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Czechoslovakia

Received 5 October 1990

The development of specialized software makes possible to solve the problems of mathematical
physics without preparing the specific program for each problem. The first part of this paper
characterizes the individual steps of the solution of the direct two-dimensional magnetotelluric
problem. Then a survey of the corresponding numerical methods and software available is
presented. These methods and algorithms include also some efficient procedures that are seldom
used in geophysics at the present. Special attention is paid to procedures implemented and avail-
able in the form of quality software. Only finite difference and finite element methods are discussed.

1. Introduction

Interest in solving the direct problem of electromagnetic induction numerically is
gradually shifting towards the problem of finding efficient methods for solving the
general (i.e. three-dimensional) problem ([27], [25]). The problems of higher sym-
metry have not, however, lost their importance for at least two reasons, cf. [29].

The first reason is physical in nature and is connected with the fact that many
geologically important configurations can be successfully modeled — at least in the
first approximation — by two — or even one-dimensionally inhomogeneous media.
In such a case the model is computed more easily than the original three-dimensional
one and, moreover, it provides information on a whole class of three-dimensional
models as it involves a smaller number of parameters.

The second reason is of a mathematical nature. Modeling two- or three-dimensional
problems has been a subject of thorough investigation in mathematics and computer
science. It is thus purposeful to study the scope and limits of new methods of nu-
merical analysis on well-known two-dimensional models and only then to consider
their applicability to the three-dimensional case.

The rapid development of specialized software brings changes in the principal
approaches to the numerical solution of our problem. Besides the sophisticated
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methods which use the complicated grid of nodal points and basis functions, fast
methods which use simple processes on a regular structure have been developed. On
the other hand, software is so easily available that the user is no longer supposed to
be a skilled programmer, but rather one who is informed about the features of the
programs available and able to use them correctly in practice.

This paper is concerned primarily with the second motivation and its aim is to
show, on a relatively well-known problem, the possibilities provided by modern
specialized software for solving geophysical problems in general. Attention is mostly
paid to the numerical procedures realized by available and reliable programs and
program packages. The subject of the paper is, however, concerned with many
fields of numerical analysis and computer science and, therefore, we cannot claim
that our survey is absolutely complete.

The first part of the paper characterizes the individual steps of the solution of the
direct two-dimensional magnetotelluric problem. Then a survey of the corresponding
numerical methods and software available is presented. These methods and algorithms
include also some efficient procedures that are seldom used in geophysics at present.

Special attention is paid to procedures implemented and available in the form of
quality software. The computation is thus relatively easy in such cases. It consists in
a rather straightforward application of the software to a given problem.

We also discuss possible difficulties connected with the application of this software
in the light of our practical experience. Only the finite difference and finite element
methods, which are most widely used in practice, are considered in this paper. We
are not concerned with the method of integral equations (Green’s function) that is
based on a different approach. Software for this problem is also available [17], [48].

2, Formulation of the problem

We will confine ourselves to the two-dimznsional magnetotelluric problem, i.e.
the plane electromagnetic harmonic linearly polarized wave perpendicularly incident
on the plane surface of a two-dimensionally inhomogeneous conductive half-space
[11], [6], [13]. Such a medium is characterized by an axis of homogeneity (in this
paper it is always the x-axis) representing the direction in which the properties of the
medium do not change.

Assuming a time factor exp (iwt) and neglecting displacement currents, we can
determine two independent solutions, H- and E-polarization, from the general system
of Maxwell equations. The calculated component of the source field, i.e. H, in the
case of H-polarization or E_ in the case of E-polarization, is parallel to the axis of
homogeneity.

It is usually sufficient to approximate the electric conductivity o by a piecewise
constant function. We suppose that the conductivity assumes constant values o;
in individual subdomains Q; of the domain Q. The subdomains usually have simple
geometric form (rectangles, triangles).
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We thus solve the Helmholtz equation

(2.1) iz V’H (v,z) — iH(y,2) =0
X

for H-polarization or
(2:2) V2E.(y, x) — ix*E(y,2z) = 0
for E-polarization where

x* = opo

1
s

, and piecewise constant electric con-

and the quantities w, 4 and ¢ represent the constant angular frequency in s~
constant magnetic permeability in Hm™!
ductivity in Q7! m™!, respectively.

Practical reasons force us to confine ourselves to a finite domain Q on which the
problem is solved. It proves advantageous to choose a sufficiently large rectangle
for Q. The Earth’s surface is represented by the line z = 0 in our model (Fig. 1).
The behavior of the solution at infinity is now replaced by appropriate boundary
conditions on the boundary I" of the domain Q.

Vmuo Q

x

i

z
Fig. 1
Orientation of axes and notation used.

Equations (2.1) and (2.2) are equivalent to each other in the individual subdomains
Q; where ¢ # 0 is constant. Studying the solution of (2.1) or (2.2), we generally
denote it by u if it is not necessary to distinguish between H- and E-polarization.

On the other hand, the behavior of both H, and E, on interfaces between the
subdomains differ from each other and can be described via the variational formula-
tion of the boundary value problems for the equations (2.1) and (2.2) [35]. On these
interfaces we obtain:

(i) the continuity of the solution H, as well as E_;
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(i1) the continuity of the normal derivative 0E,[dn for E-polarization;
(iii) the continuity of the function x~2 6H,[0n for H-polarization.

The conditions (i), (ii) or (i), (iii) correspond to the behavior of the tangential
components of the field vectors on interfaces.

Examining Maxwell’s equations, we can show that H, is constant on and above
Earth’s surface (the air layer with ¢ = 0) in the case of H-polarization [6], [12].
We can put H, = const = 1 for z = 0 and solve (2.1) only in the conductive domain
representing the Earth conductor. In case of E-polarization it is necessary to consider
a sufficiently thick air layer with zero conductivity above Earth’s surface [7], [28].
A suitable normalization of E, in the case of the E-polarization is carried out with
the help of the boundary condition on I

The Maxwell equations imply in our particular case that the field is completely
determined by the solution of the equation (2.1) or (2.2) and by its first partial
derivatives.

3. Solution of the problem

Numerical solution of the problem formulated is carried out in several steps.
We briefly survey both the individual steps and fundamental methods used. The
first two steps are analytical, the last three steps numerical. In the following sections
we will refer to these steps and methods.

Step 1. Splitting the solution

In case of E-polarization, it may prove advantageous [6] to consider together
with the problem formulated in Sec. 2 also a problem similar to it, but with a simpler
behavior of the conductivity o, for example a problem where ¢ depends on the
z-coordinate only (i.e., a one-dimensional problem). Such a problem can often be
easily solved, either analytically or numerically [6], [8], [30]. Denoting its solution
by u,, we split the solution u of the original problem solved into two parts,

(3.1) u=uy+u,,

where u,, is called the principal, u, the residual part of the solution. A differential
equation is obtained for u,. It is the same equation as (2.1) but its right-hand part
is nonzero in regions where the conductivities of the original and simpler problem
differ. Appropriate boundary conditions are added to the differential equation for u,
and the problem is solved numerically. The approximation to u is finally obtained
as the sum (3.1) of u, and the approximation to u,.

Step 2. Choice of boundary conditions

We confined ourselves to a finite domain, namely a rectangle Q, in Section 2.
Boundary conditions prescribed on I' should reflect the behavior of the solution at
infinity.

There are two basic approaches to the formulation of boundary conditions.
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Splitting the solution according to (3.1) in Step 1 and choosing a sufficiently large
rectangle Q, we can put

u=u, on I,
i.e.

u,=0 on I.
The boundary conditions chosen are thus the Dirichlet ones. A similar choice of the
Dirichlet boundary conditions for both H- and E-polarizations is possible also
without the splitting (3.1).

A more general approach makes use of the known behavior of the solution in

the direction of the y- and z-axes [3], [18], [22], [31]. We usually put

(3.2) ;—u = 0 on both the right- and left-hand sides of 2, and
n

u = 0 on the bottom side of Q.

The boundary conditions are mixed (Neumann and Dirichlet) in this case. In case
of H-polarization we can put

(3.3) u =1 on the top side of 2,

i.e. on the Earth’s surface (cf. Section 2), but in the case of E-polarization the choice
of boundary condition on the top side of Q is more complex. An efficient approach
is presented e.g. in [31] where the condition (3.3) is used on the top side of Q for
E-polarization, too, (i.e. in the air) and the computation is successively carried out
for models with thicker and thicker air layers until the solutions of the two such con-
secutive models do not differ by more than the given tolerance.

Step 3. Discretization of the problem

We will consider two discretization procedures, namely the finite difference and
finite element methods, without giving details. For reference see e.g. [6], [12], [13],
[41], [33].

In the finite difference method, the rectangle Q is covered with two systems of
lines parallel to the coordinate axes. Their intersections belonging to Q are interior
nodes, the intersections lying on I' are boundary nodes. The discretization of the
differential equation (2.1) or (2.2) consists in replacing derivatives by finite differences
at each interior node. Special attention should be paid to the interface conditions
(i), (i1) and (iii). The Neumann boundary condition is treated in a similar way. Its
discretization results in difference equations at boundary nodes. The treatment of
the Dirichlet condition is especially simple. Finally, we arrive at a system of linear
algebraic equations for the unknown values of the approximate solution at nodes.

In the finite element method, we divide the rectangle Q into small subdomains,
usually triangles. We look for the approximate solution in the form of a linear
combination of chosen basis functions with unknown coefficients. Employing the
variational (integral) formulation of the problem solved rather than the differential
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formulation (2.1) or (2.2), we obtain (by the Ritz-Galerkin method) a system of
linear algebraic equations for unknown coefficients of the linear combination men-
tioned. The interface and the boundary conditions are accounted for in this variational
formulation. The basis functions in the finite element method are chosen as piecewise
polynomials of low degree (usually linear) with small supports (consisting of only
several subdomains).

The matrix of the linear algebraic system arising from both the discretizations
considered has special properties. If the discretization is carried out in a proper way,
the matrix is complex and symmetric (but not Hermitian). It is sparse, having only
very few nonzero entries in each row. In the simplest finite difference formulation it
has at most five nonzero entries in a row, in the finite element formulation with
piecewise linear basis functions it has at most seven nonzero entries in a row. More-
over, these nonzero entries are located systematically at the main diagonal of the
matrix and at further diagonals “parallel” to the main diagonal (in the finite element
method we require a regular division of Q into triangles to this end). Such a matrix
can thus be treated as a bandmatrix with a relatively very narrow band. For general
grids, there are sophisticated ways of storing a general sparse matrix and ways of
operating in its nonzero entries only [1], [2], [15], [23], [47].

Finally, let us mention that regular grids (leading to matrices of simple structure,
which is advantageous in the next step) give a rather inaccurate solution if the con-
ductivity ¢ changes very rapidly in some parts of the domain Q. The technique of
domain partitioning is successfully employed in such situations [9]. An approxima-
tion to the solution u sought is first computed on the whole Q in a coarse regular grid.
Then a smaller part Q' of Q (where the solution is not accurate enough yet) is chosen,
a finer regular grid is constructed on Q' and the Dirichlet boundary condition is
prescribed on the boundary I'” of Q' using the values of u just calculated on Q. This
partial problem is solved giving a more accurate solution on Q' [9].

Step 4. Solution of the linear algebraic system

Let
(3.4) Ax = b

be the system of linear algebraic equations constructed in the preceding step. We
presented the properties of the matrix A of the system there. There are, in general,
two classes of methods for solving the system: direct methods and iterative methods
[36]. [37], [39]

The direct methods give the solution of the system with the error, which is caused
only by rounding off, and require a finite number of arithmetic operations to this
end. All these methods are based on the Gaussian elimination but they may — to
some extent — take into account the properties of the matrix of the system, e.g. its
symmetry and band structure, which saves storage and/or time.

A version of the Gaussian elimination is called the triangular factorization (de-
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composition) since the matrix of the system is factored as
(3.5) A=LU

where L and U are a lower and an upper triangular matrices, respectively. For
a symmetric matrix A we can moreover get

(3.6) A=LLT,

i.e. the Choleski factorization. The solution of the system (3.4) is then successively
computed from the systems

Ly=b, Ux=y
or, for a symmetric matrix A,

Ly=b, L'™x=1y

with triangular matrices. Solution of such triangular systems is rather easy and
cheap — it is equivalent to the backsubstitution step of the Gaussian elimination.
Assuming a system of N? linear algebraic equations with a bandmatrix A of band-
width 2N + 1 (such a system arises e.g. from the finite difference discretization on
an N x N grid), the number of arithmetic operations required by the Gaussian
elimination is proportional to N*.

The fast direct methods take into account not only the zero-nonzero structure of
the matrix of the system but usually also some regular occurrence of values of its
nonzero entries. These methods are called fast since the number of arithmetic
operations they require is proportional at most to N2 log N on the above assumption
about the matrix of the system.

Unfortunately, most fast direct methods (e.g. the cyclic reduction algorithm)
cannot generally be applied to our system (3.4) in a straightforward way [14], [38].
The discretization of our problem satisfies the conditions necessary for the use of
fast direct methods only in the case of a homogeneous (or similar very simple)
medium. On the other hand, fast direct methods are a very important tool for ac-
celerating the rate of convergence of iterative methods as we will see later.

The iterative methods calculate a new approximation to the exact solution of the
linear algebraic system from its old approximation(s). Under certain conditions the
approximations converge to the exact solution (except for the round-off error).
Two classes of iterative methods are used very often. One of them is the stationary
one-point iteration [36] of the form

(37) xn+1 = an + c,

where x,.,; and x, are the new and the old approximations, respectively, and B
and c are a fixed matrix and a fixed vector, respectively. The matrix B is constructed
from the matrix A of the system (3.4) and ¢ is constructed from the right-hand part
of the system. This class includes also the well-known relaxation methods: the classical
Gauss-Seidel method and successive overrelaxation (SOR) method [49]. The rate
of convergence depends on the magnitude of ”B”, the norm of the iteration matrix B.
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A method of class (3.7) can be easily derived e.g. from the identity
x=x— (Ax — b).

In this case we obtain B =1 — Aand ¢ = b.

Another iterative method frequently used is the conjugate gradient method [36].
Since the convergence of the conjugate gradient method is proved for Hermitian
positive definite matrices, the system (3.4) is sometimes transformed into the form

A*Ax = A*b,

where A* is the conjugate transpose of A.

The number of arithmetic operations required by each iteration step in these
methods is proportional to N? for the bandmatrix A considered above. To reach
as fast a convergence as possible, the iterative methods are often preconditioned.
This means that in each step of the iterative method, some extra work is done (an
auxiliary linear algebraic system is solved by a fast direct method) with the aim to
improve the rate of convergence. Fast direct methods used for preconditioning are
e.g. cyclic reduction, incomplete factorization, or fast Fourier transform [20], [32],
[34], [37]. [39]. A special method of this class was proposed in [40].

The principal idea of preconditioning consists in the choice of matrix C possessing
the following two properties:

(a) C is close to A in some sense; e.g. some norm of the difference A — C is small.

(b) The system

(3.8) Cz=d

with an arbitrary right-hand part d can be solved fast,i.e. the number of arithmetic
operations required for the solution of (3.8) is proportional at most to N* log N.

Note that the best choice guaranteeing (a) is C = A, however, such a matrix C
would not generally satisfy (b).

Taking the specific properties of the considered fast direct method into account,
we choose the matrix C to fulfill (b). E.g. for the cyclic reduction, the matrix C arises
from the finite difference approximation of the equation (2.1) or (2.2) where & is
constant in the whole rectangle  (homogeneous medium). In incomplete factoriza-
tion, we put similarly to (3.5)

A=TU+E=C+E
where L and U are incomplete factors, i.e. they possess nonzero entries only in
positions where A does and C = LU satisfies (b).

Having chosen a suitable matrix C, we derive a modification of the stationary
one-point iteration (3.7) starting e.g. from the identity

Cx = Cx — (Ax — b).
We then arrive at the formula
(3.9) Cx,,., = Bx, + c
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where now B = C — A, ¢ = b. The rate of convergence of (3.9) depends on the
magnitude of the norm ||C™'(A — C)| (cf. (a)) and the system (3.8) withd = Bx, + ¢
is solved for z = x,,, in each step of the preconditioned iterative method (3.9)
(cf. (b)). A similar procedure is used to precondition the conjugate gradient method.

Step 5. Computation of the solution and derived quantities

In the finite difference method, the results of step 4 are the values of the approximate
solution at the nodes. The values of the solution between nodes can be calculated
by interpolation, and the values of first partial derivatives can be determined by
numerical differentiation, which, however, is known to be an ill-posed problem [36].

In the finite element method, we obtain the coefficients of the linear combination
of basis functions in step 4. The value of the approximate solution at any point of Q
can be calculated by the substitution of this point into basis functions. (Since the
supports of basis functions are small, most basis functions vanish at any fixed point
of Q.) Similarly, if the basis functions are sufficiently smooth we can determine the
values of partial derivatives calculating (analytically) the corresponding derivative
of all the basis functions. If the basis functions are linear this procedure gives piecewise
constant first partial derivatives.

Various stable procedures for the calculation of the derivatives of the solution are
presented in [26].

4. Program realization of algorithms

We will present some generally available software applicable to steps 3, 4, or S.
We are aware that this survey of program packages cannot be complete. We pay
attention mostly to complex programs that perform two or three steps of Section 3.
We do not mention commercial programs and libraries such as IMSL (distributed
by International Mathematical and Statistical Libraries, Inc., U.S.A.), IBM Sub-
routine Library-Mathematics [46] or NAG Library (distributed by Numerical
Algorithms Group, England) even though commercial libraries are a very powerful
tool for solving our problem. Such software may not be accessible to some users.

Most programs mentioned are written in FORTRAN. Single precision is usually
employed; some libraries contain also double precision versions of single precision
subroutines.

4.1. Solution of a linear algebraic system

Historically, the first programs generally available for our problem were con-
cerned with step 4, solution of the linear algebraic system. Even one of the oldest
FORTRAN subroutine libraries, IBM Scientific Subroutine Package [45], contains
subroutines for direct methods including subroutines operating only on nonzero
entries of a bandmatrix stored in a special way.
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Unfortunately, SSP subroutines like many others are written for real data and
any application to our complex system (3.4) requires rewriting the subroutine into
complex arithmetic. This may be an easy task if it is sufficient to add IMPLICIT
COMPLEX* 8 (A—H, O—Z) statement. On the other hand, some methods do not
work for complex data at all and any rewriting is thus of no use.

Today, the standard software for any computer includes a variety of subroutines
for direct and perhaps iterative solution of a linear algebraic system. We wish to
mention only specialized linear algebra libraries (packages): LINPACK [19], Yale
Sparse Matrix Package [21], and SPARSPAK [24]. Such specialized packages
contain also complex arithmetic versions of some subroutines.

4.2. Fast direct methods

Program packages for solving boundary value problems for elliptic partial dif-
ferential equations (i.e., software performing both steps 3 and 4 of Sec. 3) appeared
much later than programs for solving linear algebraic systems. One of the first such
subroutine packages in FISHPACK [43], [44] that uses both the finite difference
discretization and the cyclic reduction method (and some its generalizations). Cyclic
reduction, however, can be directly applied only to the equation (2.1) or (2.2) with
a constant coefficient 2. An iterative procedure employing cyclic reduction as
a preconditioner is thus used for the equations (2.1) or (2.2) with an arbitrary %> [9],
[38]. Further restrictions on cyclic reduction (a regular rectangular grid, in particular)
are presented in [43].

The subroutines of the FISHPACK package are written in real arithmetic but they
can be rather easily transformed into complex arithmetic. Numerical experiments
published in [9] show that the convergence of the iterative procedure with cyclic
reduction preconditioning rather depends on the choice of an iteration parameter
and is efficient if a good initial approximation is available. The procedure can thus
be recommended for the ‘“‘trial and error” treatment of the inverse problem. In each
step of this approach we adjust the function %2 to its expected value and solve the
direct problem (2.1) or (2.2) to compare its solution with the desired one. The solution
of the problem (2.1) or (2.2) in the previous step is used as an initial approximation
for the actual step and the value of the iteration parameter (once determined) is
re-used.

FISHPACK was distributed by the National Center for Atmospheric Research,
U.S.A. and is also included in the Algorithms of ACM (distributed by the IMSL).

4.3. Finite element discretization
Two specialized programs for magnetotelluric modeling were published in [31].
They calculate H- and E-polarization from the equations (2.1) and (2.2), respectively,

with the mixed (Neumann and Dirichlet) boundary conditions (3.2), (3.3). Each
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program performs steps 3 to 5. No changes in the programs are necessary. A finite
element discretization on general triangles is used with the basis functions being
piecewise polynomials of degree up to six. The linear algebraic system obtained is
solved by the Choleski factorization (3.6) that is preceded by a suitable ordering of
rows and columns of the matrix A of the system [15], which is not a bandmatrix in
this case. In conclusion, the derived quantities are computed via the differentiation
of basis functions.

The input for the program is rather large since the user has to specify vertices of
all the triangles that make up the rectangle Q, the value of the corresponding coef-
ficient %? which is supposed to be constant on each triangle, and the degree of the
basis function on each triangle.

The programs work reliably and rather quickly. Experimental comparisons
confirmed that the basis functions of high degree allow the user to employ rather
large triangles, i.e. a rather small number of them over Q. The programs are dis-
tributed under catalog names ACSC and ACSH by the Computer Physics Com-
munications Library, Great Britain.

4.4. Multi-level adaptive techniques

Recently, very efficient multi-level adaptive techniques have been developed and
very sophisticated programs have been implemented to carry out steps 3 and 4.
A. Brandt is the founder of this class of methods [10].

There are two groups of methods based on multi-level adaptive techniques. The
first group, multigrid methods, start with an initial (finite difference or finite element)
discretization and recursively use intermixed relaxations and coarser grid dis-
cretizations to solve the original fine grid linear algebraic system [42].

To the initial grid, a sequence of coarser grids is constructed whose mesh sizes
are usually doubled. An initial approximation to the solution of the system (3.4) on
the finest grid is smoothed (relaxed) with the help of several steps of some classical
iterative method (cf. step 3). The residual of the solution is then calculated and its
values, the defect, is restricted to the next coarser grid. A linear algebraic system is
constructed on this coarser grid as the discretization of the problem whose solution
is the corresponding correction. The initial correction is smoothed on this grid,
a new residual, the defect of the correction, is calculated and the process continues
on the next coarser grid with the computation of the correction to the correction, etc.

When the coarsest grid possible is reached the solution of the corresponding
linear algebraic system is computed by a direct method, interpolated back to the
finer grid, and added as a correction to the solution there. The corrected solution is
smoothed and again interpolated to the next finer grid. The process continues until
the initial (finest) grid is reached.

The transitions to coarser or finer grids may be repeatedly performed in different
manners. Multigrid methods thus carry over the computation to coarser grids where
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less work is necessary to improve the accuracy of the solution. A uniform grid is
typical for such methods.

The second approach employs adaptive (usually finite element) discretizations
that are successively constructed with the help of a posteriori error bounds [4].
These bounds indicate parts of 2 where the solution is not approximated sufficiently
well. A finer grid is automatically constructed in these places (the triangles in question
are divided into four smaller triangles) and the problem is solved on this finer grid
anew. The multigrid idea is used here, too.

A collection of multigrid programs MUGTAPE 84 is available on a magnetic
tape. It contains a variety of multigrid subroutine libraries, programs and subroutines
that can be used to solve the boundary value problem formulated in Section 2. All
the programs, however, are written in real arithmetic and need modification.

First experience with a complex arithmetic version of the program BOXMG [ 16]
from the MUGTAPE 84 collection shows that it can be a very useful tool for modeling
electromagnetic fields. The original main program of BOXMG is suitable for solving
the differential equation (2.1) or (2.2) but the Dirichlet boundary conditions (step 2)
have to be accounted for.

The MUGTAPE 84 collection has been prepared by the Gesellschaft fiir Mathe-
matik und Datenverarbeitung, F.R.G. and is distributed by the Weizmann Institute
of Science, Israel.

The program PLTMG [5] is an example of the algorithmic realization of adaptive
finite element discretization on triangular grids. It is written in real arithmetic and
its complexity would make the adaptation to complex arithmetic rather difficult.
The program is designed to solve a general nonlinear second order elliptic partial
differential equation on a general domain with mixed (Dirichlet and Neumann)
boundary conditions. The program is available from its author [5].
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