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We construct a linear map from lx to U which does not have a continuous restriction to any 
closed infinite-dimensional subspace of lv. This answers a question of Bogachev, Kirchheim 
and Schachermayer. 

In [1], Bogachev, Kirchheim and Schachermayer proved that if X is a separable 
Banach space not containing /x isomorphically, and Y is any infinite-dimensional 
Banach space, then there is a linear map from X to Y without a continuous restriction 
to any closed infinite-dimensional subspace of X. They asked what happens for 
X = lj. More precisely, they asked the following question. Let Ybe a Banach space, 
and let Tbe a linear map from /x to Y. Does T always have a continuous restriction 
to some closed infinite-dimensional subspace of /x? 

Our aim in this short note is to show that this is not the case. In fact, it is not the 
case even when Y= U. Our proof, which is based on a well-ordering argument, 
does not rely on any particular properties of /-. Indeed, the same proof shows that 
if X is any separable Banach space then there is a linear map from X to U without 
a continuous restriction to any closed infinite-dimensional subspace of X. This 
strengthens the result of Bogachev, Kirchheim and Schachermayer mentioned above. 
The proof also works if X has a dense subset of size c, the cardinality of R. 

Our notation and terminology follow [2]. 
The following lemma is based on the existence of a family of c subsets of Py with 

pairwise finite intersections. 

Lemma 1. Let X be an infinite-dimensional Banach space. Then the algebraic 
dimension of X is at least c. 

Proof. Choose a normalised basic sequence (xn)o in X. Let st be a family of c 
subsets of r\J with pairwise finite intersections. To see the existence of such a family sf, 
take, for example, the collection of all sets of the form {£j=o 2 r ' : « e N } , where 
ro < ri < • • • is a n increasing sequence of natural numbers. 

For A e s/9 set xA = £fl6yl 2~°xa- T n u s if-4, A' e s/ with A 4= A' then the supports 
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of the vectors xA and xA. have finite intersection, and hence the vectors xA, A est 
are linearly independent. • 

We remark that, of course, in the presence of the Continuum Hypothesis, Lemma 1 
follows immediately from the fact that a Banach space cannot have countably infinite 
algebraic dimension. 

Theorem 2. Let X be an infinite-dimensional separable Banach space. Then 
there is a linear map T:X -> U which does not have a continuous restriction to any 
closed infinite-dimensional subspace ofX. 

Proof. Since X is separable, the cardinality of X is c. Now, any closed infinite-
dimensional subspace of X is the closure of a countable subset of X, and hence there 
are at most c such subspaces. Well-order the closed infinite-dimensional subspaces 
of X as (Ya)a<x, where the ordinal k is such that any predecessor of k has less than c 
predecessors. 

Let us construct, by transfinite induction on a, a family of linearly independent 
vectors xan, a < k, n e N such that xan e Ya for all n and a. That this is possible is 
immediate by Lemma 1, since, when we have chosen linearly independent xpn, 
P < a, n e r\J, we have chosen less than c vectors, while the dimension of Ya is c. 

Define a linear map T:X -• U by setting F(xa>M) = w||xaiII||, a < k, neN and 
taking an arbitrary linear extension to the whole of X. Then it is clear that, for each a, 
the restriction of Tto Ya is not continuous. n 

In fact, one can weaken the assumption that X is separable. 

Theorem 2'. Let X be an infinite-dimensional Banach space which has a dense 
subset of cardinality c. Then there is a linear map T:X -» U which does not have 
a continuous restriction to any closed infinite-dimensional subspace of X. 

Proof. As before, the cardinality of X is c, and so there are at most c separable 
closed infinite-dimensional subspaces of X. Well-order these subspaces, and proceed 
as in the proof of Theorem 2. • 

By considering the kernel of T, we obtain the following reformulation of Theorem 2'. 

Corollary 3. Let X be an infinite-dimensional Banach space which has a dense 
subset of cardinality c. Then there is a hyper plane of X which does not contain 
any infinite-dimensional closed subspace of X. • 

We do not know what happens when X is so large that it does not contain a dense 
subset of cardinality c. 
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