Acta Universitatis Carolinae. Mathematica et Physica

E. Suková; Jiří Vinárek

Different types of products and subdirectly irreducible

Acta Universitatis Carolinae. Mathematica et Physica, Vol. 27 (1986), No. 2, 23--30
Persistent URL: http://dml.cz/dmlcz/142571

Terms of use:

© Univerzita Karlova v Praze, 1986

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

Different Types of Products and Subdirectly Irreducible Graphs

E. SUKOVÁ, J. VINÁREK
Department of Mathematics, Charles University, Prague*)

Received 10 January, 1986

Subdirect irreducibility of graphs is studied for different cases of products - categorical, cartesian and mixed ones.

V práci se zkoumá subdirektní ireducibilita grafủ pro různé typy součinů - kategoriální, kartézské a smišené.

В работе исследуется подпрямая неприводимость для разных типов произведений графов

Introduction

Throughout this paper, the topic "graph" denotes an undirected graph without loops and multiple edges.

It may be sometimes useful to construct general graphs from those which are in some sense - simple, using products and subobjects. Which products and which subobjects? If one does not want to lose useful properties of graphs, it is good to use induced subgraphs as subobjects. This problem was studied for the case of direct (categorical) products of graphs in [2]. In the present paper we attack the problem of constructions of general graphs from simple ones for other two types of products - cartesian and mixed products.

1. Conventions and notations

Given graph G, we denote $V^{\prime}(G)$ its set of vertices and $E(G)$ its set of edges. In the case of an indexed family of graphs $\left\{G_{i} ; i \in I\right\}$ we shall put usually $V\left(G_{i}\right)=$ $=V_{i}, E\left(G_{i}\right)=E_{i}$. If G is (some) product of graphs G_{1}, \ldots, G_{n} then i-th projection p_{i} is a mapping defined by $p_{i}\left(x_{1}, \ldots, x_{n}\right)=x_{i}$. A join $G=G_{1} \cup G_{2}$ of graphs is defined by $G=\left(V_{1} \cup V_{2}, E_{1} \cup E_{2}\right) . K_{n}$ denotes - as usual-a complete graph with n vertices.

2. Products of graphs and subdirect irreducubility

2.1. Definition. Let $I=\{1, \ldots, n\}$ be an indexed set, G_{i} be graphs.

[^0]Then:
a) A direct product $D=G_{1} \times \ldots \times G_{n}=\mathbb{X} G_{i}$ is a graph defined by: $V(D)=V_{1} \times \ldots \times V_{n}$, $E(D)=\left\{\left\{\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{n}\right)\right\} ;\left\{x_{i}, y_{i}\right\} \in E_{i}\right.$ for any $\left.i \in I\right\}$
b) A cartesian product $C=G_{1}$…$G_{n}=\underset{I}{\square} G_{i}$ is a graph defined by:

$$
\begin{aligned}
V(C)= & V_{1} \times \ldots \times V_{n} \\
E(C)= & \left\{\left\{\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{n}\right)\right\} ;(\exists j \in I)\left(\left\{x_{j}, k_{j}\right\} \in V_{j}\right) \wedge\right. \\
& \left.\wedge(\forall i \in I)\left(i \neq j \Rightarrow x_{i}=y_{i}\right)\right\} .
\end{aligned}
$$

c) A mixed product $M=G_{1} \otimes \ldots \otimes G_{n}=\otimes G_{i}$ is a graph defined by:

$$
\begin{aligned}
& V(M)=V_{1} \times \ldots \times V_{n}, \\
& \left.E(M)=E_{(}^{\prime} C\right) \cup E(D) . \\
& (\text { I.e. } M=C \cup D) .
\end{aligned}
$$

2.2. Definition. A graph G is subdirectly irreducible (abbreviated SI) if, whenever G is embedded as an induced subgraph (with an embedding e) into a product ΠG_{i} of graphs G_{1}, \ldots, G_{n} such that all $p_{i} e$ are onto, then at least one $p_{i} e$ is an isomorphism. (This definition can be used for $\Pi=\mathbb{X}, \square$ or \otimes).

Fig. 1.
2.3. Convention. We shall use abbreviations DSI (CSI, MSI resp.) for subdirect irreducibility with respect to direct (cartesian, mixed resp.) products.

3. Subdirect irreducibility with respect to direct products

DSI was characterized in [2] using categorical methods. In this paper we are going to find subdirectly irreducibles directly.
3.1. Proposition. Every complete graph is DSI.

Proof. Let $G=K_{n}$ be the complete graph, $e: G \rightarrow \underset{I}{\mathbb{X}} G_{i}$ be an induced subgraph such that all $p_{i} e$ are onto (recall that p_{i} are the projections). Since $p_{i} e$ is a homomorphism of graphs and G is complete, G_{i} is complete for any $i \in I$ as well. Hence, $G_{i} \cong G$ and G is DSI.

3.2. Proposition. Any DSI graph is complete.

Proof. One can check that for $G=(V, E)$ with $E=\bigcap_{i \in I} E_{i}, E \neq E_{i}$, there is an embedding $G \rightarrow \underset{i \in I}{\mathbb{X}}\left(V, E_{i}\right)$. Hence, any DSI graph G has at most one edge missing (i.e. it is meet irreducible - see the general categorical theorem from [2]) Suppose that $G=(V, E)$ is a graph with just one edge $\{x, y\}$ missing. Denote $G_{1}=$ $=(V, E \cup\{x, y\}), V_{2}=V-\{y\}, G_{2}=\left(V_{2},\left(V_{2} \times V_{2}\right) \cap E\right)$ Clearly, G_{1} and G_{2} are complete graphs and $e: G \rightarrow G_{1} \times G_{2}$ defined by

$$
\begin{aligned}
& e(v)=(v, v) \text { for } v \neq y, \\
& e(y)=(y, x)
\end{aligned}
$$

is an embedding with $p_{1} e, p_{2} e$ homomorphisms onto. Thus, G is not DSI.

3.3. Theorem. A graph is DSI iff it is complete.

Proof follows from 3.1. and 3.2.

4. Subdirect irreducibility with respect to cartesian products

4.1. Proposition. Every complete graph is CSI.

Proof. Suppose a complete G is an induced subgraph of ${ }_{I} G_{i}$ (e is the embedding) Suppose there exist $x, y, z \in V(G), i, j \in I, i \neq j$, such that $p_{i} e(x) \neq p_{i} e(y), p_{i} e(y)=$ $\left.=p_{i} e^{\prime} z\right), p_{j} e(x)=p_{j} e(y), p_{j} e(y) \neq p_{j} e(z)$. Hence, $\left.\left.p_{i} e(x) \neq p_{i} e^{\prime} z\right), p_{j} e_{1}^{\prime} x\right) \neq$ $\neq p_{j} e(z)$. According to the definition of the cartesian product, there is $\left.\left.\left\{v^{\prime} x\right), v^{\prime} z\right)\right\} \notin$ $\notin E\left(\square G_{i}\right)$ and $\{x, z\} \notin E(G)$ which contradicts the assumption G is complete. Hence, there exists just one $i \in I$ such for any $x, y \in V^{\prime}(G)$ there is $\left.p_{i} e(x) \neq p_{i} e_{1}^{\prime} y\right)$ and $\left.p_{j} e^{\prime}(x)=p_{j} e_{(}^{\prime} y\right)$ for any $j \neq i$. Since $p_{i} e$ is onto and G is complete, there is $G \cong G_{i}$. Thus, G is CSI.
4.2. Proposition. Any graph G with just one edge missing is CSI iff $|V(G)| \geqq 4$.

Proof. Denote by K_{n}^{\prime} the graph with n vertices and just one edge missing. One can check that K_{2}^{\prime} and K_{3}^{\prime} are not CSI:

Fig. 2.

Fig. 3.

Suppose $n \geqq 4, G=(V, E)$ where $V=\left\{x_{1}, \ldots, x_{n}\right\}, E=\left\{\left\{x_{i}, x_{j}\right\} ; i \neq j,(i, j) \neq\right.$ $\neq(1, n)\}$. For $j=2, \ldots, n-1$ there is $G \mid\left\{x_{j-1}, x_{j}, x_{j+1}\right\}$ (an induced subgraph) isomorphic to K_{3}. Denote by e an embedding of G in $\square G_{i}$. Hence - according to 4.1. - there exists just one $i(j)$ such that $\left.p_{i(j)} e\left(x_{j-1}\right) \neq p_{i(j)} e\left(x_{j}\right) \neq p_{i(j)} e_{\left(x_{j+1}^{\prime}\right)}\right)$ and $p_{i} e\left(x_{j-1}\right)=p_{i} e\left(x_{j}\right)=p_{i} e\left(x_{j+1}\right)$ for any $i \neq i(j)$. It is evident that $i(2)=$ $=\ldots=i(n-1)$. Thus, G_{i} are trivial for all $i \neq i(2)$. Since e is an embedding, $G_{i(2)} \cong G$ and G is CSI.
4.3. Proposition. Let $G=(V, E)$ with $V=\left\{x_{0}, \ldots, x_{n}\right\} \quad(n \geqq 3)$ be a graph such that $G_{1}=G \mid\left\{x_{0}, \ldots, x_{n-1}\right\}$ and $G_{2}=G \mid\left\{x_{1}, \ldots, x_{n}\right\}$ are CSI. Then G is CSI, too.

Proof. Suppose that assumptions of Proposition are satisfied and there is an embedding $e: G \rightarrow \square H_{i}$ with all $p_{i} e$ onto. Denote $\left.H_{1 i}=H_{i} \mid\left\{p_{i} e_{(}^{\prime}\left(x_{0}\right), . ., p_{i} e_{(}^{\prime} x_{n-1}\right)\right\}$, $H_{2 i}=H_{i} /\left\{p_{i} e\left(x_{1}\right), \ldots, p_{i} e_{(}^{\prime}\left(x_{n}\right)\right\}$. Since G_{1} is CSI, there exists $k \in I$ such that $H_{1 k} \cong G_{1}$. Using methods of 4.2. one can prove that $\left|H_{1 p}\right|=1$ for any $p \neq k$. Similarly, subdirect irreducibility of G_{2} implies that there exists $q \in I$ such that $H_{2 q} \cong G_{2}$; moreover $\left|H_{2 r}\right|=1$ for any $r \neq q$. If $k \neq q$ then $\left|H_{2 k}\right|=1$ and $p_{k} e\left(x_{1}\right)=\ldots=p_{k} e\left(x_{n-1}\right)$. But on the other hand $H_{1 k} \cong G_{1}$ and $p_{k} e\left(x_{1}\right) \neq p_{k} e\left(x_{2}\right) \neq \ldots \neq p_{k} e\left(x_{n-1}\right)$ which is a contradiction. Hence, $k=q, p_{k} e$ is bijective and $\left|H_{i}\right|=1$ for any $i \neq k$. Therefore, G is CSI.
4.4. Remark. Proposition 4.3. does not hold without assumption $n \geqq 3$. E.g. if $G=(\{0,1,2\},\{\{0,1\},\{1,2\}\})$ then $G|\{0,1\} \cong G|\{1,2\} \cong K_{2}$ is SI but $G \cong K_{3}^{\prime}$ is an induced subgraph of $K_{2} \times K_{2}$ and it is not CSI.
4.5. Theorem. Let $G=(V, E)$ be a graph with $V(G)=\left\{x_{0}, \ldots, x_{n-1}\right\}$. If $E \supseteq$ $\supseteq\left\{\left\{x_{i}, x_{j}\right\} ; 1 \leqq|i-j| \leqq 2\right\}$ then G is CSI.

Proof.
(i) If $n \leqq 3$ then G is complete and according to 4.1 it is CSI.
(ii) Suppose that Proposition holds for $n=k$; we are going to prove it for $n=k+1$. Clearly, $G_{1}=G \mid\left\{x_{0}, \ldots, x_{k}\right\}$ satisfies assumptions of Proposition for $n=k$ and therefore G_{1} is CSI. Denote $G_{2}=G \mid\left\{x_{1}, \ldots, x_{k}\right\}$ and put $y_{0}=x_{1}, y_{1}=$ $=x_{2}, \ldots, y_{k-1}=x_{k}$. G_{2} also satisfies assumptions of Proposition for $n=k$. Hence, G_{2} is CSI and - according to $4.3-G$ is CSI as well.
4.6. Theorem. Let $G_{1}=(X, R), G_{2}=(Y, S)$ be graphs, $X \cap Y=\{a\}$. Then $G=(X \cup Y, R \cup S\}$ is not CSI.

Proof. Define an embedding: $f: G \rightarrow G_{1} \square G_{2}$ as follows:

$$
\begin{array}{lll}
f_{(}(x)=(x, a) & \text { whenever } & x \in X \\
f^{\prime}(y)=(a, y) & \text { whenever } & y \in Y
\end{array}
$$

One can check that f is an embedding and $p_{1} f\left(p_{2} f\right.$ resp.) are mappings onto $G_{1}\left(G_{2}\right)$. Therefore, G is not CSI.
4.7. Remark. Propositions 4.1., 4.2 show that $\mathrm{DSI} \Rightarrow$ CSI but the converse is not true. Not only complete graphs but also graphs with just one edge missing with at least 4 vertices are CSI, too. Of course, there are also other arbitrarily large CSI graphs which can be constructed using 4.3 and 4.5 (see e.g. Fig. 4). Theorem 4.6 gives an example of a class of graphs which are not CSI. Full characterization of CSI is still open.

Fig. 4

5. Subdirect irreducibility with respect to mixed products

5.1. Proposition. A complete graph K_{n} is MSI if $n \leqq 2$.

Proof.

(i) K_{1} is trivial, hence MSI.
(ii) Let $e: K_{2} \rightarrow \otimes G_{i}$ be an embedding such that all $p_{i} e$ are onto. Then $\left|G_{i}\right| \leqq 2$ and since $\left|K_{2}\right|=2$ there exists $j \in I$ such that $\left|G_{j}\right|=2$. Since $\otimes G_{i}$ contains K_{2} as an induced subgraph, there is $G_{j} \cong K_{2}$. Therefore, K_{2} is MSI.
(iii) Suppose $n \geqq 3$. Without loss of generality, one can suppose $V=\{0,1, \ldots, n-1\}$ Define an integer m by $2^{m-1} \leqq n-1<2^{m}$.
Now we are going to define an embedding $e: K_{n} \rightarrow \stackrel{m-1}{\otimes} G_{i}$ where $G_{i} \cong K_{2}$, $V\left(G_{i}\right)=\{0,1\}$.
Let $i=a_{i, 0}+2 a_{i, 1}+\ldots+2^{m-1} a_{i, m-1}\left(a_{i, j} \in\{0,1\}\right)$ be the dyadic notation of an integer $i(0 \leqq i \leqq n-1)$. Define $e(i)=\left(a_{i, 0}, \ldots, a_{i, m-1}\right)$. Clearly, e is an embedding onto an induced subgraph of $\otimes G_{i}$. Since $p_{j} e\left(2^{j}\right)=1$, $p_{j} e\left(2^{j}-1\right)=0$, any $p_{j} e$ maps K_{n} onto G_{j}.
Hence, G_{n} is not MSI.
5.2. Proposition. An incomplete graph G with just one edge missing (to completness) is MSI iff $|V(G)| \leqq 3$.

Proof.
(i) If $|V|=2$ then $E=\{\emptyset\}$. Let $e: G \rightarrow \otimes G_{i}$ be an embedding such that all $p_{i} e$ are onto. If all G_{i} are complete then $\underset{I}{\otimes} G_{i}$ is also complete which is a contradiction. Hence, there is a $j \in I$ such that G_{j} is not complete. Since $p_{j} e$ is onto, $\left|V\left(G_{j}\right)\right|=2$ and $G_{j} \cong G$.
(ii) Suppose $|V|=3, V=\{x, y, z\}, E=\{\{x, y\},\{y, z\}\}$. Let $e: G \rightarrow \otimes G_{i}$ be an embedding such that all $p_{i} e$ are onto. Hence, $\left|V\left(G_{i}\right)\right| \leqq 3$ for any $i \in I$. If $\left|V\left(G_{i}\right)\right| \leqq$
$\leqq 2$ for all $i \in I$ then $\otimes G_{i}$ is either complete or a join of complete graphs and G is not an induced subgraph of $\otimes G_{i}$. Thus, there exists $j \in I$ such that $\left|V\left(G_{j}\right)\right|=$ $=3$ and G_{j} is not complete. Since $p_{j} e$ is onto, $G \cong G_{j}$. Hence, G is MSI.

Fig. 5.
(iii) Suppose $G=(V, E)$ where $V=\{1, \ldots, n\}, n \geqq 4$,
$E=\{\{i, j\} ; i \neq j,\{i, j\} \neq\{1,2\}\}$.
Define $G_{1}=(\{1, \ldots, n\} ;\{\{i, j\} ; i \neq j\})$ (i.e. a complete graph with n vertices), $G_{2}=\left(\{1,2,3\} ;\{\{1,3\},\{2,3\})\right.$. Further define an embedding $e: G \rightarrow G_{1} \otimes G_{2}$ by $e(i)=(i, \min (i, 3))$. We have to prove that the definition of e is correct and that every $p_{i} e$ is onto.
(a) If $\{i, j\} \in E(G)$ then $\left\{p_{1} e(i), p_{1} e(j)\right\} \in E\left(G_{1}\right)$ and either $\left\{p_{2} e(i), p_{2} e^{\prime}(j)\right\} \in$ $\in E\left(G_{2}\right)$ or $p_{2} e(i)=p_{2} e(j)$, Hence $\left\{e^{(}(i), e(j)\right\} \in E\left(G_{1} \otimes G_{2}\right)$.
(b) $\{1,2\} \in E(G), p_{2} e(1) \neq p_{2} e(2)$ and $\left\{p_{2} e(1), p_{2} e(2)\right\} \notin E\left(G_{2}\right)$. Hence, $\{e(1)$, $e(2)\} \notin E\left(G_{1} \otimes G_{2}\right)$ and e is an embedding.
(c) For any $i=1, \ldots, n$ there is $p_{1} e(i)=p_{1}(i, \min (i, 3))=i$. Hence, $p_{1} e$ is onto.
(d) For $i=1,2,3$ there is $p_{2} e(i)=p_{2}(i, \min (i, 3))=i$. Hence, $p_{2} e$ is onto. Since $p_{1} e, p_{2} e$ are onto, $G \neq G_{1}, G \neq G_{2}, G$ is not MSI.
5.3. Proposition. An incomplete graph with at least two edges missing (to completeness) is not MSI.

Proof. Suppose $G=(V, E)$ such that there are $i, j, r, s \in V, i \neq j, r \neq s$, $|\{i, j, r, s\}| \geqq 3,\{i, j\} \notin E,\{r, s\} \notin E$. Define $G_{1}=(V, E \cup\{i, j\}), G_{2}=(V, E \cup$ $\cup\{r, s\}$). Further define $e: G \rightarrow G_{1} \otimes G_{2}$ by $e(x)=(x, x)$.

If $(x, y) \in E$ then $p_{1} e(x) \neq p_{1} e(y), p_{2} e(x) \neq p_{2} e(y)$. Moreover, $\{x, y\} \in E$ iff simultaneously $\left.\left\{p_{1} e(x), p_{1} e^{\prime} y\right)\right\} \in E\left(G_{1}\right)$ and $\left\{p_{2} e(x), p_{2} e(y)\right\} \in E\left(G_{2}\right)$. Hence, e is an embedding of G onto an induced subgraph of $G_{1} \otimes G_{2}$. Since $p_{i} e$ are onto for $i=1,2$ and $G_{1} \neq G \neq G_{2}, G$ is not MSI.
5.4. Theorem. Graph is MSI iff it is isomorphic to one of the following four graphs:

Fig. 6.
Proof follows from Proposition 5.1-5.3.

References

[1] Birkhoff, G., Lattice Theory, AMS Coll. Publ. 25 Providence RI, 1967.
[2] Pultr, A., Vinárek, J., Discr. Math. 20 1977, 159.
[3] VinÁrek, J., Czechosl. Math. J. 32, 1982, 116.

[^0]: *) 18600 Praha 8, Sokolovská 83, Czechoslovakia

