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This notě is concerned with a new condition for the single-valuedness of the duality mapping. 
A generalization of the Beurling-Livingston theorem is proved in detail. 

V práci je uvedena postačující podmínka jednoznačnosti zobrazení duality. Věta Beurlingova-
Livingstoneova je zobecněna a podrobně dokázána. 

B 3a\íeTKe HCCJie,npBaHO ycjiOBHe eAHHCTBeHHOCTH-ayajibHoro oToGpaaceHHH. TeopeMa Bayp-
jiHHra - JlHBHHrcTOHa no,npo6Ho ,noKa3aHa. 

1. Introduction 

The concept of duality mapping was introduced by Beurling and Livingston [3]. 
It has been intensively studied by many authors in connection with the theory of 
monotone operators (for example DeFigueiredo [8]), the geometry of Banach spaces 
((Browder [5], DeFigueiredo [8], Petryshyn [21], [23]), fixed point theory (Gossez, 
Lami Dozo [12]). The duality mapping is also one of the main terms in the theory 
of accretive operators. 

The aim of this note is to give a new condition for single-valuedness of the duality 
mapping, generalization and the detail proof of the corresponding result by Asplund 
[1] concerning the Beurling-Livingston theorem. 

2. Notions, notations and results 

Let £ be a real normed linear space, £* its dual space. Denote by < •, • > a pairing 
between £* and £. 

A Banach space £ is said to be smooth, resp. uniformly smooth, if the norm || • || 
of £ is Gateaux, resp. uniformly Gateaux, differentiable on Si(0) = {x e £; ||x|| = 1}. 
£ is Frechet smooth, resp. uniformly Frechet smooth, if the norm of £ is Frechet, 
resp. uniformly Frechet, differentiable on Si(0). 
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By a gauge function \x : R+ -> R+ we mean a real-valued strictly increasing con
tinuous function such that fi(0) = 0, lim n(t) = -f-co. 

t-> + 00 

A set-valued mapping J : E -> exp£* is called a duality mapping of £ into E* 
with the gauge function /n, if J(0) = {0} and for each u e E, u =# 0, 

J(u) = {u*eE*; <u*,u> = ||u*|| . ||u||, ||u*|| = ^(Hull)} . 

Let J : E -> expE* be a duality mapping with the gauge function u,. Then the 
duality mapping J* : E* -> expE** with the gauge function jx* = n~x is called an 
associated duality mapping with J. 

Let T denote a cannonical mapping between E and £**. 

The further properties of the duality mapping we refer the reader to [ l ] , [6], 
[8] and the references cited here. 

Theorem 1. ([6]) Let E be a real Banach space, J a duality mapping on E. The fol

lowing statements are equivalent: 

(i) E is smooth; 

(ii) J is single-valued; 

(iii) J is continuous on E from the strong topology of E to the weak* topology 
of£*; 

(iv) J is lower semicontinuous on E from the strong topology of £ to the weak* 
topology of £*. 

Theorem 2. ([6]) Let £ be a real Banach space, J a duality mapping on £. 

(i) £ is uniformly smooth if J is uniformly continuous on £ from the strong 
topology of £ to the weak* topology of £*; 

(ii) £ is Frechet smooth, resp. uniformly Frechet smooth, if J is continuous, 
resp. uniformly continuous, on £ from the strong topology of £ to the strong topo
logy of £*. 

These results can be deduced at once from [6]. 

Definition 3. Let £ be a Banach space, T: £ -> expE* a set-valued mapping. Then T 
is called hemicontinuous at x e £, if for each sequence {^}*= i of real numbers, tn -> 0, 
and for each z e E, x* e T(x + tnz) there exists x* e T(x) such that x* -> x* in the 
weak topology of £*. 

Theorem 4. Let £ be a real Banach space, J a hemicontinuous duality mapping on £. 
Then J is single-valued. 
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Proof. Suppose, that there is a point x0 e E such that J(x0) contains at least two 
different points. Assume that x0 G Si(0). Hence the Gateaux differential does not 
exist at x0 in some direction x G Si(0). It means, there are two finite limits 

lim - ( | x 0 + tx\\ - | |x0 | | )= a , 
r-»0 + t 

lim - (||x0 + fx|| - ||x0||) = p, a 4= /? ([20]) . 
f - 0 - t 

There exist two functional x*, y* e S*(0) such that <x*, x> = a, <y*, x> = /? 
and the hyperplanes Hx = {x G £; <x*, x> = 1}, H2 = {x e £; <y*, y> = 1} are 
the supporting hyperplanes to Si(0) at x0 ([20]). Hence <x*, x0> = <y*, x0> = 1. 

Set xn = (1 ) x0, n = 1, 2, ... . Cleaily xn -» x0 in the stiong topology of £. 

\ "J 
Define x* = I 1 } x*, yn = [ 1 ) y*9 n = 1, 2 , . . . . Then we have 

<x*, x0> = ||x0||, <y*, *o> = ||xo||- Without loss of generality we may assume that J 
is a duality mapping with the gauge function fi(t) = t. Hence x* e J(x0), y* e J(x0), 
x* E J(x„), y* e J(x„), n = 1 ,2, . . . . Let us construct the sequence {Z*}*= i as follows: 
Am-1 = Am- u Am = yL, m = 1, 2, ... . Clearly, Z* e J(x„) for each n = 1, 2 , . . . . 
However, the sequence {Z*}*=i has no limit. This fact contradicts the assumptions 
of the hemicontinuity of J. The theorem is proved. 

In the proof of next theorem we shall use the following results. 

Let £ be a real Banach space, J a duality mapping on £, J* the associated duality 
mapping with J. 

(i) Let u* e £*. Then u* e J(u) iff T(H) G J*(t/*) ([23]). 

(ii) If J and J* are both single-valued, then x = J* 0 J. 

(iii) If J* is single-valued and hemicontinuous, then £ is reflexive. ([16]). 

(iv) £ is reflexive iff £* = U J(u) ([8]). 
M6E 

Theorem 5, Let £ be a real smooth Banach space with the Frechet smooth dual space 
£*, J a duality mapping on £. Then J"1 is continuous from the strong topology 
of £* to the strong topology of £. 

Proof. According to Theorem 1 and Theorem 2, J is single-valued, J* is conti
nuous from the strong topology of £* to the strong topology of £**. Hence £ is 
reflexive and £* = J(£). We can define J"1 = T " 1

 0 J* on £*. Because T" 1 and J* 
are both continuous, J-1 is also continuous (in the strong topologies). Theorem 
is proved. 
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Remark 6. If the assumptions of Theorem 5 are satisfied, then the duality mapping J 
on E is open. 

Let E be a real normed linear space, J a duality mapping on E. Let us define 
a real function M on E by the relation 

fll*ll 
M(x) = ix(t) dt, xє E . 

The point x* e F* is called a subgradient of M at x e £ iff M(y) = M(x) + 
+ <x*, y — x) for each y e E. We shall denote the set of all subgradients of M in x 
by dM(x). Then J(x) = <9M(x) for each x e £ , x + 0 ([!])• 

The following proof of the Beurling-Livingston theorem is based on the above 
mentioned statement. We give a slight generalization and a detail proof of the cor
responding result of [1]. 

Theorem 7. Let £ be a real normed linear space, F its reflexive subspace, F1 the 
annihilator of F in £*, J a duality mapping on E with the gauge function /i. Then for 
every v e F, w* e F* there exists a point x e £ such that the set J(x + v) n (F1 + w*) 
is nonempty. 

Proof. Denote by F the subspace in £, generated by F and v. Then F is also 

reflexive. Without loss of generality we may suppose that F is reflexive. 

Define on E a real function / by the relation 

f(x) = M(x — v) — <w*, x — v> , x e E . ([) 

Then / is evidently continuous and convex. 

Suppose that there exist xneE, n = 1,2, ..., such that \\xn — v\\ > n and 
f(xn) = \xn — v||. From (1) follows 

fll*n-i>|| 

f(xn) = ii(t) dt - <w*, xn - v> = ||x„ - vl , 

otherwise 

І " ( K t ) - l - | w * | ) ď í ^ 0 

But this contradicts the fact lim fi(t) = + oo. Hence there exists an integer number n0 
t-* + oo 

such that for each x e F, IIx — v|| > nn is f(x) > \\x — v||. It means / is coercive 
7 I! II u J \ J || II •/ 

and therefore / takes its minimum on the reflexive space F in a point x. From (1) it 
tollows that for each y e F, 

M(y - v) = M(x - v) + <w*, y - x> . (2) 

18 



Denoting now v* = w*|F, is v* e J\F(x — v). Since F is the reflexive subspace, 
we can find y0e F such that \\y0 — v|| = 1 and <v*, y0 — v> = ||v*|| . \\y0 — v||. 
From (2) we conclude <v*, y0 — v> ^ M(y0 — v) — M(x — v) + <v*, x — v>, 
which implies 

||v*|| = M(y0 - v) - M(x - v) + <v*, x - v> . (3) 

As v* G F*, by the Hahn-Banach theorem there exists w* e E* such that ||w*|| = 
= ||v*|| and u*\t = v*. Hence w* e F1 + w*. 

Now it remains to prove the inequality (2) for each y e E. Let y e E be an 
arbitrary but fixed element. Then 

<«*, y - v) Z ||«*|| . \\y - v\\ = ||„*|| . I , - t,|| = 

= <̂ *> ||y "~ v\\ • (yo ~ v)} .= M(>! — v) — M(x — v) + <v*, 3c — v> = 

= M(y — v) — M(x — v) + <u*, x — v> . 

We have u* e J(x — v). Hence u* e J(x — v) n (F1 + w*), which completes the 
proof. 
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