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Stability in Stochastic Programming with Recourse

J. DUPACOVA
Department of Statistics, Charles University, Prague

Received 22 December 1982

For stochastic programs with recourse, stability of optimal solution with respect to the
distribution of random coefficients is studied. Three approaches are considered:
(i) Asymptotical properties of estimates based on the empirical distribution (Section 2),
(ii) local behaviour of the optimal solution studied via z-contamination of the underlying
distribution (Section 3),
(iii) stability with respect to the parameters of the given distribution and conditions under which
asymptotical normality holds true (Section 4).

V ¢lanku se fesi problém stability optimdalniho FeSeni ulohy stochastického programovani
s penalizaci ztrat vzhledem k rozdéleni ndhodnych koeficientd. Studuji se tfi moZnosti:
(i) Asymptotické vlastnosti odhadii zaloZenych na empirickém rozdéleni (oddil 2),
(ii) vyuziti r-kontaminace daného rozdéleni pro vy3etfovdni lokdlniho chovani optimalniho
feseni (oddil 3),
(iti) stabilita vzhledem k parametrim daného rozdéleni a podminky pro asymptotickou normalitu
(oddil 4).

B cratbe u3yyaercs npobieMa yCTONYHBOCTH ONTHMAJILHOTO PEIICHHA IBYX3TANHOM 3aJa4yH
CTOXaCTHYECKOTO MPOrpaMMHPOBAHUS MO OTHOIIEHHIO K M3MEHEHHSM pacrpelesicHHs CIIyYaiHbIX
ko3 dunuenTos. MiccnenyroTcs TpH BO3MOXXHOCTH:

(a) ACHMITOTHYECKHE CBOKCTBA OLIEHOK OCHOBAaHHBIX Ha MIIMPHYECKOM pacnpenenenuu (OTAen 2),

(6) moxanpHOE NOBeJeHHE ONTHMANBHOIO PELIEHHS Ha OCHOBE T-KOHTAMHHALAHM DPacIpelesieHUs
(otmen 3),

(B) YCTOMYHBOCTH IO OTHOIIECHHIO K IAPAMETPaM pacnpee/ieHUst H YCIIOBHS aCHMIITOTHYECKOM HOp-
MansHOCTH (oTHen 4).

1. Introduction

Consider the following stochastic program with recourse
(1) maximize f(x; F) = Eg{c"x — ¢(x; 4, b)} on the set &
where

Z < R" is a nonempty closed convex set of admissible solutions,

*) 186 00 Praha 8, Sokolovské 83, Czechoslovakia.
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@ is a nonnegative recourse function that is convex with respect to x for fixed
A, b as well as with respect to A, b for arbitrary fixed x e &,

F is the joint distribution of the random components of the m-vector b and of
the (m, n)-matrix A.

The n-vector ¢ will be assumed non-random in what follows.

Provided that the joint distribution F is known, (1) is in principle reducible to
a nonlinear deterministic program. Its explicit form as well as its optimal solution x(F)
depend, i.a., on the underlying distribution F. In many real-life situations, however,
the assumption of a completely known distribution F is hardly acceptable and the
problem of stability of the optimal solution x(F) with respect to the distribution F
comes to the fore. In the robust case, a small change in the distribution F should
cause only a small change of the optimal solution. The following problems will be
considered:

(i) Asymptotical properties of an estimate x(Fy) of the optimal solution x(F) that
is based on the empirical distribution Fy (Section 2),
(ii) local behaviour of x(F) studied via t-contamination of F by a distribution G
belonging to a specified set of distributions (Section 3),
(iii) stability of x(F) with respect to the parameters of F and related asymptotic
properties (Section 4).

Provided that the set & of admissible solutions is defined only by equality con-
straints, standard methods of asymptotical statistics can be modified for our purpose
without essential troubles. Inequality constraints, however, bring along additional
problems.

In this paper, nonnegativity constraints will be taken into account. For the sake
of simplicity, only the special case of (1) — the simple recourse problem with random
right-hand side will be mostly dealt with in detail in what follows.

2. Empirical distributions

Assuming differentiability of the objective function f(x; F) in (1.1) and dis-
regarding the constraints the optimal solution x(F) of the unconstrained optimization
problem

(1) maximize f(x; F) = Ex{c"x — ¢(x; 4, b)}

can be in principle found by solving the system

@) c,—if¢(x;A,b)F(dA,db)=0, 1sjsn,
ox;

or
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(2) cj—J;— o(x; A, b) F(dA,db) =0, 1<j<n,
Xj

provided that ¢ is smooth enough. To estimate x(F), multidimensional M-estimates
can be constructed and studied by asymptotical methods of mathematical statistics.
One possibility is to use an estimate x(Fy) that depends on N independent observa-
tions of A, b only through the empirical distribution function Fy.

Let x(Fy) be the optimal solution of the (unconstrained) problem

maximize f(x; Fy) = Ep,{c"x — ¢(x; 4, b)}

or, equivalently, let x(FN) be a solution of the system

i,
(3) ¢j— | — o(x; A, b) Fy(dA,db) =0, 1<j<n.
Ox;
The consistency of x(Fy) and the asymptotical normality of (/N (x(Fy) — x(F))can
be proved under general assumptions (see [7, Ch. 6]).

Example. Let us consider the simple recourse problem (without constraints)

m n
(4) maximize Ep{c"x — Y q{ Y a;x; — b;))*}

=1 j=1
where b e R™ is a random vector with distribution F whereas the components of
A(m, n), ¢(n, 1), g(m, 1) are supposed to be given constants and g; > 0,1 < i < m.
The marginal distribution functions F;, 1 < i < m, are assumed to have continuous
densities f; and Egb is supposed to exist. An example of (4) is when a linear program

maximize c’x subjectto Ax < b

has the right-hand side vector b random.
Assuming that the optimal solution x(F) of (4) exists, let us solve the program

(5) max EFN{CTX — .Zlqi(zlauxj - bi)+}
i= j=

where Fy is the empirical distribution of b based on N independent observations b",
1 < v £ N of b; let x(Fy) be the optimal solution of (5).

The consistency of x(Fy) can be proved directly using concavity of the objective
function. To prove asymptotical normality of /N (x(Fy) — x(F)), let’s follow
[7, Ch. 6].

Problem (5) means to maximize over x

M=
™M=

- v+
2 a;jX; — 0"}

{CTX - Z ‘Ii(j

1 i=1

v 1

or, equivalently, to solve the system

25



where
m a Z AipXp bl

(6) wl(x,b)—cl—zq—iz—i—. 1+h:1 , 1=j=n,
= I Zlaihxh b;

and (0/|0}) = 1 by definition. Put
Af(x) = Epyj(x; b) = ¢; — Zlqia;jFi( Zla,-,,x,,) , 1<j<n.
i= K=

The existence of x(F) satisfying conditions Aj(x) = 0,1 < j < n, i,

™M=

n
qiaijFi(Zaihxh) =c;, 1£j<n,
h=1

1

is assumed (cf. N—2 in [7]); the assumptions (N—1), (N—3) and (N—4) follow
similarly as in [7, Example 6.3.1]. The matrix

0x 1<jksn

where
(7) Q = diag {qifi(kglaik Xk(F))a 1=sis m} .

Evidently, A is nonsingular if g; >0, 1 < i <m, f Y ayux(F)) >0,1 <i<m,
k=1

and the rank of A4 equals to n.
The elements cy, 1 < j, k < n, of the variance matrix C of the vector ¥(x(F); b)
consisting of components Y (x(F); b), 1 £ j < n, (see (6)) are given by

Cjk =__21 q%aijaik Fi(hzl QAip xh(F)) (1 - Fi(h; ain xh(F))) >
so that
C = var ¥(x(F); b) = ATQA
with

(8) Q = diag {q} Fi(hzlai,, x,(F)) (1 — Fi(kzlaih x(F))), 1 i< m}.
According to [7, Corrolary 6.3.2] we have asymptotically
J(N) (x(Fy) = x(F)) ~ N(0, V})
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where the variance matrix
Vi, =A"1C(A™Y)T = (ATQA)™* (ATQA) (ATQA)!
and Q, Q are given by (7) and (8).

Strong consistency both of {f(x(Fy); Fy)} and {x(Fy)} can be proved under
general assumptions on the set & and on the recourse function ¢ (see e.g. [1], [8]),
the rate of convergence of f(x(Fy); Fy) to f(x(F); F) being at least exponencial
(see [9])- The problem of asymptotical normality of the optimal solution x(Fy) is
discussed in [11] for the convex simple recourse problem with the objective function

) f(x; F) = Ep{c"x —ii(p,-(jélaijxj; b))}

where ¢; are nonnegative and convex with respect to both ) a;;x;and b, 1 < i < m.
i=1

7

3. Contaminated distributions

To study the local behaviour of x(F), distributions of the form
(1) F,=(1-0)F+1G, 0151

will be considered. In (1), G is a given distribution and F, is called distribution F
t-contaminated by distribution G.
Disregarding again the constraints, the optimal solution x(F,) of the program

(2) maximize f(x; F,) = ¢"x — Eg {¢(x; 4, b)}
should fulfil the system of n equations

W(x; F) =0
where ¥(-; F,) : R" > R" and its components

l//j(x;F:)=cj—;—Eup(x;A,b), 1£j=n,
X :

J

are assumed to exist for all j. Obviously,
Y(x; F,) = Y(x; F) + t[¥(x; G) — ¥(x; F)], 0<t<1.

Using implicit functions theorem, Gateaux differential dx(F; G — F) of the op-
timal solution x(F) at F in direction of G can be computed under suitable differentia-
bility and regularity assumptions:

dx(F; G — F) = — D! ¥(x(F); G)
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where

0xy

For G fixed, we can obviously write ¥(x; t), ¥;(x; 1) and x(¢) instead of ¥(x; F,),
Y (x; F,) and x(F,), respectively, and the Géteaux derivative dx(F; G — F) is simply
the ordinary right hand derivative at t = 0 of the (vector) function x(t) = x((1 — 1).
. F + 1G) of the real variable t. For the special choice of G = §,, dx(F; 8, — F)
corresponds to the influence curve videly used for univariate M-estimates ([7]).

Let us study the influence of contamination on the optimal solution of the simple
recourse problem with nonnegativity constraints

m

(3) max Ep{c"x — Y q{ Y a;x; — b))}
x20 i=1 j=1

where similarly as in the Example of Section 2, b e R™ is a random vector whose
distribution F is continuous and Egb exists. The (m, n)-matrix A, n-vector ¢ and
m-vector g are supposed to be given, nonrandom, and ¢; > 0,1 < i < m.

It was proved already in [12] that many properties of the deterministic program
(3) do not depend on the distribution F. Denote by F; the marginal distribution func-
tions of b;, 1 < i < m. One of the main results reformulated for our problem is
contained in the following

’ Theorem 1 ([12]). Under assumptions given above, x(F) is an optimal solution
of (3) iff

(4) Cj _l_iauqiﬂ(}é:lam x(F)£0, x(F)z0, 1<j<n,
(5) x(F) [¢; _iiauq" Fi(hiam x(F))] =0, 1<j<n.

In the sequel, the existence of the optimal solution x(F) of (3) for the given dis-
tribution F will be assumed. The stability of x(F) with respect to F will be studied
under strict complementarity condition which enables to rewrite the system (4), (5)
in the following form:

(6) x(F)>0, jeJ<{l,...,n}, cardJ =5,
(7) x(F)=0, j¢J,

(8) ¢ -

M=

laijtii(h_Zlaih xh(F)) <0, j¢J,

(9) cj _iglaijqi Fi(h;laih x,,(F)) = 0, Je J .
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Theorem 2. Assume

(i) F is an m-dimensional continuous distribution of b for which Egb exists.
(ii) System (4), (5) has a solution x(F) such that conditions (6)—(9) are fulfilled.
Let x,(F) € R® denote the vector consisting of the nonzero components of x(F).

(iii) g¢; > 0,1 < i < m,and A; = (a;;); <;<m has the full column rank.
je.l—
(iv) The marginal densities f;, 1 < i £ m, are continuous and positive in the points

X{(F) =Y a;jx,(F), 1 £i < m, respectively.
JjeJ

(v) G is an m-dimensional distribution whose marginal distribution functions G;
have continuous derivatives in a neighbourhood of the points X,(F) =
=Y a;; x,(F), 1 £i £ m, respectively.

JjeJ
Then
a) There is a neighbourhood ¢(x(F)) and a real number ¢, > 0 such that the program

(10) max EF'{CTJC - Z q‘(Z auxl - bi)+}
x20 i=1  j=1

with F, = (1 — t) F + tG has a unique optimal solution x(F,) € O(x(F)) for any

0 <t < to; x(F,), j € J are nonzero components of x(F,) and x;(F,) = 0, j ¢ J.
b) Components of the Gateaux differential of the optimal solution x(F) at F in the

direction of G corresponding to the nonzero components of x(F) are given by

(11) dx,(F; G — F) = (AJKA;)" ' (c; — ATk)

where ¢; = (¢)jes, k=(k), 1 <i<m with

(12) ki=q:G(Y am xh(F))! I=sis=m
heJ
and
(13) K =diag {q;f( Y anx,(F)), 1 S i< m}.
hed

Proof. Denote
f(x;t) = Ep{c"x — 'Zlqi( Zlaux;‘ - b)"}.
i= Jj=

According to assumptions, there are some neighbourhoods %,(0) = R!, 0,(x(F)) =
< R"such that for xe Oy, te#%,and l £ j < n

a X;t m n m n n
L) =C¢; — Z aijtii(Zaihxh) - tz aijqi[Gi(Z aihxh) - Fi( Zaihxh)]
0x; i=1 h=1 i=1 h=1 h=1

J

are continuously differentiable with respect to x and ¢. As the result, ¢, and %, can
be chosen in such a way that for 1 < j < n, xe0,, te %,
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M<O:M<O

Ox; 0x;

x{(F)>0 = x;>0.
Since strict complementarity condition holds at x(F), one of these two cases is

applicable for each j.
The nonzero components x,(F) of the optimal solution x(F) of (3) fulfil the

system

m

cj—‘z ,qu(Za,hx,,(F))—O jed.

i=1

Denote

'/’j(X; t) =¢ - Zlaijtii(Z “mxh) -
i= hed
-ty a,~jq,~[G,-( Y awxy) — F( Y aux,)]
i=1 hed hel

and consider the system

Yix;t)=0, jeld.
Since Y (x,(F); 0) = 0, j € J, the implicit function theorem guarantees the existence
of open neighbourhoods %,(0) = R' and 0,(x,(F)) = R® and a continuous function

x, 1 U, — 0, such that x,(0) = x,(F) and for each t € %,, x,(t) is the unique zero
of y;(,1), jeJ in 0,. In this neighbourhood, x,(r) has continuous derivatives

prOHdCd that the matrix
( )
é:ch Jj.heJ

is nonsingular in the point [x,(F), 0]. The derivative dx,(0)/dt = dx,(F; G — F)
is a solution of the system

- Y ayaifi L awxlF) T an d"”(") - $ 0y S anxlF) - ¢ Jed,

ie., of

(ATK A,) d"’(o) — ATk

in the matrix notation. Regularity of the matrix

ATKA, = (‘MJX’M)

0x,
follows by (iii) and (iv).
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Let O(x(F)) = 0,(x(F)) be such that for xe O(x(F)), the s-vector x, =
= (x;, j € J) € O5(x,(F)). Since x,(t) is continuous and x;(0) = x,(F), it is possible
to find ¢, > O such that for 0 < t < t,, points consisting of components

x; =0, j¢J

belong to O(x(F)). Denoting them x(t) (€ R") we have obviously x(t) = 0,
0f (x(1), t)/ox; < 0 Vj and x(¢) fulfils conditions (4), (5) of Theorem 1 applied to
program (10). For 0 < t < t,, x(¢) is the only such point in @(x(F)) because of the
uniqueness of x,(f) and of tke strict complementarity condition.

Theorem 2 can be generalized without essential problems to the case of recourse
problem with the set of admissible solutions

Z ={xeR":Px=p, x 20}

where P(r, n) and p € R” are given, and to the convex simple recourse problem with
objective function given by (2.9). In the last case. however, one cannot get an explicit
form of Gateaux differential similar to (11) without specifying the individual recouse
functions ¢;, 1 < i < m.

Specifying a set ¢ of distributions G under consideration, the effect of ¢-con-
tamination of F by distributions belonging to ¢ on the optimal solution x(F) can be
studied. As a rule, F € 4. Typical examples are
1. F the uniform distribution of the random vector b on an interval ] < R™ and ¢4

the set of distributions such that

(14) Egb = Exb and Pg(bel)=1 VGe9,

2. The marginal distributions F; are normal N(u;, o7) and % is the set of distributions
such that

(15) Egb, = p;, vargbh; =0}, 1Si<m, VGe¥%.

In this context, extremal distributions belonging to ¢ are of main interest. For
the derivative of the objective function (2)

2 1 F) = 15 0) = S5 )
we have

(16) inff(x; G) — f(x; F) < 2j’(x; F,) £ supf(x; G) — f(x; F).
Ges ot Ge®

The existence of the extremal distributions G* and G** for which the infimum
and the supremum in (16) are attained has been proved for a relatively wide class of

recourse problems and various sets ¢ of distributions, i.a., for the sets % given by
(14) and (15). For details see [2], [3], [5]-
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4. Estimated parameters

Assume now that the distribution F in program (1.1) belongs to a given para-
metric family of distributions {F,, y € Y} where Y = R* is an open set. Stability of
the optimal solution with respect to the parameters and related statistical problems
were studied mostly for the simple recourse problem with normally distributed right-
hand sides b;, 1 < i £ m. (See e.g. [4], [13].)

In the general case, our aim is to solve the program

(1) maximize f(x; F,) = f(x;n) on theset &
where
() f(esn) = Ep {c"x — o(x; 4, b)}

and n € Yis the true parameter vector of the distribution. If # is not known precisely,
it is substituted by an estimate, say y, and the substitute program

(3) maximize f(x; y) on the set &

is solved instead of (1).

Leaving aside the deterministic stability concepts, we shall give a general result
concerning asymptotical normality of the optimal solution x(F,) = x(y) of the sub-
stitute program (3).

Theorem 3. ([6]). Let Y = R* be an open set. Assume

(i) P(r,n) and p € R" are a given matrix and vector, r(P) = r and

Z ={xeR":Px=p, x 20}

is a nonempty convex polyhedron with nondegenerated vertices.
(i) For any ye Y, f(:; y) is a strictly concave function on R". The second order
derivatives

2 2 :
S 9 i<jisn, 1sisk,
0x; 0x, 0x;dy;

exist and are continuous in a neighbourhood of the point [x(n), 7]
(iii) The optimal solution x(#) of (1) and the corresponding vector n(y) of multipliers
satisfy the strict complementarity condition:

f (X(n) n)

J

x;(n) > 0 <> +sz,m(n)—0 1<j<n

Let for the optimal solution x(r7) of program (1)
J={j:xin)>0,1<j<n}, cardJ =5
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and the matrix C, = (9%f(x(n); n)[0x; 0x,); s be nonsingular.
(iv) »" is an asymptotically normally distributed estimate of vector n of true para-
meters that is based on the sample of size N:

JIN) (3" = n) ~ N(0, 2).
Then asymptotically

(4) VIN) (x(y") = x(m)) ~ N(0, V)
where the variance matrix
_ (9x(m) 5 (ox(m)\"
" (6y >Z<3y> ’

the submatrix (dx,(n)/dy) = (0x;(n)/y;);es. of the matrix (dx(n)/dy) is given by
1Sisk

(5"_1('7_)

dy ) = —[I - ¢;'Pj(P,C;'P])"" P,] C5 By,

where P; = (p;;); <n<r and
JjeJ

¢ = (M) , B, = ("l’(_"(_’i)"))

0x; 0x, 0x; 0y;

jeJ,
15isk

whereas the remaining elements

axi_(_.")zo for j¢J, 1Z2iZk.
0y:

The rank of the distribution (4) is determined by r(V,).

Theorem 3 can be applied to the simple recourse problem with random right-hand
sides b;, 1 £ i £ m, under various assumptions on the underlying parametric family
of distributions. In case of estimated location and scale parameters, the explicit form
of matrices C; and B, can be computed. In addition, Theorem 3 can be used for para-
metric stability studies of the minimax solutions, too. For these and other related
results as well as for detailed proofs see [6]
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