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1983 ACTA UNIVERSITATIS CAROLINAE - MATHEMATICA ET PHYSICA VOL. 24. NO. 1 

Stability in Stochastic Programming with Recourse 

J. DUPACOVA 
Department of Statistics, Charles University, Prague 

Received 22 December 1982 

For stochastic programs with recourse, stability of optimal solution with respect to the 
distribution of random coefficients is studied. Three approaches are considered: 

(i) Asymptotical properties of estimates based on the empirical distribution (Section 2), 
(ii) local behaviour of the optimal solution studied via t-contamination of the underlying 

distribution (Section 3), 
(iii) stability with respect to the parameters of the given distribution and conditions under which 

asymptotical normality holds true (Section 4). 

V článku se řeší problém stability optimálního řešení úlohy stochastického programování 
s penalizací ztrát vzhledem k rozdělení náhodných koeficientů. Studují se tři možnosti: 

(i) Asymptotické vlastnosti odhadů založených na empirickém rozdělení (oddíl 2), 
(ii) využití t-kontaminace daného rozdělení pro vyšetřování lokálního chování optimálního 

řešení (oddíl 3), 
(iii) stabilita vzhledem k parametrům daného rozdělení a podmínky pro asymptotickou norma litu 

(oddíl 4). 

B craTbe H3y-iaeTCfl npo6jieMa VCTOHHHBOCTH onTHMajibHoro peineHHJi íUjyxsTariHOH 3a#a4H 
CTOxacTHHecKoro nporpaMMHpoBanHH n o oTHomeHHio K H3MeHeHHHM pacnpeflejieHHJi cjiy-iaHHbix 
K03(J)(J)HUHeHTOB. HcCJie^yiOTCH TpH B03M05KHOCTH. 
(a) AcHMnTOTHHecKHe CBoáCTBa oueHOK ocHOBaHHLix Ha 3MrmpHHecKOM pacnpe,aejieHHH (oT^en 2), 
(6) JioKam>Hoe noBcaeHHe onTHMajibHoro pemeHHH Ha OCHOBC T-KOHTaMHHainiH pacnpeaejieHHa 

(oTfleji 3), 
( B ) ycToňiHBOCTb n o OTHomeHHio K napaMeTpaM pacnpeAejieHHH H VCJIOBHH acHMnroTHHecKOH Hop-

MajitHocTH (oT,ae.n 4) . 

1. Introduct ion 

Consider the following stochastic program with recourse 

(1) maximize f(x; F) = EF{cTx — q>(x; A, b)} on the set X 

where 

X c Rn is a nonempty closed convex set of admissible solutions, 

*) 186 00 Praha 8, Sokolovská 83, Czechoslovakia. 
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<p is a nonnegative recourse function that is convex with respect to x for fixed 
A, b as well as with respect to A, b for arbitrary fixed x e l , 

F is the joint distribution of the random components of the m-vector b and of 
the (m, n)-matrix A. 

The n-vector c will be assumed non-random in what follows. 
Provided that the joint distribution F is known, (1) is in principle reducible to 

a nonlinear deterministic program. Its explicit form as well as its optimal solution x(F) 
depend, i.a., on the underlying distribution F. In many real-life situations, however, 
the assumption of a completely known distribution F is hardly acceptable and the 
problem of stability of the optimal solution x(F) with respect to the distribution F 
comes to the fore. In the robust case, a small change in the distribution F should 
cause only a small change of the optimal solution. The following problems will be 
considered: 

(i) Asymptotical properties of an estimate x(FN) of the optimal solution x(F) that 
is based on the empirical distribution FN (Section 2), 

(ii) local behaviour of x(F) studied via t-contamination of F by a distribution G 
belonging to a specified set of distributions (Section 3), 

(iii) stability of x(F) with respect to the parameters of F and related asymptotic 
properties (Section 4). 

Provided that the set X of admissible solutions is defined only by equality con­
straints, standard methods of asymptotical statistics can be modified for our purpose 
without essentia] troubles. Inequality constraints, however, bring along additional 
problems. 

In this paper, nonnegativity constraints will be taken into account. For the sake 
of simplicity, only the special case of (l) — the simple recourse problem with random 
right-hand side will be mostly dealt with in detail in what follows. 

2. Empirical distributions 

Assuming differentiability of the objective function f(x; F) in (1.1) and dis­
regarding the constraints the optimal solution x(F) of the unconstrained optimization 
problem 

(1) maximize f(x; F) = EF{cTx — cp(x; A, b)} 

can be in principle found by solving the system 

(2) 

oг 
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Cj - — \cp(x; A, b) F(áA, áb) = 0 , 1 = j = n . 
dxjj 



(2') cj - I — ę(x; A, b) F(àA, db) = 0, l g j ś n , 
JÕXj 

provided that cp is smooth enough. To estimate x(F), multidimensional M-estimates 
can be constructed and studied by asymptotical methods of mathematical statistics. 
One possibility is to use an estimate x(FN) that depends on N independent observa­
tions of A, b only through the empirical distribution function FN. 

Let x(FN) be the optimal solution of the (unconstrained) problem 

maximize f(x; FN) = EFN{CTX — cp(x; A, b)} 

or, equivalently, let x(FN) be a solution of the system 

(3) cj - f — cp(x; A, b) FN(dA, db) = 0 , 1 = j = n . 
J dxj 

The consistency of x(FN) and the asymptotical normality of .^N (^(FN) — x(F))can 
be proved under general assumptions (see [7, Ch. 6]). 

Example . Let us consider the simple recourse problem (without constraints) 

m n 

(4) maximize EF{cTx - £ q{( £ atjXj - br)
 + } 

i = i J=i 

where b e Rm is a random vector with distribution F whereas the components of 
A(m, n), c(n, l), q(m, l) are supposed to be given constants and qx > 0, 1 = i = m. 
The marginal distribution functions Ft, 1 ^ i = m, are assumed to have continuous 
densities f and EFb is supposed to exist. An example of (4) is when a linear program 

maximize cTx subject to Ax ^ b 

has the right-hand side vector b random. 
Assuming that the optimal solution x(F) of (4) exists, let us solve the program 

m n 

(5) max EFN{CTX - £ qt( X auXj - bt)
+} 

i = i j=i 

where FN is the empirical distribution of b based on N independent observations bv, 
1 = v g N of b; let x(FN) be the optimal solution of (5). 

The consistency of x(FN) can be proved directly using concavity of the objective 
function. To prove asymptotical normality of yjN (x(FN) — x(F)), let's follow 
[7, Ch. 6]. 

Problem (5) means to maximize over x 

zisx-iqdoijxj-vr] 
v = l i = l j = l 

or, equivalently, to solve the system 
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_>Xx;iV)-0, 1 __/_/., 

where 

(6) ^(x;b) = c , - Z ^ [ l + ^ | , 1 ^ I = «, 
| Z aih*h - b\j 

and (0/|0J) = 1 by definition. Put 

m n 

A/x) = EF\j/j(x; b) = cj - Z q^oFi( Z ^/»XA)> 1 = J = n -
i = l / i = l 

The existence of x(F) satisfying conditions Xj(x) = 0, 1 = j = n, i.e., 

m n 

Z 4iauFi( Z fl.***) = c ; > ! = I = n > 
i = 1 A = 1 

is assumed (cf. N —2 in [7]); the assumptions (N — 1), (N — 3) and (N — 4) follow 
similarly as in [7, Example 6.3.1]. The matrix 

- ) • 
Л = (ШЩ _ _ Л Ҷ M ) 

дxk 

where 

(7) Q = diag {a,./^ £ aik xk(F)), 1 _ i _ m} . 
fc=l 

n 

Evidently, vd is nonsingular if qt > 0, 1 _̂  i ^ m, f( £ a/Jk **(^)) > 0, 1 __ * __ m, 
i t = i 

and the rank of A equals to n. 
The elements cjk, 1 __ I, fc __ w, of the variance matrix C of the vector ^(^(F); b) 

consisting of components ^(x(F); b), 1 __ I _S n, (see (6)) are given by 

cjk = Z 1*aijaik Fi( Z aih xJf)) (1 " ^i( Z fli* */.(*0)) -
, 2 . 

i = l 

so that 
C = var <P(x(F); ft) = ATQA 

with 

(8) Q = diag [q] F{ £ aih x,(F)) (1 - F,( £ *a x,(F))), 1 _S i __ m} 
A = l A = l 

According to [7, Corrolary 6.3.2] we have asymptotically 

V(N)(x(EN)-x(F))~7V(0,V1) 
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where the variance matrix 

V! = A'1 C(A~')T = (ATQA)-' (ATQA)(ATQA)~1 

and Q, Q are given by (7) and (8). 

Strong consistency both of {f(x(FN); FN)} and {x(FN)} can be proved under 
general assumptions on the set 2£ and on the recourse function cp (see e.g. [1], [8]), 
the rate of convergence of f(x(FN); FN) to f(x(F); F) being at least exponencial 
(see [9]). The problem of asymptotical normality of the optimal solution x(F^) is 
discussed in [11] for the convex simple recourse problem with the objective function 

(9) f(x; F) = EF{cTx - £ cp{ £ a^j; bt)} 
i = i j=i 

n 

where (pt are nonnegative and convex with respect to both £ a^Xj and bi91 = i ^ m. 
1=i 

3. Contaminated distributions 

To study the local behaviour of x(F), distributions of the form 

(1) Ft = (1 - t)F + tG, 0 = t = 1 

will be considered. In (l), G is a given distribution and Ft is called distribution F 
t-contaminated by distribution G. 

Disregarding again the constraints, the optimal solution x(Ff) of the program 

(2) maximize f(x; Ft) = cTx — EFt{cp(x; A, b)} 

should fulfil the system of n equations 

V(x; Ft) = 0 

where ¥*(•; Ft) : Rn -> Rn and its components 

*l*j(x> Ft) = CJ - — EFt <p(x\ A,b), 1 =j = n, 

OXj 

are assumed to exist for all j . Obviously, 

W(x; Ft) = W(x; F) + t[V(x; G) - ¥(x; F)] , 0 = t = 1 . 
Using implicit functions theorem, Gateaux differential dx(F; G — F) of the op­

timal solution x(F) at F in direction of G can be computed under suitable differentia­
bility and regularity assumptions: 

dx(F; G - F) = -D-1 Y(x(F); G) 
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D = m 
where 

X*(f); ^ 
<?Xfc / l<\j,kS\n 

For G fixed, we can obviously write *P(x; t), il/j(x; t) and ;c(f) instead of Y(x; Ft), 
il/j(x; Ft) and x(Ft), respectively, and the Gateaux derivative d;t(F; G — F) is simply 
the ordinary right hand derivative at t = 0 of the (vector) function x(t) = x((\ — t) . 
. F + tG) of the real variable t. For the special choice of G = 5U, dx(F; 5U — F) 
corresponds to the influence curve videly used for univariate M-estimates ([7]). 

Let us study the influence of contamination on the optimal solution of the simple 
recourse problem with nonnegativity constraints 

m n 

(3) max EF{cTx - £ q,( £ a-^Xj - b,) + } 
x = 0 i = l j=l 

where similarly as in the Example of Section 2, b e Rm is a random vector whose 
distribution F is continuous and EFb exists. The (m, n)-matrix A, /i-vector c and 
m-vector q are supposed to be given, nonrandom, and q{ > 0, 1 = i = m. 

It was proved already in [12] that many properties of the deterministic program 
(3) do not depend on the distribution F. Denote by F, the marginal distribution func­
tions of bt, 1 = i = m. One of the main results reformulated for our problem is 
contained in the following 

Theorem 1 ([12]). Under assumptions given above, x(F) is an optimal solution 
of (3) iff 

m n 

(4) Cj - I aifli F,( X aih xh(F)) = 0 , XJ(F) = 0 , \<j<n, 
i = l h=\ 

m n 

(5) Xj(F) [cj - X aifli F-l X aih xh(F))] = 0 , l<j<n. 
i=l h=l 

In the sequel, the existence of the optimal solution x(F) of (3) for the given dis­
tribution F will be assumed. The stability of x(F) with respect to F will be studied 
under strict complementarity condition which enables to rewrite the system (4), (5) 
in the following form: 

(6) Xj(F) > 0 , jeJcz{l,...,n}, card J = s , 

(7) *j(F) = 0, JtJ, 

m n 

(8) cJ-l,aijqiFi(Zaihxh(FJ)<0, j$J, 
i = l h=l 

m n 

(9) c}-ljaijqiFi(?aihxh(F)) = 0, jeJ. 
>"=i » = i 
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Theorem 2. Assume 

(i) F is an m-dimensional continuous distribution of b for which EFb exists, 
(ii) System (4), (5) has a solution x(F) such that conditions (6) —(9) are fulfilled. 

Let Xj(F) e Rs denote the vector consisting of the nonzero components of x(F). 
(iii) qt > 0, 1 ^ / ^ m, and Aj = (aij)l^i<m has the full column rank. 

7eJ" 

(iv) The marginal densities ft, 1 ^ / ^ m, are continuous and positive in the points 
X,(F) = Y au xj(F)> 1 = l = m> respectively. 

JeJ 

(v) G is an m-dimensional distribution whose marginal distribution functions Gt 

have continuous derivatives in a neighbourhood of the points X,(F) = 
= YJ au xj(F)> 1 = *- = m> respectively. 

UJ 

Then 
a) There is a neighbourhood ®(x(F)) and a real number t0 > 0 such that the program 

(10) max EFt{cTx - £ <z.( £ «y*y " *i) + } 
x = 0 i = l j=l 

with F, = (1 — t) F + tG has a unique optimal solution x(F,) e 0(x(F)) for any 
0 = r < t0; Xj(Ft), j e J are nonzero components of x(Ft) and x7(Fr) = 0, j $ J. 

b) Components of the Gateaux differential of the optimal solution x(F) at F in the 
direction of G corresponding to the nonzero components of x(F) are given by 

(11) dxj(F; G - F) = (AlKAj)-1 (Cj - A]k) 

where c, = (cj)jeJ , k = (kt) , 1 ^ / ^ m with 

(12) fci = *fG,(£a** f c (F) ) , l = / ^ m 
AeJ 

and 

(13) 1- = diag {qj( £ fl,» *„(r)), 1 S i = m} . 
AeJ 

Proof. Denote 
m n 

f(x; t) = EFt{^x - £ «i( I a0x, - bf)
 + } . 

i = i y = i 

According to assumptions, there are some neighbourhoods ^i(O) cz R1, (P1(x(F)) <= 
c Rn such that for x e ^ ^ / e ^ and 1 = j = n 

df(x' t) m n m n n 
-^-^ = CJ ~ Z a«7«.Fi( E ^A*A) ~ ' E * 0<?/[G/( Z fl«7.*i.) ~ Ft( Y

 aihXh)] 
OXj i = l A=l i = l A=l h = l 

are continuously differentiable with respect to x and t. As the result, ®l and %^ can 
be chosen in such a way that for 1 _̂  j ^ n, x e 0l, t e ^ll 
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df(x(F);0) <Q_df(x;t) ^ Q 

dxj dxj 

Xj(F) > 0 => Xj > 0 . 

Since strict compJementarity condition holds at x(F), one of these two cases is 
applicable for each j . 

The nonzero components Xj(F) of the optimal solution x(F) of (3) fulfil the 
system 

m 
CJ ~ X auaiFi( Z aih xh(F)) = 0, j e J . 

i = l AeJ 

Denote 
m 

ij/j(x; t) = cj - £ a0q/F/( X a,A^) ~ 
i = 1 AeJ 

m 

- t X aijq^Gl X a/A*A) - K/( X */A**)] 
t = l AeJ AeJ 

and consider the system 

i//j(x; t) = 0 , j e J . 

Since i/^(xy(F); 0) = 0, j e J, the implicit function theorem guarantees the existence 
of open neighbourhoods ^2(0) c= R1 and 02(xj(F)) cz Rs and a continuous function 
XJ •' ^2 ~* ®2 s u c r i t n a t ^j(O) = XJ(F) and for each t e °U2, Xj(t) is the unique zero 
of \j/j(', t), j e J in 02. In this neighbourhood, xy(t) has continuous derivatives 
provided that the matrix 

\VxhJ jMJ 

is nonsingular in the point [xy(F), 0] . The derivative dxy(0)/dt = dxy(F; G — F) 
is a solution of the system 

- Z aijaifi( X «i* */.(^)) I aih " ^ 7 ^ = Z «/yq/^/( I a/A *A(^)) ~ O - j e ^ > 
i = l AeJ AeJ d t i = l AeJ 

i.e., of 

{ArjKAj)_^) _ Cj _ Ark 

ût 

in the matrix notation. Regularity of the matrix 

A]KAJ - (dtMfM 
\ dXh / j,heJ 

follows by (hi) and (iv). 
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Let 0(x(F)) c (Pi(x(F)) be such that for x e 0(x(F))9 the s-vector Xj = 
= (xj, j e J)e 02(xj(F)). Since Xj(t) is continuous and X/(0) = Xj(F), it is possible 
to find t0 > 0 such that for 0 = t < t0, points consisting of components 

XJ = * / 0 > JeJ 

xj = 0, j$J 

belong to 0(x(F)). Denoting them x(t) (e Rn) we have obviously x(t) = 0, 
df(x(t), t)jdXj = 0 Vj and x(t) fulfils conditions (4), (5) of Theorem 1 applied to 
program (10). For 0 ^ t < t0, x(t) is the only such point in 0(x(F)) because of the 
uniqueness of Xj(t) and of the strict complementarity condition. 

Theorem 2 can be generalized without essential problems to the case of recourse 
problem with the set of admissible solutions 

X = {x e Rn : Px = p, x = 0} 

where P(r, n) and pe Rr are given, and to the convex simple recourse problem with 
objective function given by (2.9). In the last case, however, one cannot get an explicit 
form of Gateaux differential similar to (11) without specifying the individual recouse 
functions (ph \ _ i ^ m. 

Specifying a set <8 of distributions G under consideration, the effect of t-con-
tamination of F by distributions belonging to ^ on the optimal solution x(F) can be 
studied. As a rule, F e &. Typical examples are 
1. F the uniform distribution of the random vector b on an interval I c Rm and <3 

the set of distributions such that 

(14) EGb = EFb and PG(b e I) = 1 VG e $? , 

2. The marginal distributions Ft are normal N(fih of) and ^ is the set of distributions 
such that 

(15) EGbt = Hi, vdLTGbi = a2
i, l _ i = m , VG e 3?. 

In this context, extremal distributions belonging to <& are of main interest. For 
the derivative of the objective function (2) 

| / ( x ; F , ) = / ( x ; G ) - / ( x ; E ) 
ot 

we have 

(16) inf/(x; G) - f(x; F) ^ f f(x; F,) ^ sup/(x; G) - f(x; F) . 
Ge& Ot Ge& 

The existence of the extremal distributions G* and G** for which the infimum 
and the supremum in (16) are attained has been proved for a relatively wide class of 
recourse problems and various sets ^ of distributions, i.a., for the sets <§ given by 
(14) and (15). For details see [2], [3], [5]. 
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4. Estimated parameters 

Assume now that the distribution F in program (1.1) belongs to a given para­
metric family of distributions {Fy, y e Y} where Y c Rk is an open set. Stability of 
the optimal solution with respect to the parameters and related statistical problems 
were studied mostly for the simple recourse problem with normally distributed right-
hand sides bh 1 = i = m. (See e.g. [4], [13].) 

In the general case, our aim is to solve the program 

(1) maximize f(x; FJ = f(x; n) on the set X 

where 

(2) f(x; r\) = EFn{cTx - cp(x; A, b)} 

and rj e Yis the true parameter vector of the distribution. If n is not known precisely, 
it is substituted by an estimate, say y, and the substitute program 

(3) maximize f(x; y) on the set X 

is solved instead of (l). 
Leaving aside the deterministic stability concepts, we shall give a general result 

concerning asymptotical normality of the optimal solution x(Fy) = x(y) of the sub­
stitute program (3). 

Theorem 3. ([6]). Let Y c Rk be an open set. Assume 

(i) P(r, n) and p e Rr are a given matrix and vector, r(P) = r and 

X = {* e Rn : Px = p, x = 0} 

is a nonempty convex polyhedron with nondegenerated vertices. 
(ii) For any y e Y, / ( • ; y) is a strictly concave function on R". The second order 

derivatives 

d2f d2f l * j , l * « , i z t z k , 
dxj dxt dXj dyt 

exist and are continuous in a neighbourhood of the point [x(n), rj\. 
(iii) The optimal solution x(rj) of (l) and the corresponding vector 7r(.»7) of multipliers 

satisfy the strict complementarity condition: 

CXj I = 1 

Let for the optimal solution x(rj) of program (1) 

J = {F xj(rj) > 0, 1 = j = n} , card J = s 
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and the matrix C, = (d2f(x(rj); rftjdXj dxh)jMJ be nonsingular. 
(iv) yN is an asymptotically normally distributed estimate of vector rj of true para­

meters that is based on the sample of size N: 

J(N)(yN-r,)~N(0,Z). 
Then asymptotically 

(4) V(*) W / ) - * ( « . ) ) - M o . ^ ) 
where the variance matrix 

the submatrix (dxj(rj)jdy) = (dxJ(ri)ldyi)jejt of the matrix (dx(rj)\dy) is given by 
l^idk 

(^) = ~[/ " c'~ l p ? ( P ' C ' ^ p J C"*" 

where P, = y ^ ^ . a n d 

Cj = (d2Mn);i) 
\ dxj dxl 

whereas the remaining elements 

!\ Bj = (d2f(x(l);r,)\ 

JjMJ ' \ dxjdyi jViíš* 

^ ! ^ = 0 for J4J, l< i<k. 
dVi - -

The rank of the distribution (4) is determined by r(V2). 
Theorem 3 can be applied to the simple recourse problem with random right-hand 

sides bh 1 ^ i ^ m, under various assumptions on the underlying parametric family 
of distributions. In case of estimated location and scale parameters, the explicit form 
of matrices Cj and Bj can be computed. In addition, Theorem 3 can be used for para­
metric stability studies of the minimax solutions, too. For these and other related 
results as well as for detailed proofs see [6], 
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