\right)=\int_{0}^{+\infty} R_{N^{\prime} l^{\prime}}(r) V\left(2^{1 / 2} r\right) R_{N l}(r) r^{2} \mathrm{~d} r \tag{27}
\end{equation*}
$$

which is explicitely dependent on the shape of the potential $V(r)$. The evaluation of $F\left(N^{\prime}, l^{\prime}, N, l\right)$ for all five types of considered radial dependences (9) - (13) of potential will be given in part 3.1.

Substituting (25) and (22) into (21) the matrix element $C_{2}^{++}(20)$ can be expressed in definitive form

$$
\begin{equation*}
C_{2}^{++}=\delta_{L^{\prime}, L} \delta_{\lambda^{\prime}, \lambda} \delta_{s^{\prime}, s} \delta_{\sigma^{\prime}, \sigma}[2 s(s+1)-3] Z . \tag{28}
\end{equation*}
$$

Similar evaluation of other $C_{2}^{\varphi_{\mathrm{p}} \varphi_{\mathrm{n}}}$ and substitution into (19) made it possible to express matrix element B_{2}.

Further evaluation of matrix element $A_{\mathbf{i}}(16)$ is simplified if addition through indexes $\Lambda_{\mathrm{p}}, \Lambda_{\mathrm{n}}, \Sigma_{\mathrm{p}}, \Sigma_{\mathrm{n}}, \lambda, \Lambda_{\mathrm{p}}^{\prime}, \Lambda_{\mathrm{n}}^{\prime}, \Sigma_{\mathrm{p}}^{\prime}, \Sigma_{\mathrm{n}}^{\prime}, \lambda^{\prime}, s, \sigma, s^{\prime}, \sigma^{\prime}$ is carried out. Properties of B_{2}, together with explicite form of R made it possible to rewrite finally matrix element A_{2} as

$$
\begin{equation*}
A_{2}=Q_{I K}{ }_{N_{\mathrm{p}_{\mathrm{p}}^{\prime} l_{\mathrm{p}}^{\prime} N_{\mathrm{n}}}} \sum_{l_{\mathrm{n}} \mathrm{l}^{\prime} L N_{\mathrm{p}} l_{\mathrm{p}} N_{\mathrm{n}} l_{\mathrm{n}}} Z S^{*} . \tag{29}
\end{equation*}
$$

Here S^{*} is rather complex expression

$$
\begin{gather*}
S^{*}=\varrho_{++}^{\prime} \varrho_{++}+\varrho_{+-}^{\prime}\left(2 \varrho_{-+}-\varrho_{+-}\right)+\varrho_{-+}^{\prime}\left(2 \varrho_{+-}-\varrho_{-+}\right)+ \tag{30}\\
+\varrho_{--}^{\prime} \varrho_{--} \mp(-1)^{I-L} \delta_{K, 0}\left[\varrho_{++}^{\prime} \varrho_{--}+\varrho_{+-}^{\prime}\left(2 \varrho_{+-}-\varrho_{-+}\right)+\right. \\
\left.+\varrho_{++}^{\prime}\left(2 \varrho_{-+}-\varrho_{+-}\right)+\varrho_{--}^{\prime} \varrho_{++}\right]
\end{gather*}
$$

for $K=\left|\Omega_{\mathrm{p}} \pm \Omega_{\mathrm{n}}\right|$ respectively. Nevertheless, the components $\varrho_{\varphi_{\mathrm{p}} \varphi_{\mathrm{n}}}$ are constructed from Nilsson and Clebsch-Gordon coefficients only and have the form

$$
\begin{gather*}
\varrho_{\varphi_{\mathrm{p}} \varphi_{\mathrm{n}}}=a_{N_{\mathrm{p}} l_{\mathrm{p}} \Lambda_{\mathrm{p}}} a_{N_{\mathrm{n}} l_{\mathrm{n}} \Lambda_{\mathrm{n}}}\left(l_{\mathrm{p}} \Lambda_{\mathrm{p}} l_{\mathrm{n}} \Lambda_{\mathrm{n}} \mid L \Lambda_{\mathrm{p}}+\Lambda_{\mathrm{n}}\right) \tag{31a}\\
\Lambda_{\mathrm{p}}+\left(\varphi_{\mathrm{p}} \frac{1}{2}\right)=\Omega_{\mathrm{p}}, \quad \Lambda_{\mathrm{n}}+\left(\varphi_{\mathrm{n}} \frac{1}{2}\right)=\Omega_{\mathrm{n}}
\end{gather*}
$$

for $K=\Omega_{\mathrm{p}}+\Omega_{\mathrm{n}}$,

$$
\begin{gather*}
\varrho_{\varphi_{\mathrm{p}} \varphi_{\mathrm{n}}}=a_{N_{\mathrm{p}} l_{\mathrm{p}} \Lambda_{\mathrm{p}}} a_{N_{\mathrm{n}} l_{\mathrm{n}} \Lambda_{\mathrm{n}}}\left(l_{\mathrm{p}} \Lambda_{\mathrm{p}} l_{\mathrm{n}}-\Lambda_{\mathrm{n}} \mid L \Lambda_{\mathrm{p}}-\Lambda_{\mathrm{n}}\right) \tag{31b}\\
\Lambda_{\mathrm{p}}+\left(\varphi_{\mathrm{p}} \frac{1}{2}\right)=\Omega_{\mathrm{p}}, \quad \Lambda_{\mathrm{n}}-\left(\varphi_{\mathrm{n}} \frac{1}{2}\right)=\Omega_{\mathrm{n}}
\end{gather*}
$$

for $\Omega_{\mathrm{p}}-\Omega_{\mathrm{n}} \geqq 0$ and

$$
\begin{gather*}
\varrho_{\varphi_{\mathrm{p} \varphi_{\mathrm{n}}}}=a_{N_{\mathrm{p}} l_{\mathrm{p}} \Lambda_{\mathrm{p}}} a_{N_{\mathrm{n}} l_{\mathrm{n}} \Lambda_{\mathrm{n}}}\left(l_{\mathrm{p}}-\Lambda_{\mathrm{p}} l_{\mathrm{n}} \Lambda_{\mathrm{n}} \mid L-\Lambda_{\mathrm{p}}+\Lambda_{\mathrm{n}}\right) \tag{31c}\\
\Lambda_{\mathrm{p}}-\left(\varphi_{\mathrm{p}} \frac{1}{2}\right)=\Omega_{\mathrm{p}}, \quad \Lambda_{\mathrm{n}}+\left(\varphi_{\mathrm{n}} \frac{1}{2}\right)=\Omega_{\mathrm{n}}
\end{gather*}
$$

for $\Omega_{\mathrm{n}}-\Omega_{\mathrm{p}}>0$.
Evaluation of matrix elements $A_{\mathrm{i}}(16)$ for $i=1,3,4$ can be carried out in a similar way as used for A_{2}. Only evaluation of matrix element A_{5} is more complicated because the tensor operator S_{pn} in (8) has to be explicitely expressed. It can be done if expression similar to Eq. (1.91) in Ref. [10] for S_{pn} is used. Further method of evaluation of A_{5} is then similar to that for other A_{i}.

After rather complicated and tedious calculations the matrix elements A_{i} can be expressed in definitive form

$$
\begin{align*}
& A_{1}=Q_{I K_{N_{\mathbf{p}}} l_{\mathrm{p}} N_{\mathbf{n}} l_{\mathrm{n}} L N_{\mathrm{p}}^{\prime} I_{\mathbf{l}^{\prime} N_{n^{\prime}} I_{n^{\prime}}}} \sum_{I S} \tag{32}\\
& A_{3}=Q_{I K \gamma}{ }_{N_{\mathrm{p}} l_{\mathrm{p}} N_{\mathrm{n}} l_{\mathrm{n}} L N_{\mathrm{p}}^{\prime} l_{\mathrm{p}}{ }^{\prime} N_{\mathrm{n}^{\prime}} I_{\mathrm{n}^{\prime}}} Z^{*} S \tag{33}
\end{align*}
$$

$$
\begin{align*}
& A_{5}=Q_{I K \gamma}{ }_{N_{\mathrm{p}} l_{\mathrm{p}} N_{\mathrm{n}} l_{\mathrm{n}} L N_{\mathrm{p}^{\prime}} l_{\mathrm{l}^{\prime}} N_{\mathrm{n}^{\prime}} l_{\mathrm{n}}{ }^{\prime} L^{\prime}} Y^{\prime} \tag{34}
\end{align*}
$$

Here S^{*} and Z are expressions (30) and (26), Z^{*} and Y are defined as

$$
\begin{align*}
& Z^{*}=\sum_{N_{\mathrm{r}} l_{\mathrm{r}} N_{\mathrm{t}} l_{\mathrm{t}} N_{\mathrm{r}}^{\prime}}(-1)^{l_{\mathrm{r}}}\left(N_{\mathrm{p}}^{\prime} l_{\mathrm{p}}^{\prime} N_{\mathrm{n}}^{\prime} l_{\mathrm{n}}^{\prime}|L| N_{\mathrm{r}}^{\prime} l_{\mathrm{r}} N_{\mathrm{t}} l_{\mathrm{t}}\right) \times \tag{36}\\
& \times\left(N_{\mathrm{p}} l_{\mathrm{p}} N_{\mathrm{n}} l_{\mathrm{n}}|L| N_{\mathrm{r}} l_{\mathrm{r}} N_{\mathrm{t}} l_{\mathrm{t}}\right) F\left(N_{\mathrm{r}}^{\prime}, l_{\mathrm{r}}, N_{\mathrm{r}}, l_{\mathrm{r}}\right) \\
& Y=(-1)^{L+1}(2 L+1)^{1 / 2} \sum_{N_{\mathrm{r}} l_{\mathrm{r}} N_{\mathrm{t}} l_{L_{\mathrm{r}}^{\prime} N^{\prime} l_{\mathrm{r}}^{\prime}}\left(2 l_{\mathrm{r}}^{\prime}+1\right)^{1 / 2} \times} \times\left(N_{\mathrm{p}}^{\prime} l_{\mathrm{p}}^{\prime} N_{\mathrm{n}}^{\prime} l_{\mathrm{n}}^{\prime}\left|L^{\prime}\right| N_{\mathrm{r}}^{\prime} l_{\mathrm{r}}^{\prime} N_{\mathrm{t}} l_{\mathrm{t}}\right) F\left(N_{\mathrm{r}}^{\prime}, l_{\mathrm{r}}^{\prime}, N_{\mathrm{r}}, l_{\mathrm{r}}\right) \times \tag{37}\\
& \times\left(N_{\mathrm{p}} l_{\mathrm{p}} N_{\mathrm{n}} l_{\mathrm{n}}|L| N_{\mathrm{r}} l_{\mathrm{r}} N_{\mathrm{t}} l_{\mathrm{t}}\right)\left(l_{\mathrm{r}}^{\prime} 020 \mid l_{\mathrm{r}} 0\right) \times \\
& \\
& \times\left(\begin{array}{lll}
l_{\mathrm{r}}^{\prime} & l_{\mathrm{t}} & L^{\prime} \\
L & 2 & l_{\mathrm{r}}
\end{array}\right)
\end{align*}
$$

and S and T are again complex coefficients expressed through $\varrho_{\varphi \mathrm{p} \varphi \mathrm{n}}$ (Eq.(31a)-(31c))

$$
\begin{align*}
& S=\varrho_{++}^{\prime} \varrho_{++}+\varrho_{+-}^{\prime} \varrho_{+-}+\varrho_{-+}^{\prime} \varrho_{-+}+\varrho_{--}^{\prime} \varrho_{--} \mp \tag{38}\\
& \mp(-1)^{I-L} \delta_{K, 0}\left(\varrho_{++}^{\prime} \varrho_{--}+\varrho_{+-}^{\prime} \varrho_{-+}+\varrho_{-+}^{\prime} \varrho_{+-}+\varrho_{--}^{\prime} \varrho_{++}\right) \\
& T=\varrho_{++}^{\prime}\left[2\left(L K-120 \mid L^{\prime} K-1\right) \varrho_{++}+6^{1 / 2}\left(L K 2-1 \mid L^{\prime} K-1\right) \times\right. \tag{39}\\
& \left.\times\left(\varrho_{+-}+\varrho_{-+}\right)+2.6^{1 / 2}\left(L K+12-2 \mid L^{\prime} K-1\right) \varrho_{--}\right]-\left(\varrho_{+-}^{\prime}+\varrho_{-+}^{\prime}\right) \times \\
& \times\left[6^{1 / 2}\left(L K-121 \mid L^{\prime} K\right) \varrho_{++}+2\left(L K 20 \mid L^{\prime} K\right)\left(\varrho_{+-}+\varrho_{-+}\right)+\right. \\
& \left.+6^{1 / 2}\left(L K+12-1 \mid L^{\prime} K\right) \varrho_{--}\right]+\varrho_{---}^{\prime}\left[2.6^{1 / 2}\left(L K-122 \mid L^{\prime} K+1\right) \times\right. \\
& \times \varrho_{++}+6^{1 / 2}\left(L K 21 \mid L^{\prime} K+1\right)\left(\varrho_{+-}+\varrho_{-+}\right)+ \\
& \left.+2\left(L K+120 \mid L^{\prime} K+1\right) \varrho_{--}\right] \mp(-1)^{I-L^{\prime}} \delta_{K, 0}\left\{\varrho_{++}^{\prime} \times\right. \\
& \times\left[2.6^{1 / 2}\left(L-122 \mid L^{\prime} 1\right) \varrho_{++}+6^{1 / 2}\left(L 021 \mid L^{\prime} 1\right) \times\right. \\
& \left.\times\left(\varrho_{+-}+\varrho_{-+}\right)+2\left(L 120 \mid L^{\prime} 1\right) \varrho_{--}\right]-\left(\varrho_{+-}^{\prime}+\varrho_{-+}^{\prime}\right) \times \\
& \times\left[6^{1 / 2}\left(L-121 \mid L^{\prime} 0\right) \varrho_{++}+2\left(L 020 \mid L^{\prime} 0\right) \times\right. \\
& \left.\times\left(\varrho_{+-}+\varrho_{-+}\right)+6^{1 / 2}\left(L 12-1 \mid L^{\prime} 0\right) \varrho_{--}\right]+\varrho_{--}^{\prime} \times \\
& \times\left[2\left(L-120 \mid L^{\prime}-1\right) \varrho_{++}+6^{1 / 2}\left(L 02-1 \mid L^{\prime}-1\right) \times\right. \\
& \left.\left.\times\left(\varrho_{+-}+\varrho_{-+}\right)+2.6^{1 / 2}\left(L 12-1 \mid L^{\prime}-1\right) \varrho_{--}\right]\right\} .
\end{align*}
$$

The note " \pm " in expressions (38) and (39) corresponds again to $K=\left|\Omega_{\mathrm{p}} \pm \Omega_{\mathrm{n}}\right|$ respectively.

3.1 Radial integrals

For evalution of integrals (27) radial wave function, $R_{n}(r)$, has to be explicitely expressed. Using properties of degenerate hypergeometric functions $R_{n l}(r)$ can be expressed as [7]

$$
\begin{equation*}
R_{n l}(r)=\sum_{k=0}^{n} \beta_{\mathrm{k}}(l, n) v^{l / 2+k+3 / 4} \mathrm{e}^{-v r^{2} / 2} r^{2 k+l} \tag{40}
\end{equation*}
$$

where $2 n=(N-1), \beta_{\mathrm{k}}(l, n)$ are normalization coefficients and v is numerical factor of dimension m^{-2} which is proportional to $A^{-1 / 3}$. After substitution (40) into (27) radial integral $F\left(N^{\prime}, l^{\prime}, N, l\right)$ can be expressed in form

$$
\begin{equation*}
F\left(N^{\prime}, l^{\prime}, N, l\right)=\sum_{k^{\prime}=0}^{n^{\prime}} \beta_{k^{\prime}}\left(l^{\prime}, n^{\prime}\right) \sum_{k=0}^{n} \beta_{k}(l, n) \times \Phi\left(\frac{l+l^{\prime}}{2}+k+k^{\prime}+1, v\right) \tag{41}
\end{equation*}
$$

through new integrals $\Phi(m, v)$

$$
\begin{equation*}
\Phi(m, v)=\int_{0}^{+\infty}\left(v r^{2}\right)^{m} \mathrm{e}^{-v r^{2}} V\left(2^{1 / 2} r\right) v^{1 / 2} \mathrm{~d} r \tag{42}
\end{equation*}
$$

Integrals $\Phi(m, v)$ depends on radial shape of nuclear potential $V(r)$ and can be evaluated with use of auxilliary expressions

$$
\begin{gather*}
K(m, x)=\int_{0}^{x} r^{2 m} \mathrm{e}^{-r^{2}} \mathrm{~d} r=x^{2 m+1} \sum_{k=0}^{+\infty} \frac{(-1)^{k} x^{2 k}}{k!(2 m+2 k+1)}, \quad m \geqq 1 \tag{43}\\
L(m)=\lim _{x \rightarrow+\infty} K(m, x)=\int_{0}^{+\infty} r^{2 m} \mathrm{e}^{-r^{2}} \mathrm{~d} r=\frac{(2 m-1)!!\pi^{1 / 2}}{2^{m+1}}, \quad m \geqq 1 \tag{44}\\
M(b, m)=\int_{0}^{+\infty} r^{2 m-1} \mathrm{e}^{-r(r+b)} \mathrm{d} r=\frac{(2 m-1)!!}{2^{2 m}} \mu(b, m), \quad m \geqq 1 \tag{45}
\end{gather*}
$$

Here $\mu(b, m)$ are defined as

$$
\begin{gather*}
\mu(b, 1)=2\left[1-b e^{b^{2} / 4}\left(\frac{\pi^{1 / 2}}{2}-G\left(\frac{b}{2}\right)\right)\right] \tag{46a}\\
\mu(b, 2)=\frac{6+b^{2}}{3} \mu(b, 1)-\frac{4}{3} \tag{46b}\\
\mu(b, m+1)=\frac{8 m-2+b^{2}}{2 m+1} \mu(b, m)-\frac{8(m-1)}{2 m+1} \mu(b, m-1), \quad m \geqq 2 \tag{46c}
\end{gather*}
$$

and $G(x)$ is known integral [11]

$$
\begin{equation*}
G(x)=\int_{0}^{x} e^{-r^{2}} \mathrm{~d} r=\sum_{k=0}^{\infty+} \frac{(-1)^{k} x^{2 k+1}}{k!(2 k+1)} \tag{47}
\end{equation*}
$$

(Evaluation of integral $\Phi(m, v)(42)$ can be done if integration 'per partes" and value of integral (47) are used).

Substituting into (42) fixed radial shape of nuclear potential $V(r)$ (in one of forms (9)-(13)), integrals $\Phi(m, v)$ for each shape $V(r)$ can be expressed through (43)-(45) and are of definitive form

$$
\begin{align*}
\Phi_{d}(m, v) & =-2^{1 / 2} \pi v^{3 / 2} \delta_{m, 1} \tag{48}\\
\Phi_{g}(m, v) & =-\frac{2}{\pi^{1 / 2} r_{g}\left(1+\frac{2}{v r_{g}^{2}}\right)^{m+1 / 2}} L(m)= \\
& =-\frac{(2 m-1)!!}{r_{g} 2^{m}\left(1+\frac{2}{v r_{g}^{2}}\right)^{m+1 / 2}} \tag{49}\\
\Phi_{w}(m, v) & =-\frac{1}{r_{w}} K\left(m, v^{1 / 2} r_{w} 2^{-1 / 2}\right)=
\end{align*}
$$

$$
\begin{gather*}
=-\frac{r_{w}^{2 m} v^{m+1 / 2}}{2^{m+1 / 2}} \sum_{k=0}^{+\infty} \frac{(-1)^{k} r_{w}^{2 k} v^{k}}{2^{k} k!(2 m+2 k+1)} \tag{50}\\
\Phi_{h}(m, v)=-\frac{3}{2 r_{h}}\left[K\left(m, v^{1 / 2} r_{h} 2^{-1 / 2}\right)-K\left(m+1, v^{1 / 2} r_{h} 2^{-1 / 2}\right) \frac{2}{v r_{h}^{2}}\right]= \tag{51}\\
=\frac{3 r_{h}^{2 m} v^{m+1 / 2}}{2^{m+1 / 2}} \sum_{k=0}^{+\infty} \frac{(-1)^{k} r_{h}^{2 k} v^{k}}{2^{k} k!(2 m+2 k+1)(2 m+2 k+3)} \\
\Phi_{y}(m, v)=-v^{1 / 2} 2^{-1 / 2} M\left(2^{1 / 2} v^{-1 / 2} r_{y}^{-1}, m\right)= \tag{52}\\
=-\frac{v^{1 / 2}(2 m-1)!!}{2^{2 m+1 / 2}} \mu\left(2^{1 / 2} v^{-1 / 2} r_{y}^{-1}, m\right) .
\end{gather*}
$$

Radial integrals $F\left(N^{\prime}, l^{\prime}, N, l\right)$ can be now eplicitely expressed from Eq. (41). After substituting (41) into Eqs. (26), (36) and (37) for Z, Z^{*} and Y respectively matrix elements A_{i} (Eqs. (29), (32)-(35)) for different types of nuclear forces and different radial shapes of proton-neutron potential can be evaluated. The $K=\left|\Omega_{\mathrm{p}} \pm \Omega_{\mathrm{n}}\right|$ splitting in odd-odd deformed nuclei, ΔE, is then calculated directly from Eq. (14).

Fig. 1. Dependence of matrix elements for Majorana part of the $\mathrm{p}-\mathrm{n}$ residual interaction in oddodd deformed nuclei on radial shape of nuclear potential.

4. Illustrative example

Example of application of theoretical expressions for calculation of splitting in odd-odd deformed nuclei is presented in Fig. 1 for Majorana part of $\mathrm{p}-\mathrm{n}$ interaction between proton and neutron in $5 / 2+[402]$ and $3 / 2-$ [521] Nilsson states respectively. Both matrix elements $\langle |\left(V_{\mathrm{pn}}\right)_{\mathrm{M}}| \rangle$ from (5) are given as function of radial parameter $r_{j}, j \equiv g, h, w, y$ for different radial shapes (10)-(13) of $\mathrm{p}-\mathrm{n}$ potential (for δ-function shape (9) matrix elements are constant). Calculation was performed with strength parameter of Majorana forces equal $V_{M}=1 \mathrm{MeV}$. Rather strong dependence of matrix elements (and simultaneously of corresponding part of splitting, ΔE, in odd-odd deformed nucleus) on radial parameter r_{j} and especially on radial shape of the $\mathrm{p}-\mathrm{n}$ potential is clearly expressed.

References

[1] Bohr A., Mottelson B. R.: Nuclear Structure, Vol. II. Benjamin Inc., 1975.
[2] Newby N. D. jr.: Phys. Rev. 125 1962, 2063.
[3] Pjatov N. I.: Izv. AN SSSR (ser. fiz.) 27 1963, 1436.
[4] Jones H. D. et al.: Phys. Rev. C3 1971, 529.
[5] Lassijo R. S. et al.: Atom Indonesia 3 1977, 21.
[6] Solovlev V. G.: Těorija složnych jaděr. Nauka, Moskva 1971.
[7] Nilsson S. G.: Mat. Fys. Medd. Dan Vid. Selsk. 29 1955, No. 16.
[8] Moshinski M.: Nucl. Phys. 13 1959, 104.
[9] Trlifaj L.: Phys. Rev. C5 1972, 1534.
[10] Bohr A., Mottelson B. R.: Nuclear Structure, Vol. I. Benjamin Inc., 1969.
[11] Rektorys K. et al.: Přehled užité matematiky. SNTL, Praha 1963.

[^0]: *) Participated partly in time of preparation of diploma thesis.
 **) 18000 Praha 8, Pelc-Tyrolka, Povltavská ul., Czechoslovakia.

[^1]: ${ }^{\text {a }}$) If calculated splitting for the $K=0, \Omega_{\mathrm{p}}=\Omega_{\mathrm{n}}=1 / 2$ states is compared with experimental one the diagonal matrix elements of H_{CI} has to be considered.

