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E. SUKOVA, J. VINAREK 

Department of Mathematics, Charles University, Prague*) 

Received 10 January, 1986 

Subdirect irreducibility of graphs is studied for different cases of products — categorical, 
cartesian and mixed ones. 

V praci se zkouma subdirektni ireducibilita grafu pro ruzne typy soucinu — kategorialni, 
kartezske a smisene. 

B pa6oTe HCCJieiryeTCfl noflnpflMafl HenpHBOAHMOCTb fljim pa3HBix TnnoB npOH3Be,zieHHft rpa(J>OB 

Introduct ion 

Throughout this paper, the topic "graph" denotes an undirected graph without 
loops and multiple edges. 

It may be sometimes useful to construct general graphs from those which are — 
in some sense — simple, using products and subobjects. Which products and which 
subobjects? If one does not want to lose useful properties of graphs, it is good 
to use induced subgraphs as subobjects. This problem was studied for the case 
of direct (categorical) products of graphs in [2]. In the present paper we attack 
the problem of constructions of general graphs from simple ones for other two 
types of products — cartesian and mixed products. 

1. Conventions and notations 

Given graph G, we denote V(G) its set of vertices and E(G) its set of edges. 
In the case of an indexed family of graphs {Gt; i el} we shall put usually V(G) = 
= Vh E(G) = Et. If G is (some) product of graphs Gl9..., Gn then i-th projection pt 

is a mapping defined by pt(xl9 ..., xn) = xt. A join G = Gt u G2 of graphs is defined 
by G = (Vx u V2, E1 u E2). Kn denotes — as usual-a complete graph with n vertices. 

2. Products of graphs and subdirect i rreducubi l i ty 

2.1. Definition. Let I = { 1 , . . . , n} be an indexed set, G{ be graphs. 
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Then: 
a) A direct product D = Gx x ... x Gn = X G, is a graph defined by: 

V(D)= V! x ... x V„, ' 

E(D) = { { ( x ! , . . . ^ , , ) , ^ ! , . . . , ^ ) } ; {xi9 yt} e E{ for any ieI} 

b) A cartesian product C = Gt D ... D Gn = D G, 
is a graph defined by: 7 

K(C) = Vi x ... x Vn 

E(C) = {{(xu ..., xn), (yu ..., yn)}; (3/ e /) ({*,, kj} e V,) A 

A ( V i e / ) ( i + y = > ^ = yi)}. 
c) A mixed product M = Gl ® ... ® G„ = ® Gt is a graph defined by: 

F(M) = V! x ... x Vn, 

E{M) = E(C) u E(D). 

(I.e. M = Cu D). 

2.2. Definition. A graph G is subdirectly irreducible (abbreviated SI) if, whenever 
G is embedded as an induced subgraph (with an embedding e) into a product nG f 

of graphs Gl9 ..., Gn such that all pte are onto, then at least one pte is an isomorphism. 
(This definition can be used for n = X, D or®). 

Fig. l. 

2.3. Convention. We shall use abbreviations DSI (CSI, MSI resp.) for subdirect 
irreducibility with respect to direct (cartesian, mixed resp.) products. 

3. Subdirect irreducibility with respect to direct products 

DSI was characterized in [2] using categorical methods. In this paper we are 
going to find subdirectly irreducibles directly. 

3.1. Proposition. Every complete graph is DSI. 

Proof. Let G = Kn be the complete graph, e: G Gt be an induced sub

graph such that all pte are onto (recall that pt are the projections). Since pte is a homo-
morphism of graphs and G is complete, Gt is complete for any i e I as well. Hence, 
Gi^ G and G is DSI. 
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3.2. Proposition. Any DSI graph is complete. 

Proof. One can check that for G = (V, E) with E = ft Ei9 E * £,, there is 
16/ 

an embedding G -> X (V, £,). Hence, any DSI graph G has at most one edge missing 
iel 

(i.e. it is meet irreducible — see the general categorical theorem from [2]) Suppose 
that G = (V, E) is a graph with just one edge {x9 y} missing. Denote Gx = 
= (V9Eu{x9y})9 V2 = V- {y}9 G2 = (V2,(V2 x V2) n E) Clearly, Gt and G2 

are complete graphs and e: G -• Gx x G2 defined by 

e(i/) = (v9 v) for i? + y , 

e(y) = (y>x) 

is an embedding with pxe9 p2e homomorphisms onto. Thus, G is not DSI. 

3.3. Theorem. A graph is DSI iff it is complete. 

Proof follows from 3.1. and 3.2. 

4. Subdirect irreducibility with respect to cartesian products 

4.1. Proposition. Every complete graph is CSI. 

Proof. Suppose a complete G is an induced subgraph of • Gt (e is the embedding) 

Suppose there exist x9y9ze V(G), i, j el9i #= j9 such that pt e(x) =1= pt e(y)9 pt e(y) = 
= Pi e(z)9 Pj e(x) = Pj e(y), Pj e(y) * Pj e(z). Hence, pt e(x) =j= pt e(z)9 Pj e(x) =# 
=}= pj e(z). According to the definition of the cartesian product, there is {v[x)9 v[z)} $ 
$ F(D Gf) and {x9 z} $ E(G) which contradicts the assumption G is complete. Hence, 
there exists just one iel such for any x9 y e V(G) there is pt e(x) =1= pt e{y) and 

Pj Kx) = Pj e(y) f° r a n y I * ^ ^ m c e Pte i s o n t o an(^ G -s complete, there is G s Gf. 
Thus, G is CSI. 

4.2. Proposition. Any graph G with just one edge missing is CSI iff |V(G)| ^ 4. 

Proof. Denote by K'n the graph with n vertices and just one edge missing. One 
can check that K2 and K'3 are not CSI: 

Kx / ' \ 

Fig. 2. Fig. 3. 
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Suppose n = 4, G = (V, E) where V= {xl5 ...,xn}9 E = {{xi9 Xj}; i =j= j , (ij) 4= 
#=(1, n)}. For j = 2 , . . . , n — 1 there is G / {x^-., xy, xy+1} (an induced subgraph) 
isomorphic to K3. Denote by e an embedding of G in • G(. Hence — according to 
4.L — there exists just one i(j) such that pi(j) e(xJ^1) 4= PiU)Kxj) + Pun Kxj+i) 
and pie(xJ-1) = Pie(xj) = P/e(xJ + 1) for any i 4= 1(7). It is evident that i(2) = 
= ... = i(n - 1). Thus, Gt are trivial for all i 4= i(2). Since e is an embedding, 
Gl(2) .= G and G is CSI. 

4.3. Proposition. Let G = (V, E) with V= {x0, ...,xw} (n = 3) be a graph 
such that Gx = G / {x0, ...9 xn_1} and G2 = G / {xu ..., x„} are CSI. Then G is 
CSI, too. 

Proof. Suppose that assumptions of Proposition are satisfied and there is an 
embedding e:G -» • Ht with all pte onto. Denote Hu = Ht I {pie(x0)9..9 pie{xn_l)}9 

H2i = Ht I {pt e(x1)9...9 Pi e(xn)}. Since Gx is CSI, there exists ke I such that Hlk .= G-. 
Using methods of 4.2. one can prove that \Hlp\ = 1 for any p 4= k. Similarly, sub-
direct irreducibility of G2 implies that there exists q el such that H2q =- G2; more
over |H2r | = 1 for any r 4= q.Ifk 4= #then|H2fc| = landpfce(xx) = ... = pke(xn^l). 
But on the other hand Hlk =* G1 and pfc e(xx) 4= pk Kx2) 4= ... 4= pk

 e(xn-ij which 
is a contradiction. Hence, k = q9 pke is bijective and \Ht\ = 1 for any 1 4= k. There
fore, G is CSI. 

4.4. Remark. Proposition 4.3. does not hold without assumption n = 3. E.g. if 
G = ({0, 1, 2}, {{0,1}, {1, 2}}) then C / { 0 , 1 } . C | {1, 2} s K2 is SI but G s K3 

is an induced subgraph of K2 x K2 and it is not CSI. 

4.5. Theorem. Let G = (V, E) be a graph with V(G) = {x0, ..., x n _ J . If E = 
= {{xf, x,.}; 1 = \i - j | = 2} then G is CSI. 

Proof. 
(i) If n = 3 then G is complete and according to 4.1 it is CSI. 

(ii) Suppose that Proposition holds for n = k; we are going to prove it for n = k + 1. 
Clearly, Gt = G / {x0, ..., xk} satisfies assumptions of Proposition for n = k 
and therefore Gl is CSI. Denote G2 = G I {xl9 ..., xfc} and put y0 = x l5 yt = 
= x29...9yk_1 = xk. G2 also satisfies assumptions of Proposition for n = k. 
Hence, G2 is CSI and — according to 4.3 — G is CSI as well. 

4.6. Theorem. Let Gx = (X, R), G2 = (Y, 5) be graphs, Xn Y= {a}. Then 
G = (X u Y, R u S} is not CSI. 

Proof. Define an embedding: f: G -> Gx • G2 as follows: 

fvx) = (x, a) whenever xeX 

f(y) = (a9 y) whenever y e Y 

One can check thatfis an embedding and Pif(P2fresp.) are mappings onto GX(G2). 
Therefore, G is not CSI. 
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4.7. Remark. Propositions 4.L, 4.2 show that DSI => CSI but the converse is 
not true. Not only complete graphs but also graphs with just one edge missing with 
at least 4 vertices are CSI, too. Of course, there are also other arbitrarily large CSI 
graphs which can be constructed using 4.3 and 4.5 (see e.g. Fig. 4). Theorem 4.6 
gives an example of a class of graphs which are not CSI. Full characterization of 
CSI is still open. 

Fig. 4 

5. Subdirect irreducibility with respect to mixed products 

5.1. Proposition. A complete graph Kn is MSI if n ^ 2. 

Proof, 
(i) K1 is trivial, hence MSI. 

(ii) Let e: K2 -+ ® Gt be an embedding such that all p{e are onto. Then \Gt\ = 2 
and since |K2 | = 2 there exists jeI such that \Gj\ = 2. Since ® Gt contains 
K2 as an induced subgraph, there is Gj = K2. Therefore, K2 is MSI. 

(iii) Suppose n = 3. Without loss of generality, one can suppose V = {0 ,1 , . . . , n — 1} 
Define an integer m by 2m~1

 = n - 1 < 2m. 
m - l 

Now we are going to define an embedding e: Kn -> ® Gt where Gt = K2, 
V(G,) = {0, 1}. 
Let i = ai0 + 2aitl + ... + 2m 1aiim-1(aiJ e {0, 1}) be the dyadic notation 
of an integer i(0 ^ i = n — 1). Define e(i) = (aif0,..., aitm-t). Clearly, e is 
an embedding onto an induced subgraph of ® Gt. Since Pje(2j) = 1, 
Pje(2J — 1) = 0, any pje maps Kn onto Gj. 
Hence, Gn is not MSI. 

5.2. Proposition. An incomplete graph G with just one edge missing (to complet-
ness)is MSIiff|V(G)| = 3. 

Proof. 
(i) If | V| = 2 then E = {0}. Let e: G -> ® G, be an embedding such that all pte 

i 

are onto. If all G( are complete then ® Gt is also complete which is a contradiction. 

Hence, there is a j el such that Gy is not complete. Since pje is onto, |V(Gy)| = 2 
and Gj ^ G. 

(ii) Suppose |V| = 3, V = {x, y, z}, E = {{x, y), {y, z}}. Let e: G -+ ® Gt be an 
embedding such that all pte are onto. Hence, | V(Gt)\ ^ 3 for any i e I. If | V(Gt)\ = 
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!g 2 for all i e I then ® Gt is either complete or a join of complete graphs and 
G is not an induced subgraph of ® Gt. Thus, there exists j e I such that |V(Gj)| = 
= 3 and Gy is not complete. Since pje is onto, G ^ Gj. Hence, G is MSI. 

Fig. 5. 
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(iii) Suppose G = (V, E) where V = {1 , . . . , «} , n = 4, 
F = { { U } ; * * I , { U } 4= {1,2}}. 
Define Gx = ({1 , . . . , n}; {{ij}; i 4= I}) (i.e. a complete graph with n vertices), 
G2 = ({1, 2, 3}; {{1, 3}, {2, 3}). Further define an embedding e: G -> Gx ® G2 

by e(f) = (i, min (i, 3)). We have to prove that the definition of e is correct 
and that every pte is onto. 

(a) If {ij} e E(G) then {pt e{i), px e(j)} e E(G±) and either {p2 e(i), p2 e{j)} e 
e E(G2) or p2 e(i) = p2 e(j), Hence {e{i), e(j)} e E(Gt ® G2). 

(b) {1, 2} e E(G), p2 e(l) -# p2 e(2) and {p2 e(l), p2 e(2)} $ E(G2). Hence, {e(l), 
e(2)} £ F(Gi ® G2) and e is an embedding. 

(c) For any i = 1, . . . , n there is pt e(i) = /^(i, min(i, 3)) = i. Hence, Pxe 
is onto. 

(d) For i = 1, 2, 3 there is p2 e(i) = p2(i, min (i, 3)) = i. Hence, p2e is onto. 
Since pxe, p2e are onto, G cfc. G1? G 4- G2, G is not MSI. 

5.3. Proposition. An incomplete graph with at least two edges missing (to complete
ness) is not MSI. 

Proof. Suppose G = (V, E) such that there are ij, r,s e V, i #= j, r -# s, 
| { U , r , s } | = 3, {U}*-E, { r , s } £ £ . Define G, = (V, E u {i,;}), G2 = (V, E u 
u {r, 5}). Further define e: G -> Gx ® G2 by e(x) = (x, x). 

If (x, y) e E then px e(x) 4= px e(y), p2 e(x) 4= p2 e(j;). Moreover, {x, y} e £ 
iff simultaneously {px e(x), px e(y)} e F(Gj) and {p2 e(x), p2 e(y)} e £(G2). Hence, 
e is an embedding of G onto an induced subgraph of Gt ® G2. Since pfe are onto 
for i = 1, 2 and Gx + G 4. G2, G is not MSI. 

5.4. Theorem. Graph is MSI iff it is isomorphic to one of the following four 
graphs: 

r • 

. 1 

Fig. 6. 

Proof follows from Proposition 5.1 — 5.3. 
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