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1985 ACTA UNIVERSITATIS CAROLINAE — MATHEMATICA ET PHYSICA VOL. 26. NO. 1 

Exchangeable Partial Groupoids II 

A. DRAPAL A N D T. KEPKA 

Department of Mathematics, Charles University, Prague*) 

Received 17 September 1984 

In the paper, the problem of distances between finite latin squares and groups is studied. 

V clanku se studuje problem vzdalenosti konecnych latinskych ctevercu od grup. 

B CTaTbe H3VMaeTCH npo6jIeMa paCCTOHHHfl Me5Kfly KOHeHHWMH JiaTHHCKHMH KBa^paTaMH 
H rpynnaMH. 

The present note is an immediate continuation of [1] and the reader is referred to [1] as for 
notation, terminology, etc. 

13 . An example 

Let ki, k2, k3 be non-negative integers, k = kv + k2 + k3, k0 = 0 and k4 = k. 
Further, put T = {1, 2, 3} and define a permutation t of T by t(l) = 2, t(2) = 3 

y - i j 
and t(3) = 1. For 1 = i = k let s(i) = j e T iff £ K < i = £ ku. For j e T let 

M = 0 M = 0 

j 

r(j) = £ ku if kj + 0 and r(j) = k + j in the opposite case. Finally, let v(j) = 1 + 
u= 1 

+' X kj and V={u{j);jeT}. 
u = 0 

Now, we shall define a balanced partial groupoid Y = Y(o) = Y(kl9 k2, k3,0) 
as follows: B(Y) = {bl9 bl9 b3}9 C(Y) = [cl9 c2, ..., ck+2}9 D(Y) = {1, 2, ..., k + 3} 
andM(Y) = {(bs(0, Ci); 1 = i = k} u {(b,s(0, c,); 1 = i = k} u B(Y) x {ck+l9 ck+2}. 
We put bsii) o Ci = i for any 1 = i ^ k, b,s(0 o cf = i — 1 for every 1 g i ^ k such 
that i$V9bj0ck + 2 = k + j and b,a) 0 cfc+1 = r(j) for every j e Tand b,01 0 vv(j) = 
= k + j for every j e T with ky + 0. This definition is correct since for j e T we have 
sv(j) = j if kj + 0 and v(j) e {v(j + l), k + 1} otherwise. 

13.1. Lemma, (i) Yis a balanced cancellative reduced partial groupoid. 
(ii) card (Y) = 2k + 8, m = 2k + 6, p = 3, q = k + 2, o = k + 3, S(p) = 

= 2k, S(q) = 2, (5(o) = 0 and S = 2k + 2. 

*) 186 00 Praha 8, Sokolovská 83, Czechoslovakia. 



(iii) p(bj) = k + 2 — ktU) for every j e T 
(iv) g(c,) = 2 for every 1 = / ^ k. 
(v) q(cj) = 3 for i = k + 1, k + 2. 

(vi) o(/) = 2 for every 1 = / = k + 3. 

Proof. Let I e Tand let S be the set of all i such that 6 . 0 c = i for some c e C(Y). 
t - \ t 

Then it is easy to see that S = {/; 1 = i = k + 3} - ({/; £ kw < / = £ kM} u 
M=0 u = 0 

u {k + t}), t = t(j). 

13.2. Lemma. Suppose that k{ _ k2 _ k3. 

(i) If k3 = 1 then m = 12. 

(ii) If k3 = 0 then Yis regular, H(Y) is a cyclic group of order k^2 + 2kx + 
+ 2k2 + 3 and no non-trivial subgroup of H(Y) is regular. 

Proof Suppose that k3 = 0, k1 + 0 and consider the group H = GJP(Y, (bu ct)) 
(see [2]). Then b1 = cx = 1 in H and b2 = ck+2 = x"1, x = c2. Further, c,- = JC1"1 

for 1 = / ^ ki, c^+1 = xfcl and from k + 3 = b3 o ck+2 = bx o c^+1 it follows 
that b3 = xfcl + 1. If k2 = 0 then from b3 o ck+1 = b2 o ck+2 it follows that x2fc + 3 = 1. 
If k2 + 0 then ckl + i = x~lkl~2l~l for 1 ^ / = k2 and hence from b2 o ck = b3 o ck+1 

it follows that xl = 1, / = ktk2 + 2k1 + 2k2 + 3. 

13.3. Lemma. Y is primary and strictly exchangeable. 

Proof The result is an easy consequence of 8.1, 8.2 and 8.3. 
By 13.3 there exists a unique partial groupoid Y(*) = Y(kl9 k2, k3, *) such that 

I = I(kl9 k2, k3) = (Y(o), Y(*)) is a couple of companions. 

13.4. Lemma. Let d be a permutation of T. Then the partial groupoids 
Y(kl5 k2, k3) and Y(kd(1), kd(2), kd(3)) are isomorphic. 

Proof We shall construct a mapping f of Y(kd(1), kd(2), kd(3)) onto Y(kl9 k2, k3) 
as follows: Let jeT Put f(bj) = bd(j),f(ck+1) = ck+1, f(ck+2) = ck+2, f(k + j) = 

1 - i 

= k + d(j) and f(y) = / + X k„, f(cy) = cfiy) for every 1 = / ^ kd(7) and y = 
u = 0 

d O ' ) - l 

= / + Z fc„. 
M = 0 

13.5. Lemma. Suppose that k1 = k2 = k3 and let ki ^ k2 = k3 be non-
negative integers. Then the partial groupoids Y(kl5 k2, k3) and Y(ki, k2, k3) are 
isomorphic iff (kl9 k2, k3) = (ki, k2, k3). 

Proof. Easy. 



13.6. Lemma, (i) If k 4= 1 then the couples I and I are not isomorphic, 
(ii) The couples I and I~x are not isomorphic, 

(iii) The couples I and I"x are not isomorphic, 
(iv) If k 4= 0 then the couples I and " XI are not isomorphic, 
(v) The couples I, I-1 and _ 1I are pair-wise non-isomorphic. 
Proof. Easy. 

14. Auxiliary results 

In this section, some results of auxiliary character are formulated. In fact, they 
are slight modifications of the material contained in the eighth section, and so the 
proves are omitted. 

Let I = (K(o), K(*)) be a couple of companions and suppose that (a, c), (b, c) e 
e M(I), a 4= b, o(a 0 c) = 2. A finite sequence (cl9..., cr) is called pseudoadmissible 
if r _• 2, cl9..., cr are different elements of C(I), ct = c9 a 0 ct = b 0 ci+1 and 
o(a © c.) = 2 for every 1 ^ i < r and q(c,) = 2 for every 1 < i < r. We shall say 
that the sequence is maximal if it has no pseudoadmissible prolongation. 

14.1. Lemma. Let (cl9..., cr) be a pseudoadmissible sequence. Then b * c{ = 
= a * ci+1 = a o cf for every 1 = / < r. 

14.2. Lemma. Let (c1,...,cr) be a maximal pseudoadmissible sequence. Then 
at least one of the following three conditions is satisfied: 
(1) q(cr) = 2 and a o cr = b o c1 = a * ct = b * cr. 
(2) q(cr) = 3. 
(3) o(a o cr) = 3. 

14.3. Lemma. Suppose that I is simple and (cl9..., cr) is a maximal pseudo-
admissible sequence satisfying (1). Then M(I) = {a, b) x {cl9 ..., cr}. 

14.4. Lemma. Suppose that I is finite and there exists at least one pseudo-
admissible sequence. Then there exists at least one maximal pseudoadmissible 
sequence. 

15. Couples with <5(a) = 2 and <5(o) = 0 

15.1. Lemma. Let I = (K(o), K(*)) be a simple couple of finite companions 
with S(q) = 2 and 8(o) = 0. Then there exist u,ve C(I) such that u 4= v9 q(u) = 
= q(v) = 3 and q(w) = 2 for any w e C(I)9 u 4= w -# v. 

Proof. Put K = K(0) and take an element u e C(K) with q(u) = 3. We have 
2 = S(q) = £(q(c) — 2), and therefore such an element exists. Further, let a e B(u) 
(see the eighth section). Since S(o) = 0, o(x) = 2 for every x e D(K). In particular, 
o(a o u) = 2 and a 0 u = b 0 c for some (b, c) e M(K), a -j= b, w 4= c. By 8A, a 0 w = 



= a * c = b*u.If q(c) _ 3, then q(u) = 3 = q(c) and we can put v = c. Suppose 
that q(c) = 2. By 14.4, let (cu...,cr) be a maximal pseudoadmissible sequence, 
ct = u, c2 = c. Now, with respect to 14.3 and 14.2, q(cr) = 3 and we can put v = cr. 

15.2. Proposition. Let I = (K(o), K(*)) be a simple couple of finite balanced 
companions such that d(q) = 2 and <5(0) = 0. Then there exist uniquely determined 
non-negative integers kx, k2, k3 such that fcx = k2 = k3 and the couple I is isomorphic 
toI(k1? k2, k3). 

Proof. Put K = K(o). By 15.1, there are u, v e C(K) such that q(u) = q(v) = 3 
and u =}= v. Let B = B(u) = {a, b, c}. There is a permutation s of B and mapping t 
of B into C(K) such that s(x) =f= x and x 0 u = s(x) 0 t(x) for each X G 5 . It is easy 
to see that t(x) = v whenever x, y e B, x =j= y and t(x) = t(y). Further, we can 
assume that s(a) = b, s(b) = c and s{c) = a. The rest of the proof is divided into 
four parts. 

(i) Let card (t(B)) = 1. Then clearly I is isomorphic to I(0, 0, 0). 
(ii) card (t(B)) = 2. Then t is not injective and we can assume that t(a) = 

= c2 4= v, u = ct and t(b) = t{c) = v. Let (cl9 c2, ..., cr), r ^ 2, be a maximal 
pseudoadmissible sequence (by 14.4). We have cr = v and, since I is simple, I is 
isomorphic to I(r — 1, 0, 0). 

(iii) card(t(B)) = 3 and v e t(B). We can assume that t(c) = v, t(a) = c2, 
t(b) = c2. We have a o u = b o c2, b o u = c o c'2, c o u = a o v. Let (c l9 ..., cr) and 
(c\, ..., cd) be maximal pseudoadmissible sequences such that cx = u = c\, a 0 c2 = 
= b o c3, ..., b o c'2 = c o c 3 , . . . . Obviously cr = v = c'd and I is isomorphic to 
I(r - l , d - l , 0). 

(iv) card(r(J5)) = 3 and v $ t(B). Let t{a) = c2, t(b) = c'2, t(c) = c"2 and let 
(c l9 ..., cr), (c\,..., c'd), (c'[,..., c"e) be maximal pseudoadmissible sequences such that 
u = ci = c\ = c'[, a o c2 = b o c3, b o c2 = c o c3, c 0 c2 = a © c3. Then cr = cd = 
= c"e = v and I is isomorphic to I{r — \, d — 1, e — 1). 

15.3. Corollary. Let kl5 k2, k3 be non-negative integers. Then the partial 
groupoids Y(k1? k2, k3, o) and Y(k1? k2, k3, *) are isomorphic. 

16. An example 

Let k1? k2, k3 be non-negative integers, k = k1 + k2 + k3, k0 = 3, nt = kt + 1, 
n = k + 3, n0 = 0. Put T = {1, 2, 3}, t(l) = 2, t(2) = 3, r(3) = 1. 

Now, we shall define a balanced partial groupoid X = X(o) = X(kl9 k2, k3, o) 
as follows: B(X) = {bl9 b2, b3}, C(X) = {cl9 c2, ..., c, + 4 } , D(K) = {1, 2, ..., k + 4}, 

1-i 1 
by o C; = n + 1, btU) o Cj = 1 + £ nM, by o c f c + 4 = ^ n„, by o Ci = i - 4 + j , btU) O 

u = 0 « = 1 
y - i I 

0 Cf = i - 3 + j for all j e Tand ^ ku < i = ^ ku. 
» = o « = o 



16.1. Lemma, (i) X is a balanced cancellative reduced partial groupoid. 

(ii) card (X) = 2fc + 11, m = 2fc + 9, p = 3, q = k + 4, o = fc + 4, <5(p) = 
= 2fc + 3, % ) = 1, S(o) = 1 and d = 2fc + 5. 

(iii) p(b,) = fc + 4 - fc,0) for every j e T. 
(iv) q(ci) = 2 for every 1 = i g fc + 3 and q(ck+4) = 3. 
^v) o[i) = 2 for every 1 = i = k + 3 and O(fc + 4) = 3. 

Proof. Easy. 

16.2. Lemma. Suppose that kl ^ fc2 ^ fc3. 

(i) If fc3 = 1 then m = 15. 
(ii) If fc3 = 0 then X is regular, H(X) is a cyclic group of order fcxfc2 + 3kl + 

+ 3fc2 + 7 and no non-trivial subgroup of H(X) is regular. 

Proof. Easy. 

16.3. Lemma. X is primary and strictly exchangeable. 

Proof. Let (by, cf) e M(K). If / < fc + 4 then by * cf is determined uniquely, 
since q(c,) = 2. If i = fc + 4 then bj * ct- is uniquely determined as well, since 
o(bjoc) = 2 (use 8.1). 

By 16.3 there exists a unique partial groupoid X(*) = X(ku fc2, fc3, *) such that 
J = J(fcx, fc2, fc3) = (X(o), X(*)) is a couple of companions. 

16.4. Lemma. Let k\, fc2, fc'3 be non-negative integers. Then the groupoids 
X(kt, fc2, fc3, o) and X(fc',, fc2, fc3, o) are isomorphic iff fcf = ks{i) for a permutation 5 
of T 

Proof. Easy. 

17. An example 

Let kl9 k2 be non-negative integers, fc = fc^ + fc2, fc0 = 3, nt = fcf + 1, « = 
= fc + 2. Put T = {1, 2, 3}, t(l) = 2, f(2) = 3, r(3) = 1. 

We shall define a balanced partial groupoid X = X(o) = X(kl9 fc2,0) as follows: 
B(X) = {bu b2, b3}, C(X) = {cu ..., ck + 3 } , D(X) = {1, ..., fc + 3}, by. o Cj = fc + 3 

1 
for every j e T, b,(;) <> cf = / - 4 + j , btt(j) 0 cf = i - 3 + j , br(y) 0 cx = ^ nu for 

M = l 

y - i 1 

every 1 = j = 2 and £ ku < i ^ ^ ku and bx 0 c3 = n1 + 1, b3 o c2 = 1. 
M=0 u = 0 

17.1. Lemma, (i) X is a balanced cancellative reduced partial groupoid. 
(ii) card (X) = 2fc + 9, m = 2fc + 7, p = 3, a = fc + 3, O = fc + 3, <5(p) = 

= 2fc + 1, 6(q) = 1, O» = 1, 3 = 2fc + 3. 



(iii) p(bt) = k2 + 2, p(b2) = k! + 2, p(b3) = k + 3. 
(iv) q(ci) = 2 for every 2 _ i ^ k + 3 and ^(cx) = 3. 
(v) o(i) = 2 for every 1 = i = k + 2 and o(k + 3) = 3. 

Proof. Easy. 

17.2. Lemma. K is regular, H(X) is a cyclic group of order kxk2 + 2k1 + 2k2 + 
+ 2 and H(X) has no non-trivial regular subgroups. 

Proof. Easy. 

17.3. Lemma. X is strictly exchangeable but not primary. 

Proof. For 1 < i _̂  k + 3, the element bj * ct is determined uniquely, since 
q(ct) = 2. Now, it is easy to see that X is strictly exchangeable. On the other hand, 
the subset {bu b2} x ({c1? c3} u {ct; kx + 3 < i = k + 3}) of M(X) is admissible. 
Hence X is not primary. 

By 17.3, there exists a unique partial groupoid X(*) = X(ki9 k2, *) such that 
J = J(kl5 k2) = (X(o), X(*)) is a couple of companions. 

17.4. Lemma. J is a simple couple. 

Proof Easy. 

17.5. Lemma. Let ki, k2 be non-negative integers. Then the partial groupoids 
X(ku k2, o) and K(ki, k2, o) are isomorphic iff k1 = ki and k2 = k2. 

Proof The partial groupoid X(ku k2, o) contains a partial subgroupoid 
isomorphic to Z(k2 + 2, o). On the other hand, if Z is a partial subgroupoid of 
X(ku k2, o) and Z is isomorphic to Z(i, o) for some i then i = k2 + 2. The rest 
is clear. 

17.6. Lemma. K(kl5 k2, *) is isomorphic to K(k2, kl9 o). 

Proof. Easy. 

18. Couples with S(q) = I = 6{o) 

18.1. Proposition. Let I = (K(o), K(*)) be a simple couple of finite balanced 
companions such that 3(q) = 1 = 3(o). Then there exist non-negative integers 
kl9 k2, k3 such that I is isomorphic either to J(ku k2) or to J(kl5 k2, k3). 

Proof. Let T= {1, 2, 3}, t(l) = 2, ^(2) = 3 and t(3) = 1. Since 3(o) = 1, there 
is just one element a e D(K) with o(a) = 3 and consequently there exist elements 
bj e B(K), Cj e C(K), j e T, with bj o Cj = a = bt(jl * cy Without loss of generality, 

8 



we can assume that q(cx) ^ q(c2) = q(c3) = 2. Let us distinguish the following 
two cases: 

(i) g(cj) = 3. Put e1 = c2, e\ = c3. We have q(ej = q(e\) = O(b3 0 et) = 
= o[b1 o ei) = 2. Now, we can consider maximal admissible sequences (el9 ..., es), 
(e j , . . . , ed) such that b3 0 e{ = b2 0 ei+1 for every 1 = i < r arid bx 0 e\ = b3 <> e-+1 

for every 1 = i < d. Since (b2, c3)£M(K) , we have c3 4= et for every 1 = i _̂  r. 
Hence Ovb3 0 er) = 2, and so by 8.8 q(er) = 3 and consequently er = cv Similarly, 
e'd = cv Now it is easy to see that I is isomorphic to J(r — 1, d — 1) (use 8.4). 

(if) q(Cl) = q(c2) = g(c3) = 2. If b f ( i ) o cj = b„Q o cr(y) then, by 8.1, (b„0 ) , cy) e 
G M(K), a contradiction with g(cy) = 2. Hence the elements b r 0 ) 0 ĉ  are pair-wise 
different. Further, consider three maximal admissible sequences (el9 ..., er)9 (e\9..., ed) 
(e'[9..., e"f) such that ex = cl9 e\ = c2, e'[ = c3, et- o b2 = ei+1 o bx for every 1 = 

= i ^ r — 1, ej o b3 = e-+1 o b2 for every 1 = i = c1 — 1 and e" 0 b1 = e"i+ x o b3 

for every 1 = i = / — 1. Further, since g(cy) = 2, we have er, e'd9 e"f$ {cl9 c2, c3}, 
o(er) = o(ed) = O(e^) = 3 and er = e'd = e"f. In the rest we can proceed similarly 
as in (i). 

18.2. Corollary. Let kl9 k2, k3 be non-negative integers. Then the partial 
groupoids X(kl9 k2, k3, o) and X(kl9 k2, k3, *) are isomorphic. 
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