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Czechoslovakia 
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The development of specialized software makes possible to solve the problems of mathematical 
physics without preparing the specific program for each problem. The first part of this paper 
characterizes the individual steps of the solution of the direct two-dimensional magnetotelluric 
problem. Then a survey of the corresponding numerical methods and software available is 
presented. These methods and algorithms include also some efficient procedures that are seldom 
used in geophysics at the present. Special attention is paid to procedures implemented and avail
able in the form of quality software. Only finite difference and finite element methods are discussed. 

1. Introduction 

Interest in solving the direct problem of electromagnetic induction numerically is 
gradually shifting towards the problem of finding efficient methods for solving the 
general (i.e. three-dimensional) problem ([27], [25]). The problems of higher sym
metry have not, however, lost their importance for at least two reasons, cf. [29]. 

The first reason is physical in nature and is connected with the fact that many 
geologically important configurations can be successfully modeled — at least in the 
first approximation — by two — or even one-dimensionally inhomogeneous media. 
In such a case the model is computed more easily than the original three-dimensional 
one and, moreover, it provides information on a whole class of three-dimensional 
models as it involves a smaller number of parameters. 

The second reason is of a mathematical nature. Modeling two- or three-dimensional 
problems has been a subject of thorough investigation in mathematics and computer 
science. It is thus purposeful to study the scope and limits of new methods of nu
merical analysis on well-known two-dimensional models and only then to consider 
their applicability to the three-dimensional case. 

The rapid development of specialized software brings changes in the principal 
approaches to the numerical solution of our problem. Besides the sophisticated 
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methods which use the complicated grid of nodal points and basis functions, fast 
methods which use simple processes on a regular structure have been developed. On 
the other hand, software is so easily available that the user is no longer supposed to 
be a skilled programmer, but rather one who is informed about the features of the 
programs available and able to use them correctly in practice. 

This paper is concerned primarily with the second motivation and its aim is to 
show, on a relatively well-known problem, the possibilities provided by modern 
specialized software for solving geophysical problems in general. Attention is mostly 
paid to the numerical procedures realized by available and reliable programs and 
program packages. The subject of the paper is, however, concerned with many 
fields of numerical analysis and computer science and, therefore, we cannot claim 
that our survey is absolutely complete. 

The first part of the paper characterizes the individual steps of the solution of the 
direct two-dimensional magnetotelluric problem. Then a survey of the corresponding 
numerical methods and software available is presented. These methods and algorithms 
include also some efficient procedures that are seldom used in geophysics at present. 

Special attention is paid to procedures implemented and available in the form of 
quality software. The computation is thus relatively easy in such cases. It consists in 
a rather straightforward application of the software to a given problem. 

We also discuss possible difficulties connected with the application of this software 
in the light of our practical experience. Only the finite difference and finite element 
methods, which are most widely used in practice, are considered in this paper. We 
are not concerned with the method of integral equations (Green's function) that is 
based on a different approach. Software for this problem is also available [17], [48], 

2. Formulation of the problem 

We will confine ourselves to the two-dimensional magnetotelluric problem, i.e. 
the plane electromagnetic harmonic linearly polarized wave perpendicularly incident 
on the plane surface of a two-dimensionally inhomogeneous conductive half-space 
[11], [6], [13]. Such a medium is characterized by an axis of homogeneity (in this 
paper it is always the x-axis) representing the direction in which the properties of the 
medium do not change. 

Assuming a time factor exp (icot) and neglecting displacement currents, we can 
determine two independent solutions, H- and E-polarization, from the general system 
of Maxwell equations. The calculated component of the source field, i.e. Hx in the 
case of H-polarization or Ex in the case of E-polarization, is parallel to the axis of 
homogeneity. 

It is usually sufficient to approximate the electric conductivity a by a piecewise 
constant function. We suppose that the conductivity assumes constant values <rt 

in individual subdomains Qt of the domain Q. The subdomains usually have simple 
geometric form (rectangles, triangles). 

40 



We thus solve the Helmholtz equation 

1 
V2Hx(y, z) - iHx(y, z) = 0 

V2Ex(y, x) - ix2Ex(y, z) = 0 

(2.1) 

for H-polarization or 

(2-2) 

for E-polarization where 

X2 = (X)\IG 

and the quantities co, n and a represent the constant angular frequency in s" 1, 
constant magnetic permeability in H m " 1 , and piecewise constant electric con
ductivity in Q~l m " 1 , respectively. 

Practical reasons force us to confine ourselves to a finite domain Q on which the 
problem is solved. It proves advantageous to choose a sufficiently large rectangle 
for Q. The Earth's surface is represented by the line z = 0 in our model (Fig. 1). 
The behavior of the solution at infinity is now replaced by appropriate boundary 
conditions on the boundary F of the domain Q. 

x = o 

•л lajia П 

- * - У 

t 
z 

Fig. 1 
Orientation of axes and notation used. 

Equations (2A) and (2.2) are equivalent to each other in the individual subdomains 
Qt where a 4= 0 is constant. Studying the solution of (21) or (2.2), we generally 
denote it by u if it is not necessary to distinguish between H- and E-polarization. 

On the other hand, the behavior of both Hx and Ex on interfaces between the 
subdomains differ from each other and can be described via the variational formula
tion of the boundary value problems for the equations (2.1) and (2.2) [35]. On these 
interfaces we obtain: 

(i) the continuity of the solution Hx as well as Ex; 
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(ii) the continuity of the normal derivative dExjdn for E-polarization; 
(iii) the continuity of the function x~2 dHx\dn for H-polarization. 

The conditions (i), (ii) or (i), (iii) correspond to the behavior of the tangential 
components of the field vectors on interfaces. 

Examining Maxwell's equations, we can show that Hx is constant on and above 
Earth's surface (the air layer with a = 0) in the case of H-polarization [6], [12]. 
We can put Hx = const = 1 for z = 0 and solve (2A) only in the conductive domain 
representing the Earth conductor. In case of E-polarization it is necessary to consider 
a sufficiently thick air layer with zero conductivity above Earth's surface [7], [28]. 
A suitable normalization of Ex in the case of the E-polarization is carried out with 
the help of the boundary condition on F. 

The Maxwell equations imply in our particular case that the field is completely 
determined by the solution of the equation (2.1) or (2.2) and by its first partial 
derivatives. 

3. Solution of the problem 

Numerical solution of the problem formulated is carried out in several steps. 
We briefly survey both the individual steps and fundamental methods used. The 
first two steps are analytical, the last three steps numerical. In the following sections 
we will refer to these steps and methods. 

Step 1. Splitting the solution 

In case of E-polarization, it may prove advantageous [6] to consider together 
with the problem formulated in Sec. 2 also a problem similar to it, but with a simpler 
behavior of the conductivity <r, for example a problem where a depends on the 
z-coordinate only (i.e., a one-dimensional problem). Such a problem can often be 
easily solved, either analytically or numerically [6], [8], [30]. Denoting its solution 
by w0, we split the solution u of the original problem solved into two parts, 

(3.1) u = u0 + ur, 

where u0 is called the principal, ur the residual part of the solution. A differential 
equation is obtained for ur. It is the same equation as (2.1) but its right-hand part 
is nonzero in regions where the conductivities of the original and simpler problem 
differ. Appropriate boundary conditions are added to the differential equation for ur 

and the problem is solved numerically. The approximation to u is finally obtained 
as the sum (3.1) of u0 and the approximation to ur. 

Step 2. Choice of boundary conditions 

We confined ourselves to a finite domain, namely a rectangle Q, in Section 2. 
Boundary conditions prescribed on F should reflect the behavior of the solution at 
infinity. 

There are two basic approaches to the formulation of boundary conditions. 
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Splitting the solution according to (3A) in Step 1 and choosing a sufficiently large 
rectangle Q, we can put 

u = u0 on F, 
i.e. 

ur = 0 on F . 

The boundary conditions chosen are thus the Dirichlet ones. A similar choice of the 
Dirichlet boundary conditions for both H- and E-polarizations is possible also 
without the splitting (3.1). 

A more general approach makes use of the known behavior of the solution in 
the direction of the y- and z-axes [3], [18], [22], [31]. We usually put 

(3.2) — = 0 on both the right- and left-hand sides of Q, and 
dn 

u = 0 on the bottom side of Q. 

The boundary conditions are mixed (Neumann and Dirichlet) in this case. In case 
of H-polarization we can put 

(3.3) u = 1 on the top side of Q , 

i.e. on the Earth's surface (cf. Section 2), but in the case of E-polarization the choice 
of boundary condition on the top side of Q is more complex. An efficient approach 
is presented e.g. in [31] where the condition (3.3) is used on the top side of Q for 
E-polarization, too, (i.e. in the air) and the computation is successively carried out 
for models with thicker and thicker air layers until the solutions of the two such con
secutive models do not differ by more than the given tolerance. 

Step 3. Discretization of the problem 

We will consider two discretization procedures, namely the finite difference and 
finite element methods, without giving details. For reference see e.g. [6], [12], [13], 
[41], [33]. 

In the finite difference method, the rectangle Q is covered with two systems of 
lines parallel to the coordinate axes. Their intersections belonging to Q are interior 
nodes, the intersections lying on F are boundary nodes. The discretization of the 
differential equation (2.1) or (2.2) consists in replacing derivatives by finite differences 
at each interior node. Special attention should be paid to the interface conditions 
(i), (ii) and (iii). The Neumann boundary condition is treated in a similar way. Its 
discretization results in difference equations at boundary nodes. The treatment of 
the Dirichlet condition is especially simple. Finally, we arrive at a system of linear 
algebraic equations for the unknown values of the approximate solution at nodes. 

In the finite element method, we divide the rectangle Q into small subdomains, 
usually triangles. We look for the approximate solution in the form of a linear 
combination of chosen basis functions with unknown coefficients. Employing the 
variational (integral) formulation of the problem solved rather than the differential 
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formulation (2.1) or (2.2), we obtain (by the Ritz-Galerkin method) a system of 
linear algebraic equations for unknown coefficients of the linear combination men
tioned. The interface and the boundary conditions are accounted for in this variational 
formulation. The basis functions in the finite element method are chosen as piecewise 
polynomials of low degree (usually linear) with small supports (consisting of only 
several subdomains). 

The matrix of the linear algebraic system arising from both the discretizations 
considered has special properties. If the discretization is carried out in a proper way, 
the matrix is complex and symmetric (but not Hermitian). It is sparse, having only 
very few nonzero entries in each row. In the simplest finite difference formulation it 
has at most five nonzero entries in a row, in the finite element formulation with 
piecewise linear basis functions it has at most seven nonzero entries in a row. More
over, these nonzero entries are located systematically at the main diagonal of the 
matrix and at further diagonals "parallel" to the main diagonal (in the finite element 
method we require a regular division of Q into triangles to this end). Such a matrix 
can thus be treated as a bandmatrix with a relatively very narrow band. For general 
grids, there are sophisticated ways of storing a general sparse matrix and ways of 
operating in its nonzero entries only [ l ] , [2], [15], [23], [47]. 

Finally, let us mention that regular grids (leading to matrices of simple structure, 
which is advantageous in the next step) give a rather inaccurate solution if the con
ductivity a changes very rapidly in some parts of the domain Q. The technique of 
domain partitioning is successfully employed in such situations [9]. An approxima
tion to the solution u sought is first computed on the whole Q in a coarse regular grid. 
Then a smaller part Q' of Q (where the solution is not accurate enough yet) is chosen, 
a finer regular grid is constructed on Q' and the Dirichlet boundary condition is 
prescribed on the boundary F' of Q' using the values of u just calculated on Q. This 
partial problem is solved giving a more accurate solution on Q' [9]. 

Step 4. Solution of the linear algebraic system 

Let 

(3.4) Ax = b 

be the system of linear algebraic equations constructed in the preceding step. We 
presented the properties of the matrix A of the system there. There are, in general, 
two classes of methods for solving the system: direct methods and iterative methods 
[36], [37], [39]. 

The direct methods give the solution of the system with the error, which is caused 
only by rounding off, and require a finite number of arithmetic operations to this 
end. All these methods are based on the Gaussian elimination but they may — to 
some extent — take into account the properties of the matrix of the system, e.g. its 
symmetry and band structure, which saves storage and/or time. 

A version of the Gaussian elimination is called the triangular factorization (de-
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composition) since the matrix of the system is factored as 

(3.5) A= LU 

where L and U are a lower and an upper triangular matrices, respectively. For 
a symmetric matrix A we can moreover get 

(3.6) A= LLT , 

i.e. the Choleski factorization. The solution of the system (3.4) is then successively 
computed from the systems 

LY = b , Ux = Y 

or, for a symmetric matrix A, 
LY = b , LTx = Y 

with triangular matrices. Solution of such triangular systems is rather easy and 
cheap — it is equivalent to the backsubstitution step of the Gaussian elimination. 
Assuming a system of N2 linear algebraic equations with a bandmatrix A of band
width 2N -I- 1 (such a system arises e.g. from the finite difference discretization on 
an N x N grid), the number of arithmetic operations required by the Gaussian 
elimination is proportional to N4. 

The fast direct methods take into account not only the zero-nonzero structure of 
the matrix of the system but usually also some regular occurrence of values of its 
nonzero entries. These methods are called fast since the number of arithmetic 
operations they require is proportional at most to N2 logN on the above assumption 
about the matrix of the system. 

Unfortunately, most fast direct methods (e.g. the cyclic reduction algorithm) 
cannot generally be applied to our system (3.4) in a straightforward way [14], [38]. 
The discretization of our problem satisfies the conditions necessary for the use of 
fast direct methods only in the case of a homogeneous (or similar very simple) 
medium. On the other hand, fast direct methods are a very important tool for ac
celerating the rate of convergence of iterative methods as we will see later. 

The iterative methods calculate a new approximation to the exact solution of the 
linear algebraic system from its old approximation(s). Under certain conditions the 
approximations converge to the exact solution (except for the round-off error). 
Two classes of iterative methods are used very often. One of them is the stationary 
one-point iteration [36] of the form 

(3.7) xn + 1 = Bxn + c, 

where xn + 1 and xn are the new and the old approximations, respectively, and B 
and c are a fixed matrix and a fixed vector, respectively. The matrix B is constructed 
from the matrix A of the system (3.4) and c is constructed from the right-hand part 
of the system. This class includes also the well-known relaxation methods: the classical 
Gauss-Seidel method and successive overrelaxation (SOR) method [49]. The rate 
of convergence depends on the magnitude of ||B||, the norm of the iteration matrix B. 
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A method of class (3.7) can be easily derived e.g. from the identity 

x = x — (Ax — b). 

In this case we obtain B = I — A and c = b. 
Another iterative method frequently used is the conjugate gradient method [36]. 

Since the convergence of the conjugate gradient method is proved for Hermitian 
positive definite matrices, the system (3.4) is sometimes transformed into the form 

A* Ax = A*b, 

where A* is the conjugate transpose of A. 
The number of arithmetic operations required by each iteration step in these 

methods is proportional to N2 for the bandmatrix A considered above. To reach 
as fast a convergence as possible, the iterative methods are often preconditioned. 
This means that in each step of the iterative method, some extra work is done (an 
auxiliary linear algebraic system is solved by a fast direct method) with the aim to 
improve the rate of convergence. Fast direct methods used for preconditioning are 
e.g. cyclic reduction, incomplete factorization, or fast Fourier transform [20], [32], 
[34], [37], [39]. A special method of this class was proposed in [40]. 

The principal idea of preconditioning consists in the choice of matrix C possessing 
the following two properties: 

(a) C is close to A in some sense; e.g. some norm of the difference A — C is small. 
(b) The system 

(3.8) Cz = d 

with an arbitrary right-hand part d can be solved fast, i.e. the number of arithmetic 
operations required for the solution of (3.8) is proportional at most to N2 log N. 

Note that the best choice guaranteeing (a) is C = A, however, such a matrix C 
would not generally satisfy (b). 

Taking the specific properties of the considered fast direct method into account, 
we choose the. matrix C to fulfill (b). E.g. for the cyclic reduction, the matrix C arises 
from the finite difference approximation of the equation (2.1) or (2.2) where a is 
constant in the whole rectangle Q (homogeneous medium). In incomplete factoriza
tion, we put similarly to (3.5) 

A = LU + E=C + E 

where L and U are incomplete factors, i.e. they possess nonzero entries only in 
positions where A does and C = LU satisfies (b). 

Having chosen a suitable matrix C, we derive a modification of the stationary 
one-point iteration (3.7) starting e.g. from the identity 

Cx = Cx - (Ax - b) . 

We then arrive at the formula 

(3.9) Cx„+1 = Bx„ + c 
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where now B = C — A, c = b. The rate of convergence of (3.9) depends on the 
magnitude of the norm ||C~ 1(_A — C)|| (cf. (a)) and the system (3.8) withd = Bxn + c 
is solved for z = x n + 1 in each step of the preconditioned iterative method (3.9) 
(cf. (b)). A similar procedure is used to precondition the conjugate gradient method. 

Step 5. Computation of the solution and derived quantities 

In the finite difference method, the results of step 4 are the values of the approximate 
solution at the nodes. The values of the solution between nodes can be calculated 
by interpolation, and the values of first partial derivatives can be determined by 
numerical differentiation, which, however, is known to be an ill-posed problem [36]. 

In the finite element method, we obtain the coefficients of the linear combination 
of basis functions in step 4. The value of the approximate solution at any point of Q 
can be calculated by the substitution of this point into basis functions. (Since the 
supports of basis functions are small, most basis functions vanish at any fixed point 
of Q.) Similarly, if the basis functions are sufficiently smooth we can determine the 
values of partial derivatives calculating (analytically) the corresponding derivative 
of all the basis functions. If the basis functions are linear this procedure gives piecewise 
constant first partial derivatives. 

Various stable procedures for the calculation of the derivatives of the solution are 
presented in [26]. 

4. Program realization of algorithms 

We will present some generally available software applicable to steps 3, 4, or 5. 
We are aware that this survey of program packages cannot be complete. We pay 
attention mostly to complex programs that perform two or three steps of Section 3. 
We do not mention commercial programs and libraries such as IMSL (distributed 
by International Mathematical and Statistical Libraries, Inc., U.S.A.), IBM Sub
routine Library-Mathematics [46] or NAG Library (distributed by Numerical 
Algorithms Group, England) even though commercial libraries are a very powerful 
tool for solving our problem. Such software may not be accessible to some users. 

Most programs mentioned are written in FORTRAN. Single precision is usually 
employed; some libraries contain also double precision versions of single precision 
subroutines. 

4.L Solution of a linear algebraic system 

Historically, the first programs generally available for our problem were con
cerned with step 4, solution of the linear algebraic system. Even one of the oldest 
FORTRAN subroutine libraries, IBM Scientific Subroutine Package [45], contains 
subroutines for direct methods including subroutines operating only on nonzero 
entries of a bandmatrix stored in a special way. 
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Unfortunately, SSP subroutines like many others are written for real data and 
any application to our complex system (3.4) requires rewriting the subroutine into 
complex arithmetic. This may be an easy task if it is sufficient to add IMPLICIT 
COMPLEX* 8 (A —H, O —Z) statement. On the other hand, some methods do not 
work for complex data at all and any rewriting is thus of no use. 

Today, the standard software for any computer includes a variety of subroutines 
for direct and perhaps iterative solution of a linear algebraic system. We wish to 
mention only specialized linear algebra libraries (packages): LINPACK [19], Yale 
Sparse Matrix Package [21], and SPARSPAK [24]. Such specialized packages 
contain also complex arithmetic versions of some subroutines. 

4.2. Fast direct methods 

Program packages for solving boundary value problems for elliptic partial dif
ferential equations (i.e., software performing both steps 3 and 4 of Sec. 3) appeared 
much later than programs for solving linear algebraic systems. One of the first such 
subroutine packages in FISHPACK [43], [44] that uses both the finite difference 
discretization and the cyclic reduction method (and some its generalizations). Cyclic 
reduction, however, can be directly applied only to the equation (2.1) or (2.2) with 
a constant coefficient x2. An iterative procedure employing cyclic reduction as 
a preconditioner is thus used for the equations (2.1) or (2.2) with an arbitrary x2 [9], 
[38]. Further restrictions on cyclic reduction (a regular rectangular grid, in particular) 
are presented in [43]. 

The subroutines of the FISHPACK package are written in real arithmetic but they 
can be rather easily transformed into complex arithmetic. Numerical experiments 
published in [9] show that the convergence of the iterative procedure with cyclic 
reduction preconditioning rather depends on the choice of an iteration parameter 
and is efficient if a good initial approximation is available. The procedure can thus 
be recommended for the "trial and error" treatment of the inverse problem. In each 
step of this approach we adjust the function x2 to its expected value and solve the 
direct problem (2.1) or (2.2) to compare its solution with the desired one. The solution 
of the problem (2.1) or (2.2) in the previous step is used as an initial approximation 
for the actual step and the value of the iteration parameter (once determined) is 
re-used. 

FISHPACK was distributed by the National Center for Atmospheric Research, 
U.S.A. and is also included in the Algorithms of ACM (distributed by the IMSL). 

4.3. Finite element discretization 

Two specialized programs for magnetotelluric modeling were published in [31]. 
They calculate H- and E-polarization from the equations (2.1) and (2.2), respectively, 
with the mixed (Neumann and Dirichlet) boundary conditions (3.2), (3.3). Each 
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program performs steps 3 to 5. No changes in the programs are necessary. A finite 
element discretization on general triangles is used with the basis functions being 
piecewise polynomials of degree up to six. The linear algebraic system obtained is 
solved by the Choleski factorization (3.6) that is preceded by a suitable ordering of 
rows and columns of the matrix A of the system [15], which is not a bandmatrix in 
this case. In conclusion, the derived quantities are computed via the differentiation 
of basis functions. 

The input for the program is rather large since the user has to specify vertices of 
all the triangles that make up the rectangle Q, the value of the corresponding coef
ficient x1 which is supposed to be constant on each triangle, and the degree of the 
basis function on each triangle. 

The programs work reliably and rather quickly. Experimental comparisons 
confirmed that the basis functions of high degree allow the user to employ rather 
large triangles, i.e. a rather small number of them over Q. The programs are dis
tributed under catalog names ACSC and ACSH by the Computer Physics Com
munications Library, Great Britain. 

4.4. Multi-level adaptive techniques 

Recently, very efficient multi-level adaptive techniques have been developed and 
very sophisticated programs have been implemented to carry out steps 3 and 4. 
A. Brandt is the founder of this class of methods [10]. 

There are two groups of methods based on multi-level adaptive techniques. The 
first group, multigrid methods, start with an initial (finite difference or finite element) 
discretization and recursively use intermixed relaxations and coarser grid dis
cretizations to solve the original fine grid linear algebraic system [42]. 

To the initial grid, a sequence of coarser grids is constructed whose mesh sizes 
are usually doubled. An initial approximation to the solution of the system (3.4) on 
the finest grid is smoothed (relaxed) with the help of several steps of some classical 
iterative method (cf. step 3). The residual of the solution is then calculated and its 
values, the defect, is restricted to the next coarser grid. A linear algebraic system is 
constructed on this coarser grid as the discretization of the problem whose solution 
is the corresponding correction. The initial correction is smoothed on this grid, 
a new residual, the defect of the correction, is calculated and the process continues 
on the next coarser grid with the computation of the correction to the correction, etc. 

When the coarsest grid possible is reached the solution of the corresponding 
linear algebraic system is computed by a direct method, interpolated back to the 
finer grid, and added as a correction to the solution there. The corrected solution is 
smoothed and again interpolated to the next finer grid. The process continues until 
the initial (finest) grid is reached. 

The transitions to coarser or finer grids may be repeatedly performed in different 
manners. Multigrid methods thus carry over the computation to coarser grids where 
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less work is necessary to improve the accuracy of the solution. A uniform grid is 
typical for such methods. 

The second approach employs adaptive (usually finite element) discretizations 
that are successively constructed with the help of a posteriori error bounds [4^. 
These bounds indicate parts of Q where the solution is not approximated sufficiently 
well. A finer grid is automatically constructed in these places (the triangles in questio n 
are divided into four smaller triangles) and the problem is solved on this finer grid 
anew. The multigrid idea is used here, too. 

A collection of multigrid programs MUGTAPE 84 is available on a magnetic 
tape. It contains a variety of multigrid subroutine libraries, programs and subroutines 
that can be used to solve the boundary value problem formulated in Section 2. All 
the programs, however, are written in real arithmetic and need modification. 

First experience with a complex arithmetic version of the program BOXMG [16] 
from the MUGTAPE 84 collection shows that it can be a very useful tool for modeling 
electromagnetic fields. The original main program of BOXMG is suitable for solving 
the differential equation (2.1) or (2.2) but the Dirichlet boundary conditions (step 2) 
have to be accounted for. 

The MUGTAPE 84 collection has been prepared by the Gesellschaft fur Mathe-
matik und Datenverarbeitung, F.R.G. and is distributed by the Weizmann Institute 
of Science, Israel. 

The program PLTMG [5] is an example of the algorithmic realization of adaptive 
finite element discretization on triangular grids. It is written in real arithmetic and 
its complexity would make the adaptation to complex arithmetic rather difficult. 
The program is designed to solve a general nonlinear second order elliptic partial 
differential equation on a general domain with mixed (Dirichlet and Neumann) 
boundary conditions. The program is available from its author [5]. 
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