
Acta Universitatis Carolinae. Mathematica et Physica

Gerhard Hübner
Approximations for Markov decision problems

Acta Universitatis Carolinae. Mathematica et Physica, Vol. 24 (1983), No. 1, 35--40

Persistent URL: http://dml.cz/dmlcz/142503

Terms of use:
© Univerzita Karlova v Praze, 1983

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/142503
http://project.dml.cz


1983 ACTA UNIVERSITATIS CAROLINAE - MATHEMATICA ET PHYSICA VOL. 24. NO. 1 

Approximations for Markov decision problems 

G. H O B N E R 
Universitat Hamburg, Institut fur Mathematische Stochastik 

Received 22 December 1982 

Approximating methods in finite stationary Markov decision models are dealt with, viz., 
extrapolation bounds and sensitivity results applied to clustering of statě and action spaces. 
Some remarks on Structured models and on statistical problems are included. 

Vyšetřují se přibližné metody v konečných stacionárních Markovových rozhodovacích 
modelech, zejména meze pro extrapolaci a citlivost řešení na agregaci v prostoru stavů či akcí. 
Několik poznámek je věnováno strukturálním a statistickým problémům. 

M3yHaK>TCH npHÓJIHHCeHHbie MeTOAW B KOHeHHblX CTaUHOHapHMX MapKOBCKHX MO/ieJIHX 
peuieHHH, HMeHHO oueHKH .ZUTA 3KCTpanojiHUHH H HyBCTBHTejibHOCTb pe3yjn.TaTOB Ha arperauHK) 
B npocTpaHCTBax COCTOHHHH HJIH aeňCTBHH. HecKOJibKo 3aivieTOK nocBHmeHo CTpyKTypajibHbíM 
H CTaTHCTHMecKHM npoÓJieMaM. 

1. Introduct ion 

Markov decision problems are those real world problems which may be modelled 
by a (mostly discrete time) Markov process controlled by decisions of (usually one) 
decision maker and endowed with a reward structure. The expected reward (total 
discounted or average) has to be maximized. 

We shall give here some examples of this type form the real world: 
— Inventory and production control: 

The level of inventory is influenced by ordering (and/or producing) decisions and 
by the random demand. 

— Scheduling of jobs: The amount of work remaining to be done is influenced by 
allocating and sequencing decisions and by the random duration of jobs. 

— Control of water resources: The level of water is influenced by the degree or release 
and the random inflow. 

In the next section we shall introduce the basic concepts. Then the main approxi­
mating methods are treated, i.e., extrapolation bounds (Section 3) and sensitivity 
results applied to clustering of state and action spaces (Section 4). The final section 
is devoted to remarks on structured models and on statistical problems. 

*) D-2000, Hambrug 13, Bundesstrasse 55, West Germany. 
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2. The model and fundamental methods 

For clarity and simplicity we shall make some restrictions: 

— We shall avoid models with more than one decision maker, the (so called) 
stochastic or Markov games. 

— We shall use discrete time, although some semi-Markov problems may be included. 
— We shall assume (except for the last section) that all data, i.e. all transition pro­

babilities and rewards, are known. 
— Finally we shall restrict to finite stationary models to avoid existence and mea-

stirability problems as well as additional indices. 
A finite stationary Markov decision model consists of 

— a finite or infinite number N of steps, called the horizon, 
— a finite state space S containing all information from the past which is necessary 

for the future (to obtain a Markov process), 
— finite sets Ds of actions available in state s e S , 
— a transition probability p where p(s, a, s') is the probability to reach s' e S in one 

step when starting in s 6 S with action a e Ds, 
— a reward function r where r(s, a) is the (possibly expected) reward for one step 

starting in s e S with action a e Ds, 
— a discounting factor /? > 0 and 
— in case of finite N a final reward V°(s) depending on the final state s e S. 

For this model we define a decision function / as a mapping which assigns to 
each s e S an action a e Ds, shortly / e X D x . 

seS 

A policy is composed of decision functions, according to the number of steps, 
i.e. 7i = ( / 0 , / i , •••); a stationary policy contains only identical decision functions, 
i.e. /°° = ( / , / , ...) for N = oo. For each fixed policy n and any starting state s the 
expected total discounted reward is defined as 

Vn(s) = E„s[
N£p-r(Xn,f„(Xn)) + /?» V°(XNy] 
n = 0 

where the probability measure depends on n and s, where Xn is the (random) state 
of the system at time point n (at the end of step n and the beginning of step n -j- l), 
and where the last term is omitted if N = oo. The value function Vthen is defined by 

V(s) = sup Vn(s) 
n 

and policy n* is said to be (s —) optimal, if 

Vw.(s) = V(s) ( -8) for all seS . 

A solution of a Markov decision problem consists in deriving V and an optimal 
policy 7t*. 

The basic solution methods for the most important case N = oo and /? < 1 are 
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based on the following two theorems (which may be found — also in more general 
versions — in every textbook on Markov decision problems, e.g. Howard (i960), 
Derman (1970)): 

Theorem 1. Vis the only solution of 

v(s) = sup Lv(s, a) =:U v(s) 
aeDs 

where 

Lv(s, a) := r(s, a) -f P £P(s, a, s') v(s') 
s' 

andf00 is optimal if V(s) = LV(s,f(s)) =: Lf V(s) for all s e S. 

Theorem 2, U"V° converges to Vfor n -> oo and for any V°, where Unv is defined 
recursively by U°v = v, Unv = 1/(11" _1i?). The policy /*> is optimal if UnV° = 
= Lf(U

n~1V°) for an infinite number of n's. 
In case of a fixed stationary policy/00 these theorems reduce to 

Corollary 1. Vf : = Vf*> is the only solution of v = Lfv. 

Corollary 2. (Lf)
n V° converges to Vf for n -> oo and for any V°. 

From these theorems two exact and some approximative solution methods are 
derived: 
a. The system 

v(s) —̂ Lv(s, a) , se S , a e Ds 

£ v(s) = minimum ! 
5 

is solved by linear programming methods. By using the dual problem it is possible 
to obtain also an optimal stationary policy. 

b. The policy iteration method works by the following steps: 

(i) Choose an arbitrary V°. 
(ii) If Vn is given, calculate UVn = LfnV

n. 
(hi) If Vn = UVn then (Vn,f?) is a solution, if Vn * UVn calculate Vn+1 : = 

: = Vfn by solving the linear system v = Lfnv (Corollary l). 
This procedure will end in a finite number of steps. 

c. If in b(iii) Vfn is calculated iteratively by Corollary 2 then policy iteration turns 
to be also an approximative method. 

d. The value iteration method works according to Theorem 2 by starting with V° 
and iterating Vn = UV"'1 "sufficiently often". 

e. The policy-value-iteration (e.g. van Nunen (1976)) is a variant of the policy itera­
tion by setting Vn+1 = (Lfn)

kn Vn where Xn are positive integers (possibly in­
dependent of n). This variant does no longer end after finitly many steps. Only if 
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(formally) Xn= 02 then the ordinary policy iteration results (cp. Corollary 2). On 
the other hand for Xn = 1 we obtain the value iteration method. 

For the methods c, d and e terminating rules and accuracy bounds are neccessary 
which may be derived from the next section. 

3. Extrapolation bounds 

The first who gave useful upper and lower bounds for the value function was 
MacQueen (1966). These bounds read, adapted to value iteration (Vn = UV"-1) 

N — k 

i/N _ \/k ^ y pi s u P fyk _ yk-i\ 
1 = 1 inf 

where N may be finite (>fc) or infinite. 
These bounds turned out to be very good for a moderate size of fc in contrast 

to the bounds used earlier-based on the supremum norm. 
This fast convergence is related to the fact that for a fixed stationary policy f00 

and in the frequent case of an irreducible and aperiodic transition matrix pf 

(pf(s, s') = p(s,f(s), s')) has a single largest eigenvalue 1 with a constant right 
eigenvector and all other eigenvalues are of an absolute value less than one.Therefore 
the difference Vn — Vn_1 approaches asymptotically d. fin where d is a constant 
vector. So the above bounds will tend to be close together (cp. e.g. Schellhaas (1974)). 

In the case not treated here in detail where the matrices pf do not have equal 
row sums (e.g. stopped decision processes or transformed semi-Markov problems) 
in the asymptotic expansion d . /?" (see above) d is not longer constant and j5 is not 
longer known. So /? and d have to be estimated by 

yk _ yk-l 

p * ——v—r—, a*tk(vk-vk-1). 
H yk-i _ yk-2 ' f v / 

In more detail these results may be found in Schellhaas (1974) for N = 00 and in 
Hiibner (1980) for finite N. 

By application of the bounds described above it is possible, too, to eliminate 
some actions at early stages which will be non-optimal later on (see e.g. MacQueen 
(1967), Hastings/van Nunen (1977) and Hiibner (1977, 1979)). 

4. Sensitivity and clustering 

First we ask for the impact of inaccurate data on the value function. By similar 
methods to those used in Section 3 the following bounds are obtained: 
If V° is changed to V° and therefore Vn to V" then 

Vn - Vngs^(V°- V°).pn. 
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Similarly, if r is changed to f then 

" infv ; *=0 

For changing p to p the result is 

V - V" i ± sup £(K*» fl, j ) - P(s, a,}))* ."f /T-* sp vk 

3,a j k = 0 

where sp Vk = sup V* — inf Vk. Finally by changing P to /J we obtain 

fc-=0 fr-=f. m i 

When changing more than one entry these formulas may be combined in an 
appropriate order: make sure that Vk in the third or fourth inequality are the known 
ones and avoid if possible the unknown V* on the right hand side. 

These sensitivity results may be used if the state and action spaces are too large, 
possibly infinite. Then some states or actions are clustered together and a common 
(intermediate) value is chosen for r or V° (e.g.) on each cluster. So the original func­
tions are compared with step functions on the original state and action spaces and 
the above inequalities may be applied whereas policy value iteration is carried out 
in the reduced spaces. Such methods and inequalities may be found in Fox (1971), 
Bertsekas (1975), White (1977), Whitt (1978) and Hinderer (1978). 

A somewhat different approach is used by Nollau and Hahnewald-Busch 
(1979) who calculate upper and lower bounds Vn and Vn in upper and lower clustered 
models. 

5. Structural and statistical problems 

The results given so far do not take advantage of the special structure the 
decision problem may posess. So these methods have to be adapted to the special 
structures to yield simpler calculations and even simple structured policies. For 
practical purposes it will even be better in most cases to have simple suboptimal 
policies than complicated optimal ones. Possibly the most famous result of this type 
is the optimality of fixed lower and upper ordering bounds (so called (s, S)-policies) 
for inventory problems. There is a lot of results on such structured problems but even 
more seem to be unsolved. 

Finally we have to discuss the important fact that all data needed for a decision 
model have to be collected by statistical methods. 

It is the simplest way first to collect and evaluate data and then use these in 
a Markov decision model. But proceeding in this way the data and insights gained 
during the process are not used to update the values previously determined. 

This disadvantage may be circumvented by at least three ways: 
(i) Choose a Bayes model including an apriori distribution of the unknown para-
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meters. But thus many more data have to be used and even the state space has 
to be enlarged by the posterior distributions to retain a Markov model. 

(ii) Solve the decision problem with the data collected initially, but use only one or 
a few steps of the policy determined, then update your data and solve the decision 
problem again. This method is used in some applications and there are investiga­
tions on the asymptotical behaviour of such a proceeding (cp. e.g. Mandl (1979)). 

(iii) Use methods of time series analysis of filtering to combine statistics and opti­
mization. But as far as I know only few has been done in this direction. 
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